메뉴 건너뛰기




Volumn , Issue , 2007, Pages 1-244

Data mining with decision trees: Theory and applications

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85051715472     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1142/6604     Document Type: Book
Times cited : (938)

References (488)
  • 1
    • 0025725905 scopus 로고
    • Instancebased learning algorithms
    • Aha, D. W.; Kibler, D.; and Albert, M. K., Instancebased learning algorithms. Machine Learning 6(1):37-66, 1991.
    • (1991) Machine Learning , vol.6 , Issue.1 , pp. 37-66
    • Aha, D.W.1    Kibler, D.2    Albert, M.K.3
  • 2
    • 0029478402 scopus 로고
    • A tabu search approach to the clustering problem
    • A1-Sultan K. S., A tabu search approach to the clustering problem, Pattern Recognition, 28:1443-1451, 1995.
    • (1995) Pattern Recognition , vol.28 , pp. 1443-1451
    • A1-Sultan, K.S.1
  • 3
    • 0030571816 scopus 로고    scopus 로고
    • Computational experience on four algorithms for the hard clustering problem
    • Al-Sultan K. S., Khan M. M.: Computational experience on four algorithms for the hard clustering problem. Pattern Recognition Letters 17(3): 295-308, 1996.
    • (1996) Pattern Recognition Letters , vol.17 , Issue.3 , pp. 295-308
    • Al-Sultan, K.S.1    Khan, M.M.2
  • 4
    • 0030235637 scopus 로고    scopus 로고
    • Error reduction through learning multiple descriptions
    • Ali K. M., Pazzani M. J., Error Reduction through Learning Multiple Descriptions, Machine Learning, 24: 3, 173-202, 1996.
    • (1996) Machine Learning , vol.24 , Issue.3 , pp. 173-202
    • Ali, K.M.1    Pazzani, M.J.2
  • 5
    • 0030170591 scopus 로고    scopus 로고
    • An efficient algorithm for optimal pruning of decision trees
    • Almuallim H., An Efficient Algorithm for Optimal Pruning of Decision Trees. Artificial Intelligence 83(2): 347-362, 1996.
    • (1996) Artificial Intelligence , vol.83 , Issue.2 , pp. 347-362
    • Almuallim, H.1
  • 6
    • 0028496468 scopus 로고
    • Learning boolean concepts in the presence of many irrelevant features
    • Almuallim H., and Dietterich T.G., Learning Boolean concepts in the presence of many irrelevant features. Artificial Intelligence, 69: 1-2, 279-306, 1994.
    • (1994) Artificial Intelligence , vol.69 , Issue.1-2 , pp. 279-306
    • Almuallim, H.1    Dietterich, T.G.2
  • 9
    • 0029183827 scopus 로고
    • Efficient classification for multiclass problems using modular neural networks
    • Anand R, Methrotra K, Mohan CK, Ranka S. Efficient classification for multiclass problems using modular neural networks. IEEE Trans Neural Networks, 6(1): 117-125, 1995.
    • (1995) IEEE Trans Neural Networks , vol.6 , Issue.1 , pp. 117-125
    • Anand, R.1    Methrotra, K.2    Mohan, C.K.3    Ranka, S.4
  • 11
    • 0009347677 scopus 로고
    • The decomposition of switching functions, technical report
    • Ashenhurst, R. L., The decomposition of switching functions, Technical report, Bell Laboratories BL-1(11), pp. 541-602, 1952.
    • (1952) Bell Laboratories BL , vol.1 , Issue.11 , pp. 541-602
    • Ashenhurst, R.L.1
  • 14
    • 85115671318 scopus 로고    scopus 로고
    • Free-text information retrieval system for a rapid enrollment of patients into clinical trials
    • Averbuch M., Maimon O., Rokach L., and Ezer E., Free-Text Information Retrieval System for a Rapid Enrollment of Patients into Clinical Trials, Clinical Pharmacology and Therapeutics, 77(2): 13-14, 2005.
    • (2005) Clinical Pharmacology and Therapeutics , vol.77 , Issue.2 , pp. 13-14
    • Averbuch, M.1    Maimon, O.2    Rokach, L.3    Ezer, E.4
  • 15
    • 0033556929 scopus 로고    scopus 로고
    • Boosted mixture of experts: An ensemble learning scheme
    • Avnimelech R. and Intrator N., Boosted Mixture of Experts: an ensemble learning scheme, Neural Computations, 11(2):483-497, 1999.
    • (1999) Neural Computations , vol.11 , Issue.2 , pp. 483-497
    • Avnimelech, R.1    Intrator, N.2
  • 17
    • 0002640910 scopus 로고
    • Hybrid learning using genetic algorithms and decision trees for pattern classification
    • Bala J., Huang J., Vafaie H., De Jong K., Wechsler H., Hybrid Learning Using Genetic Algorithms and Decision Trees for Pattern Classification, IJCAI conference, 1995.
    • (1995) IJCAI Conference
    • Bala, J.1    Huang, J.2    Vafaie, H.3    De Jong, K.4    Wechsler, H.5
  • 18
    • 37249072237 scopus 로고    scopus 로고
    • R. Banfield, OpenDT, http://opendt.sourceforge.net/, 2005.
    • (2005) Opendt
    • Banfield, R.1
  • 20
    • 0027453616 scopus 로고
    • Model-based gaussian and non-gaussian clustering
    • Banfield J. D. and Raftery A. E., Model-based Gaussian and non-Gaussian clustering. Biometrics, 49:803-821, 1993.
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 21
    • 0002094343 scopus 로고    scopus 로고
    • Generalization performance of support vector machines and other pattern classifiers
    • Bernhard Scholkopf, Christopher J. C. Burges, and Alexander J. Smola (eds.), MIT Press, Cambridge, USA
    • Bartlett P. and Shawe-Taylor J., Generalization Performance of Support Vector Machines and Other Pattern Classifiers, In “Advances in Kernel Methods, Support Vector Learning”, Bernhard Scholkopf, Christopher J. C. Burges, and Alexander J. Smola (eds.), MIT Press, Cambridge, USA, 1998.
    • (1998) Advances in Kernel Methods, Support Vector Learning
    • Bartlett, P.1    Shawe-Taylor, J.2
  • 22
    • 3142665996 scopus 로고    scopus 로고
    • Online adaptive decision trees
    • Basak J., Online adaptive decision trees, Neural Computations, 16(9):1959-1981, 2004.
    • (2004) Neural Computations , vol.16 , Issue.9 , pp. 1959-1981
    • Basak, J.1
  • 23
    • 33748306005 scopus 로고    scopus 로고
    • Online adaptive decision trees: Pattern classification and function approximation
    • Basak J., Online Adaptive Decision Trees: Pattern Classification and Function Approximation, Neural Computations, 18(9):2062-2101, 2006.
    • (2006) Neural Computations , vol.18 , Issue.9 , pp. 2062-2101
    • Basak, J.1
  • 24
    • 0001931577 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer, E. and Kohavi, R., “An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants”. Machine Learning, 35: 138, 1999.
    • (1999) Machine Learning , vol.35 , pp. 138
    • Bauer, E.1    Kohavi, R.2
  • 25
    • 0000254593 scopus 로고
    • Use of an artificial neural network for data analysis in clinical decision making: The diagnosis of acute coronary occlusion
    • Baxt, W. G., Use of an artificial neural network for data analysis in clinical decision making: The diagnosis of acute coronary occlusion. Neural Computation, 2(4):480-489, 1990.
    • (1990) Neural Computation , vol.2 , Issue.4 , pp. 480-489
    • Baxt, W.G.1
  • 26
    • 33744958288 scopus 로고    scopus 로고
    • Nearest neighbor classification from multiple feature subsets
    • Bay, S., Nearest neighbor classification from multiple feature subsets. Intelligent Data Analysis, 3(3): 191-209, 1999.
    • (1999) Intelligent Data Analysis , vol.3 , Issue.3 , pp. 191-209
    • Bay, S.1
  • 28
    • 0017933553 scopus 로고
    • Myopic policies in sequential classification
    • BenBassat M., Myopic policies in sequential classification. IEEE Trans. on Computing, 27(2):170-174, February 1978.
    • (1978) IEEE Trans. On Computing , vol.27 , Issue.2 , pp. 170-174
    • BenBassat, M.1
  • 32
    • 0017931947 scopus 로고
    • Fast algorithms for constructing minimal spanning trees in coordinate spaces
    • February
    • Bentley J. L. and Friedman J. H., Fast algorithms for constructing minimal spanning trees in coordinate spaces. IEEE Transactions on Computers, C-27(2):97-105, February 1978. 275
    • (1978) IEEE Transactions on Computers , vol.C-27 , Issue.2 , pp. 97-105
    • Bentley, J.L.1    Friedman, J.H.2
  • 33
    • 0020300879 scopus 로고
    • Decision trees and diagrams
    • Bernard M.E., Decision trees and diagrams. Computing Surveys, 14(4):593-623, 1982.
    • (1982) Computing Surveys , vol.14 , Issue.4 , pp. 593-623
    • Bernard, M.E.1
  • 35
    • 0002483047 scopus 로고    scopus 로고
    • Data mining by decomposition: Adaptive search for hypothesis generation, informs
    • Bhargava H. K., Data Mining by Decomposition: Adaptive Search for Hypothesis Generation, INFORMS Journal on Computing Vol. 11, Iss. 3, pp. 239-47, 1999.
    • (1999) Journal on Computing , vol.11 , Issue.3 , pp. 239-247
    • Bhargava, H.K.1
  • 37
    • 0013224752 scopus 로고    scopus 로고
    • Maintaining the performance of a learned classifier under concept drift
    • Black, M. and Hickey, R.J., Maintaining the Performance of a Learned Classifier under Concept Drift, Intelligent Data Analysis 3(1), pp. 453-474, 1999.
    • (1999) Intelligent Data Analysis , vol.3 , Issue.1 , pp. 453-474
    • Black, M.1    Hickey, R.J.2
  • 38
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • Blum, A. L. and Langley, P., 1997, Selection of relevant features and examples in machine learning, Artificial Intelligence, 97, pp.245-271.
    • (1997) Artificial Intelligence , vol.97 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 43
    • 0028443644 scopus 로고
    • Trading accuracy for simplicity in decision trees
    • Bratko I., and Bohanec M., Trading accuracy for simplicity in decision trees, Machine Learning 15: 223-250, 1994.
    • (1994) Machine Learning , vol.15 , pp. 223-250
    • Bratko, I.1    Bohanec, M.2
  • 44
    • 84958528434 scopus 로고
    • Characterizing the applicability of classification algorithms using meta level learning
    • F. Bergadano e L. de Raedt (eds.)LNAI, Springer Verlag
    • Brazdil P., Gama J., Henery R., Characterizing the Applicability of Classification Algorithms using Meta Level Learning, in Machine Learning: ECML-94, F. Bergadano e L. de Raedt (eds.), LNAI No. 784: pp. 83-102, Springer Verlag, 1994.
    • (1994) Machine Learning: ECML-94 , Issue.784 , pp. 83-102
    • Brazdil, P.1    Gama, J.2    Henery, R.3
  • 45
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L., Bagging predictors, Machine Learning, 24(2):123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 46
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L., Random forests. Machine Learning, 45, 532, 2001.
    • (2001) Machine Learning , vol.45 , pp. 532
    • Breiman, L.1
  • 48
    • 6744266523 scopus 로고
    • Automatic selection of split criterion during tree growing based on node selection
    • Taho City, Ca. Morgan Kaufmann
    • Br Brodley, C. E., Automatic selection of split criterion during tree growing based on node selection. In Proceedings of the Twelth International Conference on Machine Learning, 73-80 Taho City, Ca. Morgan Kaufmann, 1995.
    • (1995) Proceedings of the Twelth International Conference on Machine Learning , pp. 73-80
    • Br Brodley, C.E.1
  • 50
    • 35248848489 scopus 로고    scopus 로고
    • Negative correlation learning and the ambiguity family of ensemble methods
    • Brown G., Wyatt J. L., Negative Correlation Learning and the Ambiguity Family of Ensemble Methods. Multiple Classifier Systems 2003: 266-275
    • (2003) Multiple Classifier Systems , pp. 266-275
    • Brown, G.1    Wyatt, J.L.2
  • 51
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: A survey and categorisation
    • Brown G., Wyatt J., Harris R., Yao X., Diversity creation methods: a survey and categorisation, Information Fusion, 6(1):5-20.
    • Information Fusion , vol.6 , Issue.1 , pp. 5-20
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 52
    • 4544379476 scopus 로고    scopus 로고
    • Detection of land-cover transitions by combining multidate classifiers
    • Bruzzone L., Cossu R., Vernazza G., Detection of land-cover transitions by combining multidate classifiers, Pattern Recognition Letters, 25(13): 1491-1500, 2004.
    • (2004) Pattern Recognition Letters , vol.25 , Issue.13 , pp. 1491-1500
    • Bruzzone, L.1    Cossu, R.2    Vernazza, G.3
  • 57
    • 0002980086 scopus 로고
    • Learning classification trees
    • Buntine, W. (1992), “Learning Classification Trees”, Statistics and Computing, 2, 63-73.
    • (1992) Statistics and Computing , vol.2 , pp. 63-73
    • Buntine, W.1
  • 58
    • 0002745636 scopus 로고    scopus 로고
    • Graphical models for discovering knowledge
    • U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, AAAI/MIT Press
    • Buntine, W., “Graphical Models for Discovering Knowledge”, in U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, pp 59-82. AAAI/MIT Press, 1996.
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 59-82
    • Buntine, W.1
  • 59
    • 0002117591 scopus 로고
    • A further comparison of splitting rules for decision-tree induction
    • Buntine W., Niblett T., A Further Comparison of Splitting Rules for Decision-Tree Induction. Machine Learning, 8: 75-85, 1992.
    • (1992) Machine Learning , vol.8 , pp. 75-85
    • Buntine, W.1    Niblett, T.2
  • 60
    • 77956256481 scopus 로고    scopus 로고
    • Neural and rough set based data mining methods in engineering
    • Klosgen W. and Zytkow J. M. (Eds.), Oxford University Press
    • Buczak A. L. and Ziarko W., “Neural and Rough Set Based Data Mining Methods in Engineering”, Klosgen W. and Zytkow J. M. (Eds.), Handbook of Data Mining and Knowledge Discovery, pages 788-797. Oxford University Press, 2002.
    • (2002) Handbook of Data Mining and Knowledge Discovery , pp. 788-797
    • Buczak, A.L.1    Ziarko, W.2
  • 62
    • 0027578653 scopus 로고
    • Incremental clustering for dynamic information processing
    • Can F., Incremental clustering for dynamic information processing, in ACM Transactions on Information Systems, no. 11, pp 143-164, 1993.
    • (1993) ACM Transactions on Information Systems , Issue.11 , pp. 143-164
    • Can, F.1
  • 63
    • 0037297883 scopus 로고    scopus 로고
    • Inducing oblique decision trees with evolutionary algorithms
    • Cantu-Paz E., Kamath C., Inducing oblique decision trees with evolutionary algorithms, IEEE Trans. on Evol. Computation 7(1), pp. 54-68, 2003.
    • (2003) IEEE Trans. On Evol. Computation , vol.7 , Issue.1 , pp. 54-68
    • Cantu-Paz, E.1    Kamath, C.2
  • 65
    • 0242647875 scopus 로고    scopus 로고
    • A learner-independent evaluation of the useful-ness of statistical phrases for automated text categorization, text databases and document management: Theory and practice
    • Caropreso M., Matwin S., and Sebastiani F., A learner-independent evaluation of the useful-ness of statistical phrases for automated text categorization, Text Databases and Document Management: Theory and Practice. Idea Group Publishing, page 78-102, 2001.
    • (2001) Idea Group Publishing , pp. 78-102
    • Caropreso, M.1    Matwin, S.2    Sebastiani, F.3
  • 67
    • 2442682055 scopus 로고    scopus 로고
    • A hybrid decision-tree - genetic algorithm method for data mining
    • Carvalho D.R., Freitas A.A., A hybrid decision-tree - genetic algorithm method for data mining, Information Science 163, 13-35, 2004.
    • (2004) Information Science , vol.163 , pp. 13-35
    • Carvalho, D.R.1    Freitas, A.A.2
  • 69
    • 0030284572 scopus 로고    scopus 로고
    • Piecewise-linear classifiers using binary tree structure and genetic algorithm
    • Chai B., Huang T., Zhuang X., Zhao Y., Sklansky J., Piecewise-linear classifiers using binary tree structure and genetic algorithm, Pattern Recognition 29(11), pp. 1905-1917, 1996.
    • (1996) Pattern Recognition , vol.29 , Issue.11 , pp. 1905-1917
    • Chai, B.1    Huang, T.2    Zhuang, X.3    Zhao, Y.4    Sklansky, J.5
  • 72
    • 0030681095 scopus 로고    scopus 로고
    • On the accuracy of meta-learning for scalable data mining
    • Chan P.K. and Stolfo S.J, On the Accuracy of Meta-learning for Scalable Data Mining, J. Intelligent Information Systems, 8:5-28, 1997.
    • (1997) J. Intelligent Information Systems , vol.8 , pp. 5-28
    • Chan, P.K.1    Stolfo, S.J.2
  • 76
    • 0000291808 scopus 로고    scopus 로고
    • Methods of combining multiple classifiers with different features and their applications to text-independent speaker identification
    • Chen K., Wang L. and Chi H., Methods of Combining Multiple Classifiers with Different Features and Their Applications to Text-Independent Speaker Identification, International Journal of Pattern Recognition and Artificial Intelligence, 11(3): 417-445, 1997.
    • (1997) International Journal of Pattern Recognition and Artificial Intelligence , vol.11 , Issue.3 , pp. 417-445
    • Chen, K.1    Wang, L.2    Chi, H.3
  • 80
    • 34547753362 scopus 로고    scopus 로고
    • On dimensionality reduction of high dimensional data sets, frontiers in artificial intelligence and applications
    • Chizi, B., Maimon, O. and Smilovici A. On Dimensionality Reduction of High Dimensional Data Sets, Frontiers in Artificial Intelligence and Applications, IOS press, pp. 230-236, 2002.
    • (2002) IOS Press , pp. 230-236
    • Chizi, B.1    Maimon, O.2    Smilovici, A.3
  • 83
    • 34249966007 scopus 로고
    • The cn2 rule induction algorithm
    • Clark P., and Niblett T., The CN2 rule induction algorithm. Machine Learning, 3:261-284, 1989.
    • (1989) Machine Learning , vol.3 , pp. 261-284
    • Clark, P.1    Niblett, T.2
  • 87
    • 34250314887 scopus 로고    scopus 로고
    • Decision tree instance space decomposition with grouped gain-ratio
    • S. Cohen, L. Rokach, O. Maimon, Decision Tree Instance Space Decomposition with Grouped Gain-Ratio, Information Science, Volume 177, Issue 17, pp. 3592-3612, 2007.
    • (2007) Information Science , vol.177 , Issue.17 , pp. 3592-3612
    • Cohen, S.1    Rokach, L.2    Maimon, O.3
  • 89
    • 0024715745 scopus 로고
    • Extensions to the cart algorithm
    • Crawford S. L., Extensions to the CART algorithm. Int. J. of Man Machine Studies, 31(2):197-217, August 1989.
    • (1989) Int. J. Of Man Machine Studies , vol.31 , Issue.2 , pp. 197-217
    • Crawford, S.L.1
  • 90
    • 84974722422 scopus 로고    scopus 로고
    • Diversity versus quality in classification ensembles based on feature selection
    • R. L. De Mntaras and E. Plaza (eds.), Barcelona, Spain, LNCS 1810, Springer
    • Cunningham P., and Carney J., Diversity Versus Quality in Classification Ensembles Based on Feature Selection, In: R. L. De Mntaras and E. Plaza (eds.), Proc. Ecml 2000, 11th European Conf. On Machine Learning, Barcelona, Spain, LNCS 1810, Springer, 2000, pp. 109-116.
    • (2000) Proc. ECML 2000, 11Th European Conf. On Machine Learning , pp. 109-116
    • Cunningham, P.1    Carney, J.2
  • 92
    • 0034824884 scopus 로고    scopus 로고
    • Concept decomposition for large sparse text data using clustering
    • Dhillon I. And Modha D., Concept Decomposition for Large Sparse Text Data Using Clustering. Machine Learning. 42, pp.143-175. (2001).
    • (2001) Machine Learning , vol.42 , pp. 143-175
    • Dhillon, I.1    Modha, D.2
  • 95
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Dietterich, T. G., “Approximate statistical tests for comparing supervised classification learning algorithms”. Neural Computation, 10(7): 1895-1924, 1998.
    • (1998) Neural Computation , vol.10 , Issue.7 , pp. 1895-1924
    • Dietterich, T.G.1
  • 96
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging
    • Dietterich, T. G., An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting and Randomization. 40(2):139-157, 2000.
    • (2000) Boosting and Randomization , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 98
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • Dietterich, T. G., and Ghulum Bakiri. Solving multiclass learning problems via error-correcting output codes. Journal of Artificial Intelligence Research, 2:263-286, 1995.
    • (1995) Journal of Artificial Intelligence Research , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 104
    • 0002106691 scopus 로고    scopus 로고
    • proceedings of the Fifth International Conference on Knowledge Discovery and Data Mining, ACM Press
    • Dominigos P. (1999): MetaCost: A general method for making classifiers cost sensitive. In proceedings of the Fifth International Conference on Knowledge Discovery and Data Mining, pp. 155-164. Acm Press.
    • (1999) Metacost: A General Method for Making Classifiers Cost Sensitive , pp. 155-164
    • Dominigos, P.1
  • 106
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the naive bayes classifier under zero-one loss
    • Domingos, P., & Pazzani, M., On the Optimality of the Naive Bayes Classifier under Zero-One Loss, Machine Learning, 29: 2, 103-130, 1997.
    • (1997) Machine Learning , vol.29 , Issue.2 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 107
    • 85139983802 scopus 로고
    • Supervised and unsupervised discretization of continuous attributes. Machine learning: Proceedings of the twelfth international conference
    • Dougherty, J., Kohavi, R, Sahami, M., Supervised and unsupervised discretization of continuous attributes. Machine Learning: Proceedings of the twelfth International Conference, Morgan Kaufman pp. 194-202, 1995.
    • (1995) Morgan Kaufman , pp. 194-202
    • Dougherty, J.1    Kohavi, R.2    Sahami, M.3
  • 111
    • 12144288329 scopus 로고    scopus 로고
    • Is combining classifiers with stacking better than selecting the best one?
    • Dzeroski S., Zenko B., Is Combining Classifiers with Stacking Better than Selecting the Best One?, Machine Learning, 54(3): 255-273, 2004.
    • (2004) Machine Learning , vol.54 , Issue.3 , pp. 255-273
    • Dzeroski, S.1    Zenko, B.2
  • 112
    • 0002101112 scopus 로고    scopus 로고
    • A statistical perspective on knowledge discovery in databases
    • U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthu-rusamy editors, AAAI/MIT Press
    • Elder I. And Pregibon, D., “A Statistical Perspective on Knowledge Discovery in Databases”, In U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthu-rusamy editors., Advances in Knowledge Discovery and Data Mining, pp. 83-113, AAAI/MIT Press, 1996.
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 83-113
    • Elder, I.1    Pregibon, D.2
  • 113
    • 14344253489 scopus 로고    scopus 로고
    • Lookahead-basedalgorithms for anytime induction of decision trees
    • Esmeir, S., and Markovitch, S. 2004. Lookahead-basedalgorithms for anytime induction of decision trees. In ICML04, 257-264.
    • (2004) In ICML04 , pp. 257-264
    • Esmeir, S.1    Markovitch, S.2
  • 115
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • E. Simoudis, J. Han, and U. Fayyad, editors, Menlo Park, CA, AAAI, AAAI Press
    • Ester M., Kriegel H.P., Sander S., and Xu X., A density-based algorithm for discovering clusters in large spatial databases with noise. In E. Simoudis, J. Han, and U. Fayyad, editors, Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96), pages 226-231, Menlo Park, CA, 1996. Aaai, AAAI Press.
    • (1996) Proceedings of the 2Nd International Conference on Knowledge Discovery and Data Mining (KDD-96) , pp. 226-231
    • Ester, M.1    Kriegel, H.P.2    Sander, S.3    Xu, X.4
  • 118
    • 0003641269 scopus 로고    scopus 로고
    • From data mining to knowledge discovery: An overview
    • U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy (Eds), AAAI/MIT Press
    • Fayyad, U., Piatesky-Shapiro, G. & Smyth P., From Data Mining to Knowledge Discovery: An Overview. In U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy (Eds), Advances in Knowledge Discovery and Data Mining, pp 1-30, AAAI/MIT Press, 1996.
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 1-30
    • Fayyad, U.1    Piatesky-Shapiro, G.2    Smyth, P.3
  • 125
    • 33749370195 scopus 로고
    • Decomposition of time series - comparing different methods in theory and practice
    • Fischer, B., “Decomposition of Time Series - Comparing Different Methods in Theory and Practice”, Eurostat Working Paper, 1995.
    • (1995) Eurostat Working Paper
    • Fischer, B.1
  • 128
    • 0034593064 scopus 로고    scopus 로고
    • Mining ic test data to optimize vlsi testing
    • Fountain, T. Dietterich T., Sudyka B., “Mining IC Test Data to Optimize VLSI Testing”, ACM SIGKDD Conference, 2000, pp. 18-25, 2000.
    • (2000) ACM SIGKDD Conference , vol.2000 , pp. 18-25
    • Fountain, T.D.T.1    Sudyka, B.2
  • 130
    • 0004021178 scopus 로고
    • Knowledge discovery in databases: An overview
    • G. Piatetsky-Shapiro and W. J. Frawley, editors, AAAI Press, Menlo Park, California
    • Frawley W. J., Piatetsky-Shapiro G., and Matheus C. J., “Knowledge Discovery in Databases: An Overview, ” G. Piatetsky-Shapiro and W. J. Frawley, editors, Knowledge Discovery in Databases, 1-27, AAAI Press, Menlo Park, California, 1991.
    • (1991) Knowledge Discovery in Databases , pp. 1-27
    • Frawley, W.J.1    Piatetsky-Shapiro, G.2    Matheus, C.J.3
  • 131
    • 38349111002 scopus 로고    scopus 로고
    • Evolutionary algorithms for data mining
    • O. Maimon and L. Rokach (Eds.), Springer
    • Freitas A. (2005), “Evolutionary Algorithms for Data Mining”, in O. Maimon and L. Rokach (Eds.), The Data Mining and Knowledge Discovery Handbook, Springer, pp. 435-467.
    • (2005) The Data Mining and Knowledge Discovery Handbook , pp. 435-467
    • Freitas, A.1
  • 134
    • 0017480535 scopus 로고
    • A recursive partitioning decision rule for nonparametric classifiers
    • Friedman J. H., A recursive partitioning decision rule for nonparametric classifiers. Ieee Trans. On Comp., C26:404-408, 1977.
    • (1977) IEEE Trans. On Comp , vol.C26 , pp. 404-408
    • Friedman, J.H.1
  • 135
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman, J. H., “Multivariate Adaptive Regression Splines”, The Annual Of Statistics, 19, 1-141, 1991.
    • (1991) The Annual of Statistics , vol.19 , pp. 1-141
    • Friedman, J.H.1
  • 137
    • 21744462998 scopus 로고    scopus 로고
    • On bias, variance, 0/1 - loss and the curse of dimensionality
    • Friedman, J.H. (1997B). On bias, variance, 0/1 - loss and the curse of dimensionality, Data Mining and Knowledge Discovery, 1: 1, 55-77, 1997.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , Issue.1 , pp. 55-77
    • Friedman, J.H.1
  • 138
    • 0016102310 scopus 로고
    • A projection pursuit algorithm for exploratory data analysis
    • Friedman, J.H. & Tukey, J.W., A Projection Pursuit Algorithm for Exploratory Data Analysis, IEEE Transactions on Computers, 23: 9, 881-889, 1973.
    • (1973) IEEE Transactions on Computers , vol.23 , Issue.9 , pp. 881-889
    • Friedman, J.H.1    Tukey, J.W.2
  • 143
    • 0003014785 scopus 로고
    • Modular neural net systems, training of
    • (Ed.) M.A. Arbib, Bradford Books/MIT Press
    • Gallinari, P., Modular Neural Net Systems, Training of. In (Ed.) M.A. Arbib. The Handbook of Brain Theory and Neural Networks, Bradford Books/MIT Press, 1995.
    • (1995) The Handbook of Brain Theory and Neural Networks
    • Gallinari, P.1
  • 144
    • 78650167300 scopus 로고
    • A linear-bayes classifier
    • C. Monard, editor, LNAI, Springer Verlag, 2000
    • Gama J., A Linear-Bayes Classifier. In C. Monard, editor, Advances on Artificial Intelligence - SBIA2000. Lnai 1952, pp 269-279, Springer Verlag, 2000
    • (1952) Advances on Artificial Intelligence - SBIA2000 , pp. 269-279
    • Gama, J.1
  • 145
    • 0006899493 scopus 로고    scopus 로고
    • New measurements highlight the importance of redundant knowledge
    • Montpeiller, France, Pitman
    • Gams, M., New Measurements Highlight the Importance of Redundant Knowledge. In European Working Session on Learning, Montpeiller, France, Pitman, 1989.
    • European Working Session on Learning , pp. 1989
    • Gams, M.1
  • 147
    • 0034592742 scopus 로고    scopus 로고
    • Data mining solves tough semiconductor manufacturing problems
    • Gardner M., Bieker, J., Data mining solves tough semiconductor manufacturing problems. Kdd 2000: pp. 376-383, 2000.
    • (2000) KDD , vol.2000 , pp. 376-383
    • Gardner, M.1    Bieker, J.2
  • 152
    • 0001729472 scopus 로고    scopus 로고
    • Calibration and empirical bayes variable selection
    • George, E. And Foster, D. (2000), Calibration and empirical Bayes variable selection, Biometrika, 87(4):731-747.
    • (2000) Biometrika , vol.87 , Issue.4 , pp. 731-747
    • George, E.1    Foster, D.2
  • 154
    • 0347808222 scopus 로고
    • Maid: A honeywell 600 program for an automatised survey analysis
    • Gillo M. W., MAID: A Honeywell 600 program for an automatised survey analysis. Behavioral Science 17: 251-252, 1972.
    • (1972) Behavioral Science , vol.17 , pp. 251-252
    • Gillo, M.W.1
  • 155
    • 33749322782 scopus 로고    scopus 로고
    • Introduction to the special issue of on meta-learning
    • Giraud-Carrier Ch., Vilalta R., Brazdil R., Introduction to the Special Issue of on Meta-Learning, Machine Learning, 54 (3), 197-194, 2004.
    • (2004) Machine Learning , vol.54 , Issue.3 , pp. 194-197
    • Giraud-Carrier, C.H.1    Vilalta, R.2    Brazdil, R.3
  • 161
    • 23844545305 scopus 로고    scopus 로고
    • Feature selection algorithms for the generation of multiple classifier systems
    • Gunter S., Bunke H., Feature Selection Algorithms for the generation of multiple classifier systems, Pattern Recognition Letters, 25(11):1323-1336, 2004.
    • (2004) Pattern Recognition Letters , vol.25 , Issue.11 , pp. 1323-1336
    • Gunter, S.1    Bunke, H.2
  • 162
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I. And Elisseeff A., “An introduction to variable and feature selection”, Journal of Machine Learning Research 3, pp. 1157-1182, 2003.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 167
    • 0000856338 scopus 로고
    • The meta-pi network - building distributed knowledge representations for robust multisource pattern-recognition
    • Hampshire, J. B., and Waibel, A. The meta-Pi network - building distributed knowledge representations for robust multisource pattern-recognition. Pattern Analyses and Machine Intelligence 14(7): 751-769, 1992.
    • (1992) Pattern Analyses and Machine Intelligence , vol.14 , Issue.7 , pp. 751-769
    • Hampshire, J.B.1    Waibel, A.2
  • 171
    • 27144536001 scopus 로고    scopus 로고
    • Extensions to the k-means algorithm for clustering large data sets with categorical values
    • Huang, Z., Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Mining and Knowledge Discovery, 2(3), 1998.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.3
    • Huang, Z.1
  • 172
    • 0034655052 scopus 로고    scopus 로고
    • Decomposition in automatic generation of petri nets for manufacturing system control and scheduling
    • He D. W., Strege B., Tolle H., and Kusiak A., Decomposition in Automatic Generation of Petri Nets for Manufacturing System Control and Scheduling, International Journal of Production Research, 38(6): 1437-1457, 2000.
    • (2000) International Journal of Production Research , vol.38 , Issue.6 , pp. 1437-1457
    • He, D.W.1    Strege, B.2    Tolle, H.3    Kusiak, A.4
  • 173
    • 0005185992 scopus 로고    scopus 로고
    • Knowledge discovery and interestingness measures: A survey
    • Department of Computer Science, University of Regina
    • Hilderman, R. And Hamilton, H. (1999). Knowledge discovery and interestingness measures: A survey. In Technical Report CS 99-04.Department of Computer Science, University of Regina.
    • (1999) Technical Report CS 99-04
    • Hilderman, R.1    Hamilton, H.2
  • 174
  • 177
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • Holte R. C., Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11:63-90, 1993.
    • (1993) Machine Learning , vol.11 , pp. 63-90
    • Holte, R.C.1
  • 179
    • 0031224390 scopus 로고    scopus 로고
    • Use of contextual information for feature ranking and discretization
    • Hong S., Use of Contextual Information for Feature Ranking and Discretization, IEEE Transactions on Knowledge and Data Engineering, 9(5):718-730, 1997.
    • (1997) IEEE Transactions on Knowledge and Data Engineering , vol.9 , Issue.5 , pp. 718-730
    • Hong, S.1
  • 182
    • 4544223395 scopus 로고    scopus 로고
    • Using rough sets theory and database operations to construct a good ensemble of classifiers for data mining applications
    • Hu, X., Using Rough Sets Theory and Database Operations to Construct a Good Ensemble of Classifiers for Data Mining Applications. Icdm01. Pp 233-240, 2001.
    • (2001) ICDM01 , pp. 233-240
    • Hu, X.1
  • 184
    • 0027902977 scopus 로고
    • Finding relevant biomolecular features
    • Hunter L., Klein T. E., Finding Relevant Biomolecular Features. Ismb 1993, pp. 190-197, 1993.
    • (1993) ISMB , vol.1993 , pp. 190-197
    • Hunter, L.1    Klein, T.E.2
  • 185
    • 0028516150 scopus 로고
    • Nonparametric multivariate density estimation: A comparative study
    • Hwang J., Lay S., and Lippman A., Nonparametric multivariate density estimation: A comparative study, IEEE Transaction on Signal Processing, 42(10): 2795-2810, 1994.
    • (1994) IEEE Transaction on Signal Processing , vol.42 , Issue.10 , pp. 2795-2810
    • Hwang, J.1    Lay, S.2    Lippman, A.3
  • 186
    • 0001815269 scopus 로고
    • Constructing optimal binary decision trees is np-complete
    • Hyafil L. And Rivest R.L., Constructing optimal binary decision trees is NP-complete. Information Processing Letters, 5(1):15-17, 1976
    • (1976) Information Processing Letters , vol.5 , Issue.1 , pp. 15-17
    • Hyafil, L.1    Rivest, R.L.2
  • 189
    • 0028739689 scopus 로고
    • Structure determination in fuzzy modeling: A fuzzy cart approach
    • Jang J., “Structure determination in fuzzy modeling: A fuzzy CART approach, ” in Proc. Ieee Conf. Fuzzy Systems, 1994, pp. 480-485.
    • (1994) Proc. Ieee Conf. Fuzzy Systems , pp. 480-485
    • Jang, J.1
  • 190
    • 0031996838 scopus 로고    scopus 로고
    • Fuzzy decision trees: Issues and methods, ieee transactions on systems
    • Janikow, C.Z., Fuzzy Decision Trees: Issues and Methods, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 28, Issue 1, pp. 1-14. 1998.
    • (1998) Man, and Cybernetics , vol.28 , Issue.1 , pp. 1-14
    • Janikow, C.Z.1
  • 193
    • 0027634760 scopus 로고
    • A simplified neural network solution through problem decomposition: The case of truck backer-upper
    • Jenkins R. And Yuhas, B. P. A simplified neural network solution through problem decomposition: The case of Truck backer-upper, IEEE Transactions on Neural Networks 4(4):718-722, 1993.
    • (1993) IEEE Transactions on Neural Networks , vol.4 , Issue.4 , pp. 718-722
    • Jenkins, R.1    Yuhas, B.P.2
  • 195
    • 0002655125 scopus 로고
    • A narmax model representation for adaptive control based on local model -modeling
    • Johansen T. A. And Foss B. A., A narmax model representation for adaptive control based on local model -Modeling, Identification and Control, 13(1):25-39, 1992.
    • (1992) Identification and Control , vol.13 , Issue.1 , pp. 25-39
    • Johansen, T.A.1    Foss, B.A.2
  • 199
    • 0000262562 scopus 로고
    • Hierarchical mixtures of experts and the em algorithm
    • Jordan, M. I., and Jacobs, R. A., Hierarchical mixtures of experts and the EM algorithm. Neural Computation, 6, 181-214, 1994.
    • (1994) Neural Computation , vol.6 , pp. 181-214
    • Jordan, M.I.1    Jacobs, R.A.2
  • 200
    • 0001632132 scopus 로고
    • Hierarchies of adaptive experts
    • J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds, Morgan Kaufmann Publishers, Inc
    • Jordan, M. I., and Jacobs, R. A. Hierarchies of adaptive experts. In Advances in Neural Information Processing Systems, J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds., vol. 4, Morgan Kaufmann Publishers, Inc., pp. 985-992, 1992.
    • (1992) Advances in Neural Information Processing Systems , pp. 985-992
    • Jordan, M.I.1    Jacobs, R.A.2
  • 201
    • 85115691693 scopus 로고    scopus 로고
    • On evaluating performance of classifiers for rare classes, second ieee international conference on data mining
    • Joshi, V. M., “On Evaluating Performance of Classifiers for Rare Classes”, Second IEEE International Conference on Data Mining, IEEE Computer Society Press, pp. 641-644, 2002.
    • (2002) IEEE Computer Society Press , pp. 641-644
    • Joshi, V.M.1
  • 206
    • 0001217510 scopus 로고
    • Clustering by means of medoids
    • Y. Dodge, editor, Elsevier/North Holland, Amsterdam
    • Kaufman, L. And Rousseeuw, P.J., 1987, Clustering by Means of Medoids, In Y. Dodge, editor, Statistical Data Analysis, based on the L1 Norm, pp. 405-416, Elsevier/North Holland, Amsterdam.
    • (1987) Statistical Data Analysis, Based on the L1 Norm , pp. 405-416
    • Kaufman, L.1    Rousseeuw, P.J.2
  • 208
    • 0000661829 scopus 로고
    • An exploratory technique for investigating large quantities of categorical data
    • Kass G. V., An exploratory technique for investigating large quantities of categorical data. Applied Statistics, 29(2):119-127, 1980.
    • (1980) Applied Statistics , vol.29 , Issue.2 , pp. 119-127
    • Kass, G.V.1
  • 209
    • 0003269205 scopus 로고    scopus 로고
    • A fast, bottom-up decision tree pruning algorithm with near-optimal generalization
    • J. Shavlik, ed., Morgan Kaufmann Publishers, Inc
    • Kearns M. And Mansour Y., A fast, bottom-up decision tree pruning algorithm with near-optimal generalization, in J. Shavlik, ed., ‘Machine Learning: Proceedings of the Fifteenth International Conference’, Morgan Kaufmann Publishers, Inc., pp. 269-277, 1998.
    • (1998) Machine Learning: Proceedings of the Fifteenth International Conference , pp. 269-277
    • Kearns, M.1    Mansour, Y.2
  • 210
    • 0033075132 scopus 로고    scopus 로고
    • On the boosting ability of top-down decision tree learning algorithms
    • Kearns M. And Mansour Y., On the boosting ability of top-down decision tree learning algorithms. Journal of Computer and Systems Sciences, 58(1): 109-128, 1999.
    • (1999) Journal of Computer and Systems Sciences , vol.58 , Issue.1 , pp. 109-128
    • Kearns, M.1    Mansour, Y.2
  • 211
    • 33846799805 scopus 로고
    • Moment-generating and characteristic functions, “some examples of moment-generating functions, ” and “uniqueness theorem for characteristic functions.”
    • 2nd ed. Princeton, NJ: Van Nostrand
    • Kenney, J. F. And Keeping, E. S. “Moment-Generating and Characteristic Functions, ” “Some Examples of Moment-Generating Functions, ” and “Uniqueness Theorem for Characteristic Functions.” §4.6-4.8 in Mathematics of Statistics, Pt. 2, 2nd ed. Princeton, NJ: Van Nostrand, pp. 72-77, 1951.
    • (1951) Mathematics of Statistics , pp. 72-77
    • Kenney, J.F.1    Keeping, E.S.2
  • 214
    • 0034831822 scopus 로고    scopus 로고
    • A novel validity index for determination of the optimal number of clusters
    • Kim, D.J., Park, Y.W. And Park P. A novel validity index for determination of the optimal number of clusters. Ieice Trans. Inf., Vol. E84-D, no.2 (2001), 281-285.
    • (2001) IEICE Trans. Inf , vol.E84-D , Issue.2 , pp. 281-285
    • Kim, D.J.1    Park, Y.W.2    Park, P.3
  • 215
    • 84947386456 scopus 로고
    • Step-wise clustering procedures
    • King, B. Step-wise Clustering Procedures, J. Am. Stat. Assoc. 69, pp. 86-101, 1967.
    • (1967) J. Am. Stat. Assoc , vol.69 , pp. 86-101
    • King, B.1
  • 217
    • 0004077439 scopus 로고    scopus 로고
    • Kdd: The purpose, necessity and chalanges
    • Klosgen W. And Zytkow J. M. (Eds.), Oxford University Press
    • Klosgen W. And Zytkow J. M., “KDD: The Purpose, Necessity and Chalanges”, Klosgen W. And Zytkow J. M. (Eds.), Handbook of Data Mining and Knowledge Discovery, pp. 1-9. Oxford University Press, 2002.
    • (2002) Handbook of Data Mining and Knowledge Discovery , pp. 1-9
    • Klosgen, W.1    Zytkow, J.M.2
  • 218
    • 84991254436 scopus 로고
    • Bottom-up induction of oblivious read-once decision graphs
    • F. Bergadano and L. De Raedt, editors, Springer-Verlag
    • Kohavi, R., Bottom-up induction of oblivious read-once decision graphs, in F. Bergadano and L. De Raedt, editors, Proc. European Conference on Machine Learning, pp. 154-169, Springer-Verlag, 1994.
    • (1994) Proc. European Conference on Machine Learning , pp. 154-169
    • Kohavi, R.1
  • 224
    • 27844588525 scopus 로고    scopus 로고
    • Decision-tree discovery
    • Klosgen W. And Zytkow J. M., editors, chapter 16.1.3, Oxford University Press
    • Kohavi R. And Quinlan J. R., Decision-tree discovery. In Klosgen W. And Zytkow J. M., editors, Handbook of Data Mining and Knowledge Discovery, chapter 16.1.3, pages 267-276. Oxford University Press, 2002.
    • (2002) Handbook of Data Mining and Knowledge Discovery , pp. 267-276
    • Kohavi, R.1    Quinlan, J.R.2
  • 227
    • 0000670848 scopus 로고
    • Back propagation is sesitive to initial conditions
    • San Francisco, CA. Morgan Kaufmann
    • Kolen, J. F., and Pollack, J. B., Back propagation is sesitive to initial conditions. In Advances in Neural Information Processing Systems, Vol. 3, pp. 860-867 San Francisco, CA. Morgan Kaufmann, 1991.
    • (1991) Advances in Neural Information Processing Systems , vol.3 , pp. 860-867
    • Kolen, J.F.1    Pollack, J.B.2
  • 230
    • 0003112380 scopus 로고
    • Comparison of inductive and naive bayes learning approaches to automatic knowledge acquisition
    • B. Wielinga (Ed.), Amsterdam, The Netherlands IOS Press
    • Kononenko, I., Comparison of inductive and Naive Bayes learning approaches to automatic knowledge acquisition. In B. Wielinga (Ed.), Current Trends in Knowledge Acquisition, Amsterdam, The Netherlands IOS Press, 1990.
    • (1990) Current Trends in Knowledge Acquisition
    • Kononenko, I.1
  • 232
    • 9444227076 scopus 로고    scopus 로고
    • An evolutionary algorithm for oblique decision tree induction
    • Springer, LNCS
    • Krtowski M., An evolutionary algorithm for oblique decision tree induction, Proc. Of ICAISC’04, Springer, LNCS 3070, pp.432-437, 2004.
    • (2004) Proc. Of ICAISC’04 , vol.3070 , pp. 432-437
    • Krtowski, M.1
  • 235
    • 0002719797 scopus 로고
    • The hungarian method for the assignment problem
    • Kuhn H. W., The Hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2:83-97, 1955.
    • (1955) Naval Research Logistics Quarterly , vol.2 , pp. 83-97
    • Kuhn, H.W.1
  • 236
    • 24144490154 scopus 로고    scopus 로고
    • Diversity in multiple classifier systems (Editorial)
    • Kuncheva L.I. Diversity in multiple classifier systems (Editorial), Information Fusion, 6 (1), 2005, 3-4.
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 3-4
    • Kuncheva, L.I.1
  • 237
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with ensemble accuracy
    • Kuncheva, L., & Whitaker, C., Measures of diversity in classifier ensembles and their relationship with ensemble accuracy. Machine Learning, pp. 181-207, 2003.
    • (2003) Machine Learning , pp. 181-207
    • Kuncheva, L.1    Whitaker, C.2
  • 238
  • 239
    • 0034960598 scopus 로고    scopus 로고
    • Rough set theory: A data mining tool for semiconductor manufacturing
    • Kusiak, A., Rough Set Theory: A Data Mining Tool for Semiconductor Manufacturing, IEEE Transactions on Electronics Packaging Manufacturing, 24(1): 44-50, 2001A.
    • (2001) IEEE Transactions on Electronics Packaging Manufacturing , vol.24 , Issue.1 , pp. 44-50
    • Kusiak, A.1
  • 242
    • 0026191290 scopus 로고
    • A novel approach to decomposition of design specifications and search for solutions
    • Kusiak, E. Szczerbicki, and K. Park, A Novel Approach to Decomposition of Design Specifications and Search for Solutions, International Journal of Production Research, 29(7): 1391-1406, 1991.
    • (1991) International Journal of Production Research , vol.29 , Issue.7 , pp. 1391-1406
    • Kusiak, E.S.1    Park, K.2
  • 247
    • 0002862737 scopus 로고    scopus 로고
    • Fast and effective text mining using linear-time document clustering
    • San Diego, CA
    • Larsen, B. And Aone, C. 1999. Fast and effective text mining using linear-time document clustering. In Proceedings of the 5th ACM SIGKDD, 16-22, San Diego, CA.
    • (1999) Proceedings of the 5Th ACM SIGKDD , pp. 16-22
    • Larsen, B.1    Aone, C.2
  • 248
    • 85115689132 scopus 로고    scopus 로고
    • Online classification of nonstationary data streams
    • Last, M., Online Classification of Nonstationary Data Streams, Intelligent Data Analysis 5, IDA83, pp. 119, 2001.
    • (2001) Intelligent Data Analysis , vol.5 , pp. 119
    • Last, M.1
  • 249
    • 0008695428 scopus 로고    scopus 로고
    • Data mining for process and quality control in the semiconductor industry
    • D. Braha (ed.)Kluwer Academic Publishers
    • Last M., Kandel A., Data Mining for Process and Quality Control in the Semiconductor Industry, in Data Mining for Design and Manufacturing: Methods and Applications, D. Braha (ed.), Kluwer Academic Publishers, pp. 207-234, 2001.
    • (2001) Data Mining for Design and Manufacturing: Methods and Applications , pp. 207-234
    • Last, M.1    Kandel, A.2
  • 253
    • 0036498492 scopus 로고    scopus 로고
    • Forecasting the nyse composite index with technical analysis, pattern recognizer, neural networks, and genetic algorithm: A case study in romantic decision support
    • Leigh W., Purvis R., Ragusa J. M., Forecasting the NYSE composite index with technical analysis, pattern recognizer, neural networks, and genetic algorithm: a case study in romantic decision support, Decision Support Systems 32(4): 361-377, 2002.
    • (2002) Decision Support Systems , vol.32 , Issue.4 , pp. 361-377
    • Leigh, W.1    Purvis, R.2    Ragusa, J.M.3
  • 254
    • 85124125604 scopus 로고
    • Heterogeneous uncertainty sampling for supervised learning
    • New Brunswick, New Jersey, Morgan Kaufmann
    • Lewis D., and Catlett J., Heterogeneous uncertainty sampling for supervised learning. In Machine Learning: Proceedings of the Eleventh Annual Conference, pp. 148-156, New Brunswick, New Jersey, Morgan Kaufmann, 1994.
    • (1994) Machine Learning: Proceedings of the Eleventh Annual Conference , pp. 148-156
    • Lewis, D.1    Catlett, J.2
  • 256
    • 0022597806 scopus 로고
    • Tree classifier design with a permutation statistic
    • Li X. And Dubes R. C., Tree classifier design with a Permutation statistic, Pattern Recognition 19:229-235, 1986.
    • (1986) Pattern Recognition , vol.19 , pp. 229-235
    • Li, X.1    Dubes, R.C.2
  • 257
    • 84898990837 scopus 로고    scopus 로고
    • Constructing heterogeneous committees via input feature grouping
    • S.A. Solla, T.K. Leen and K.-R. Muller (eds.), MIT Press
    • Liao Y., and Moody J., Constructing Heterogeneous Committees via Input Feature Grouping, in Advances in Neural Information Processing Systems, Vol.12, S.A. Solla, T.K. Leen and K.-R. Muller (eds.), MIT Press, 2000.
    • (2000) Advances in Neural Information Processing Systems , vol.12
    • Liao, Y.1    Moody, J.2
  • 258
    • 0034274591 scopus 로고    scopus 로고
    • A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms
    • Lim X., Loh W.Y., and Shih X., A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Machine Learning 40:203-228, 2000.
    • (2000) Machine Learning , vol.40 , pp. 203-228
    • Lim, X.1    Loh, W.Y.2    Shih, X.3
  • 259
    • 0020497050 scopus 로고
    • Automatic classification of cervical cells using a binary tree classifier
    • Lin Y. K. And FuK., Automatic classification of cervical cells using a binary tree classifier. Pattern Recognition, 16(1):69-80, 1983.
    • (1983) Pattern Recognition , vol.16 , Issue.1 , pp. 69-80
    • Lin, Y.K.1
  • 262
    • 85115724529 scopus 로고    scopus 로고
    • Generate different neural networks by negative correlation learning
    • Liu Y.: Generate Different Neural Networks by Negative Correlation Learning. Icnc (1) 2005: 149-156
    • (2005) ICNC , vol.1 , pp. 149-156
    • Liu, Y.1
  • 264
    • 35048864442 scopus 로고    scopus 로고
    • An empirical study of building compact ensembles
    • Liu H., Mandvikar A., Mody J., An Empirical Study of Building Compact Ensembles. Waim 2004: pp. 622-627.
    • (2004) WAIM , pp. 622-627
    • Liu, H.1    Mandvikar, A.2    Mody, J.3
  • 267
    • 0031312210 scopus 로고    scopus 로고
    • Split selection methods for classification trees
    • Loh W.Y., and Shih X., Split selection methods for classification trees. Statistica Sinica, 7: 815-840, 1997.
    • (1997) Statistica Sinica , vol.7 , pp. 815-840
    • Loh, W.Y.1    Shih, X.2
  • 268
    • 0042942219 scopus 로고    scopus 로고
    • Families of splitting criteria for classification trees
    • Loh W.Y. And Shih X., Families of splitting criteria for classification trees. Statistics and Computing 9:309-315, 1999.
    • (1999) Statistics and Computing , vol.9 , pp. 309-315
    • Loh, W.Y.1    Shih, X.2
  • 271
    • 0025798330 scopus 로고
    • A distance-based attribute selection measure for decision tree induction
    • Lopez de Mantras R., A distance-based attribute selection measure for decision tree induction, Machine Learning 6:81-92, 1991.
    • (1991) Machine Learning , vol.6 , pp. 81-92
    • Lopez De Mantras, R.1
  • 272
    • 0032594843 scopus 로고    scopus 로고
    • Task decomposition and module combination based on class relations: A modular neural network for pattern classification
    • Lu B.L., Ito M., Task Decomposition and Module Combination Based on Class Relations: A Modular Neural Network for Pattern Classification, IEEE Trans. On Neural Networks, 10(5):1244-1256, 1999.
    • (1999) IEEE Trans. On Neural Networks , vol.10 , Issue.5 , pp. 1244-1256
    • Lu, B.L.1    Ito, M.2
  • 274
    • 0029237758 scopus 로고
    • Decomposition of multiple-valued functions
    • Bloomigton, Indiana
    • Luba, T., Decomposition of multiple-valued functions, in Intl. Symposium on Multiple-Valued Logic’, Bloomigton, Indiana, pp. 256-261, 1995.
    • (1995) Intl. Symposium on Multiple-Valued Logic’ , pp. 256-261
    • Luba, T.1
  • 275
    • 27844608507 scopus 로고
    • Algorithmic speedups in growing classification trees by using an additive split criterion
    • Lubinsky D., Algorithmic speedups in growing classification trees by using an additive split criterion. Proc. Ai & Statistics 93, pp. 435-444, 1993.
    • (1993) Proc. Ai & Statistics , vol.93 , pp. 435-444
    • Lubinsky, D.1
  • 276
    • 0027187341 scopus 로고
    • Uncertain reasoning in an id3 machine learning framework, in proc. 2Nd
    • Maher P. E. And Clair D. C, Uncertain reasoning in an ID3 machine learning framework, in Proc. 2Nd IEEE Int. Conf. Fuzzy Systems, 1993, pp. 712.
    • (1993) IEEE Int. Conf. Fuzzy Systems , pp. 712
    • Maher, P.E.1    Clair, D.C.2
  • 278
    • 33646426343 scopus 로고    scopus 로고
    • Data mining by attribute decomposition with semiconductors manufacturing case study
    • D. Braha (ed.), Kluwer Academic Publishers
    • Maimon O., and Rokach, L. Data Mining by Attribute Decomposition with semiconductors manufacturing case study, in Data Mining for Design and Manufacturing: Methods and Applications, D. Braha (ed.), Kluwer Academic Publishers, pp. 311-336, 2001.
    • (2001) Data Mining for Design and Manufacturing: Methods and Applications , pp. 311-336
    • Maimon, O.1    Rokach, L.2
  • 280
    • 84937393248 scopus 로고    scopus 로고
    • Ensemble of decision trees for mining manufacturing data sets
    • Maimon O., Rokach L., Ensemble of Decision Trees for Mining Manufacturing Data Sets, Machine Engineering, vol. 4 No 1-2, 2004.
    • (2004) Machine Engineering , vol.4 , Issue.1-2
    • Maimon, O.1    Rokach, L.2
  • 282
    • 84915425007 scopus 로고
    • Some comments on cp
    • Mallows, C. L., Some comments on Cp. Technometrics15, 661-676, 1973.
    • (1973) Technometrics , vol.15 , pp. 661-676
    • Mallows, C.L.1
  • 283
    • 0344444365 scopus 로고    scopus 로고
    • Model selection for medical diagnosis decision support systems
    • Mangiameli P., West D., Rampal R., Model selection for medical diagnosis decision support systems, Decision Support Systems, 36(3): 247-259, 2004.
    • (2004) Decision Support Systems , vol.36 , Issue.3 , pp. 247-259
    • Mangiameli, P.1    West, D.2    Rampal, R.3
  • 288
    • 0031211834 scopus 로고    scopus 로고
    • An exact probability metric for decision tree splitting and stopping. An exact probability metric for decision tree splitting and stopping
    • Martin J. K., An exact probability metric for decision tree splitting and stopping. An Exact Probability Metric for Decision Tree Splitting and Stopping, Machine Learning, 28 (2-3):257-291, 1997.
    • (1997) Machine Learning , vol.28 , Issue.2-3 , pp. 257-291
    • Martin, J.K.1
  • 289
    • 85129013928 scopus 로고
    • Mdl-based decision tree pruning
    • Mehta M., Rissanen J., Agrawal R., MDL-Based Decision Tree Pruning. Kdd 1995: pp. 216-221, 1995.
    • (1995) KDD , vol.1995 , pp. 216-221
    • Mehta, M.1    Rissanen, J.2    Agrawal, R.3
  • 291
    • 84880832861 scopus 로고    scopus 로고
    • Constructing diverse classifier ensembles using artificial training examples
    • Melville P., Mooney R. J., Constructing Diverse Classifier Ensembles using Artificial Training Examples. Ijcai 2003: 505-512
    • (2003) IJCAI , pp. 505-512
    • Melville, P.1    Mooney, R.J.2
  • 294
    • 0032661927 scopus 로고    scopus 로고
    • Using correspondence analysis to combine classifier
    • Merz, C. J., Using Correspondence Analysis to Combine Classifier, Machine Learning, 36(1-2):33-58, 1999.
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 33-58
    • Merz, C.J.1
  • 295
    • 0003408496 scopus 로고    scopus 로고
    • Irvine, CA: University of California, Department of Information and Computer Science
    • Merz, C. J. And Murphy P.M., UCI Repository of machine learning databases. Irvine, CA: University of California, Department of Information and Computer Science, 1998.
    • (1998) UCI Repository of Machine Learning Databases
    • Merz, C.J.1    Murphy, P.M.2
  • 296
    • 0000942050 scopus 로고
    • A theory and methodology of inductive learning
    • Michalski R. S., A theory and methodology of inductive learning. Artificial Intelligence, 20:111-161, 1983.
    • (1983) Artificial Intelligence , vol.20 , pp. 111-161
    • Michalski, R.S.1
  • 297
    • 0002602497 scopus 로고
    • Understanding the nature of learning: Issues and research directions
    • R. Michalski, J. Carbonnel and T. Mitchell, eds, Kaufmann, Paolo Alto, CA
    • Michalski R. S., Understanding the nature of learning: issues and research directions, in R. Michalski, J. Carbonnel and T. Mitchell, eds, Machine Learning: An Artificial Intelligence Approach, Kaufmann, Paolo Alto, CA, pp. 3-25, 1986.
    • (1986) Machine Learning: An Artificial Intelligence Approach , pp. 3-25
    • Michalski, R.S.1
  • 301
    • 79952785777 scopus 로고
    • An empirical comparison of pruning methods for decision tree induction
    • Mingers J., An empirical comparison of pruning methods for decision tree induction. Machine Learning, 4(2):227-243, 1989.
    • (1989) Machine Learning , vol.4 , Issue.2 , pp. 227-243
    • Mingers, J.1
  • 302
    • 0003266733 scopus 로고
    • Logical vs. Analogical or symbolic vs. Connectionist Or Neat Vs. Scruffy
    • Patrick H. Winston (Ed.), MIT Press, 1990. Reprinted in AI Magazine
    • Minsky M., Logical vs. Analogical or Symbolic vs. Connectionist or Neat vs. Scruffy, in Artificial Intelligence at MIT., Expanding Frontiers, Patrick H. Winston (Ed.), Vol 1, MIT Press, 1990. Reprinted in AI Magazine, 1991.
    • (1991) Artificial Intelligence , vol.1
    • Minsky, M.1
  • 303
    • 85013562312 scopus 로고
    • An empirical study of the performance of heuristic methods for clustering
    • E. S. Gelsema and L. N. Kanal, Eds
    • Mishra, S. K. And Raghavan, V. V., An empirical study of the performance of heuristic methods for clustering. In Pattern Recognition in Practice, E. S. Gelsema and L. N. Kanal, Eds. 425-436, 1994.
    • (1994) Pattern Recognition in Practice , pp. 425-436
    • Mishra, S.K.1    Raghavan, V.V.2
  • 305
    • 0003682772 scopus 로고
    • Technical Report CBM-TR-117, Rutgers University, Department of Computer Science, New Brunswick, NJ
    • Mitchell, T., The need for biases in learning generalizations. Technical Report CBM-TR-117, Rutgers University, Department of Computer Science, New Brunswick, NJ, 1980.
    • (1980) The Need for Biases in Learning Generalizations
    • Mitchell, T.1
  • 306
    • 0000672424 scopus 로고
    • Fast learning in networks of locally tuned units
    • Moody, J. And Darken, C., Fast learning in networks of locally tuned units. Neural Computations, 1(2):281-294, 1989.
    • (1989) Neural Computations , vol.1 , Issue.2 , pp. 281-294
    • Moody, J.1    Darken, C.2
  • 308
    • 21844514350 scopus 로고
    • Automatic construction of decision trees for classification
    • Muller W., and Wysotzki F., Automatic construction of decision trees for classification. Annals of Operations Research, 52:231-247, 1994.
    • (1994) Annals of Operations Research , vol.52 , pp. 231-247
    • Muller, W.1    Wysotzki, F.2
  • 309
    • 0026123944 scopus 로고
    • Designing storage efficient decision trees
    • Murphy, O. J., and McCraw, R. L. 1991. Designing storage efficient decision trees. Ieee-TC 40(3):315-320.
    • (1991) IEEE-TC , vol.40 , Issue.3 , pp. 315-320
    • Murphy, O.J.1    McCraw, R.L.2
  • 310
    • 0020848951 scopus 로고
    • A survey of recent advances in hierarchical clustering algorithms which use cluster centers
    • Murtagh, F. A survey of recent advances in hierarchical clustering algorithms which use cluster centers. Comput. J. 26 354-359, 1984.
    • (1984) Comput. J , vol.26 , pp. 354-359
    • Murtagh, F.1
  • 311
    • 0002431740 scopus 로고    scopus 로고
    • Automatic construction of decision trees from data: A multidisciplinary survey
    • Murthy S. K., Automatic Construction of Decision Trees from Data: A MultiDisciplinary Survey. Data Mining and Knowledge Discovery, 2(4):345-389, 1998.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.4 , pp. 345-389
    • Murthy, S.K.1
  • 314
    • 0023012946 scopus 로고
    • An o(Nd) difference algorithm and its variations
    • Myers E.W., An O(ND) Difference Algorithm and Its Variations, Algorithmica, 1(1): page 251-266, 1986.
    • (1986) Algorithmica , vol.1 , Issue.1 , pp. 251-266
    • Myers, E.W.1
  • 315
    • 27844543336 scopus 로고
    • Np-completeness of problems of construction of optimal decision trees
    • Naumov G.E., NP-completeness of problems of construction of optimal decision trees. Soviet Physics: Doklady, 36(4):270-271, 1991.
    • (1991) Soviet Physics: Doklady , vol.36 , Issue.4 , pp. 270-271
    • Naumov, G.E.1
  • 316
    • 0004087397 scopus 로고
    • Probabilistic inference using markov chain monte carlo methods
    • Department of Computer Science, University of Toronto, Toronto, CA
    • Neal R., Probabilistic inference using Markov Chain Monte Carlo methods. Tech. Rep. Crg-TR-93-1, Department of Computer Science, University of Toronto, Toronto, CA, 1993.
    • (1993) Tech. Rep. Crg-TR-93-1
    • Neal, R.1
  • 319
    • 0005801045 scopus 로고
    • Learning decision rules in noisy domains
    • Cambridge: Cambridge University Press
    • Niblett T. And Bratko I., Learning Decision Rules in Noisy Domains, Proc. Expert Systems 86, Cambridge: Cambridge University Press, 1986.
    • (1986) Proc. Expert Systems , vol.86
    • Niblett, T.1    Bratko, I.2
  • 320
    • 0010069683 scopus 로고
    • Evaluation of adaptive mixtures of competing experts
    • R. P. Lipp-mann, J. E. Moody, and D. S. Touretzky, Eds, Morgan Kaufmann Publishers Inc
    • Nowlan S. J., and Hinton G. E. Evaluation of adaptive mixtures of competing experts. In Advances in Neural Information Processing Systems, R. P. Lipp-mann, J. E. Moody, and D. S. Touretzky, Eds., vol. 3, pp. 774-780, Morgan Kaufmann Publishers Inc., 1991.
    • (1991) Advances in Neural Information Processing Systems , vol.3 , pp. 774-780
    • Nowlan, S.J.1    Hinton, G.E.2
  • 321
    • 85115713394 scopus 로고
    • D. Sleeman (Ed.), Proceeding of the Third European Working Session on Learning. London: Pitman Publishing
    • Nunez, M. (1988): Economic induction: A case study. In D. Sleeman (Ed.), Proceeding of the Third European Working Session on Learning. London: Pitman Publishing
    • (1988) Economic Induction: A Case Study
    • Nunez, M.1
  • 322
    • 0026154832 scopus 로고
    • The use of background knowledge in decision tree induction
    • Nunez, M. (1991): The use of Background Knowledge in Decision Tree Induction. Machine Learning, 6(1), pp. 231-250.
    • (1991) Machine Learning , vol.6 , Issue.1 , pp. 231-250
    • Nunez, M.1
  • 324
    • 0031513627 scopus 로고    scopus 로고
    • Modular neural networks for medical prognosis: Quantifying the benefits of combining neural networks for survival prediction
    • Ohno-Machado, L., and Musen, M. A. Modular neural networks for medical prognosis: Quantifying the benefits of combining neural networks for survival prediction. Connection Science 9, 1 (1997), 71-86.
    • (1997) Connection Science , vol.9 , Issue.1 , pp. 71-86
    • Ohno-Machado, L.1    Musen, M.A.2
  • 325
    • 0042591522 scopus 로고    scopus 로고
    • A complete fuzzy decision tree technique
    • Olaru C., Wehenkel L., A complete fuzzy decision tree technique, Fuzzy Sets and Systems, 138(2):221-254, 2003.
    • (2003) Fuzzy Sets and Systems , vol.138 , Issue.2 , pp. 221-254
    • Olaru, C.1    Wehenkel, L.2
  • 328
    • 0000551189 scopus 로고    scopus 로고
    • Popular ensemble methods: An empirical study
    • Opitz, D. And Maclin, R., Popular Ensemble Methods: An Empirical Study, Journal of Artificial Research, 11: 169-198, 1999.
    • (1999) Journal of Artificial Research , vol.11 , pp. 169-198
    • Opitz, D.1    Maclin, R.2
  • 329
    • 85156192015 scopus 로고    scopus 로고
    • Generating accurate and diverse members of a neuralnetwork ensemble
    • David S. Touretzky, Michael C. Mozer, and Michael E. Hasselmo, editors, The MIT Press
    • Opitz D. And Shavlik J., Generating accurate and diverse members of a neuralnetwork ensemble. In David S. Touretzky, Michael C. Mozer, and Michael E. Hasselmo, editors, Advances in Neural Information Processing Systems, volume 8, pages 535-541. The MIT Press, 1996.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 535-541
    • Opitz, D.1    Shavlik, J.2
  • 330
    • 0025389210 scopus 로고
    • Boolean feature discovery in empirical learning
    • Pagallo, G. And Huassler, D., Boolean feature discovery in empirical learning, Machine Learning, 5(1): 71-99, 1990.
    • (1990) Machine Learning , vol.5 , Issue.1 , pp. 71-99
    • Pagallo, G.1    Huassler, D.2
  • 331
    • 0037233257 scopus 로고    scopus 로고
    • Membership authentication in the dynamic group by face classification using svm ensemble
    • S. Pang, D. Kim, S. Y. Bang, Membership authentication in the dynamic group by face classification using SVM ensemble. Pattern Recognition Letters, 24: 215-225, 2003.
    • (2003) Pattern Recognition Letters , vol.24 , pp. 215-225
    • Pang, S.1    Kim, D.2    Bang, S.Y.3
  • 333
    • 85115685971 scopus 로고    scopus 로고
    • Foundations of intelligent systems, 14th international symposium, ismis 2003
    • Maebashi City, Japan, October 28-31, 2003
    • Ning Zhong, Zbigniew W. Ras, Shusaku Tsumoto, Einoshin Suzuki (Eds.): Foundations of Intelligent Systems, 14th International Symposium, ISMIS 2003, Maebashi City, Japan, October 28-31, 2003, Proceedings. Lecture Notes in Computer Science, pp. 521-530, 2003.
    • (2003) Proceedings. Lecture Notes in Computer Science , pp. 521-530
    • Zhong, N.1    Ras, Z.W.2    Tsumoto, S.3    Suzuki, E.4
  • 334
    • 85156199954 scopus 로고    scopus 로고
    • Improving committee diagnosis with resampling techinques
    • Touretzky, D. S., Mozer, M. C., and Hes-selmo, M. E, Cambridge, MA. Mit Press
    • Parmanto, B., Munro, P. W., and Doyle, H. R., Improving committee diagnosis with resampling techinques. In Touretzky, D. S., Mozer, M. C., and Hes-selmo, M. E. (Eds). Advances in Neural Information Processing Systems, Vol. 8, pp. 882-888 Cambridge, MA. Mit Press, 1996.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 882-888
    • Parmanto, B.1    Munro, P.W.2    Doyle, H.R.3
  • 337
    • 0030327271 scopus 로고    scopus 로고
    • Bayesian inference in mixtures-of-experts and hierarchical mixtures-of-experts models with an application to speech recognition
    • Peng, F. And Jacobs R. A., and Tanner M. A., Bayesian Inference in Mixtures-of-Experts and Hierarchical Mixtures-of-Experts Models With an Application to Speech Recognition, Journal of the American Statistical Association 91, 953-960, 1996.
    • (1996) Journal of the American Statistical Association , vol.91 , pp. 953-960
    • Peng, F.1    Jacobs, R.A.2    Tanner, M.A.3
  • 338
    • 3543081082 scopus 로고    scopus 로고
    • Intelligent condition monitoring using fuzzy inductive learning
    • Peng Y., Intelligent condition monitoring using fuzzy inductive learning, Journal of Intelligent Manufacturing, 15 (3): 373-380, June 2004.
    • (2004) Journal of Intelligent Manufacturing , vol.15 , Issue.3 , pp. 373-380
    • Peng, Y.1
  • 342
    • 0242385673 scopus 로고    scopus 로고
    • Improving the accuracy of decision tree induction by feature preselection
    • Perner P., Improving the Accuracy of Decision Tree Induction by Feature PreSelection, Applied Artificial Intelligence 2001, vol. 15, No. 8, p. 747-760.
    • (2001) Applied Artificial Intelligence , vol.15 , Issue.8 , pp. 747-760
    • Perner, P.1
  • 343
    • 85011128600 scopus 로고
    • Controlling constructive induction in cipf
    • Bergadano, F. And De Raedt, L. (Eds.), Springer-Verlag
    • Pfahringer, B., Controlling constructive induction in CiPF, In Bergadano, F. And De Raedt, L. (Eds.), Proceedings of the seventh European Conference on Machine Learning, pp. 242-256, Springer-Verlag, 1994.
    • (1994) Proceedings of the Seventh European Conference on Machine Learning , pp. 242-256
    • Pfahringer, B.1
  • 347
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio T., Girosi, F., Networks for Approximation and Learning, Proc. Ieer, Vol 78(9): 1481-1496, Sept. 1990.
    • (1990) Proc. Ieer , vol.78 , Issue.9 , pp. 1481-1496
    • Poggio, T.1    Girosi, F.2
  • 349
    • 33749318929 scopus 로고    scopus 로고
    • Effective and efficient pruning of metaclassifiers in a distributed data mining system
    • Columbia Univ
    • Prodromidis, A. L., Stolfo, S. J. And Chan, P. K., Effective and efficient pruning of metaclassifiers in a distributed data mining system. Technical report CUCS-017-99, Columbia Univ., 1999.
    • (1999) Technical Report CUCS-017-99
    • Prodromidis, A.L.1    Stolfo, S.J.2    Chan, P.K.3
  • 350
    • 0342461847 scopus 로고    scopus 로고
    • Learning bayesian networks using feature selection
    • D. Fisher and H. Lenz, (Eds.), Springer- Verlag, New York
    • Provan, G. M. And Singh, M. (1996). Learning Bayesian networks using feature selection. In D. Fisher and H. Lenz, (Eds.), Learning from Data, Lecture Notes in Statistics, pages 291-300. Springer- Verlag, New York.
    • (1996) Learning from Data, Lecture Notes in Statistics , pp. 291-300
    • Provan, G.M.1    Singh, M.2
  • 352
    • 85101511266 scopus 로고    scopus 로고
    • Analysis and visualization of classifier performance comparison under imprecise class and cost distribution
    • AAAI Press
    • Provost F. And Fawcett T. (1997): Analysis and visualization of Classifier Performance Comparison under Imprecise Class and Cost Distribution. In Proceedings of KDD-97, pages 43-48. Aaai Press.
    • (1997) Proceedings of KDD-97 , pp. 43-48
    • Provost, F.1    Fawcett, T.2
  • 354
    • 0035283313 scopus 로고    scopus 로고
    • Robust {classification for {i}mprecise {environments
    • Provost, F. And Fawcett, T. (2001), Robust {Classification for {I}mprecise {Environments, Machine Learning, 42/3:203-231.
    • (2001) Machine Learning , vol.42 , Issue.3 , pp. 203-231
    • Provost, F.1    Fawcett, T.2
  • 358
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan, J.R., Induction of decision trees, Machine Learning 1, 81-106, 1986.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 360
    • 0000600410 scopus 로고
    • Decision trees and multivalued attributes
    • J. Richards, ed., Oxford, England, Oxford Univ. Press
    • Quinlan, J.R., Decision Trees and Multivalued Attributes, J. Richards, ed., Machine Intelligence, V. 11, Oxford, England, Oxford Univ. Press, pp. 305-318, 1988.
    • (1988) Machine Intelligence , vol.11 , pp. 305-318
    • Quinlan, J.R.1
  • 365
    • 0024627518 scopus 로고
    • Inferring decision trees using the minimum description length principle
    • Quinlan, J. R. And Rivest, R. L., Inferring Decision Trees Using The Minimum Description Length Principle. Information and Computation, 80:227-248, 1989.
    • (1989) Information and Computation , vol.80 , pp. 227-248
    • Quinlan, J.R.1    Rivest, R.L.2
  • 367
    • 0031197672 scopus 로고    scopus 로고
    • A new hybrid approach in combining multiple experts to recognize handwritten numerals
    • Rahman, A. F. R., and Fairhurst, M. C. A new hybrid approach in combining multiple experts to recognize handwritten numerals. Pattern Recognition Letters, 18: 781-790, 1997.
    • (1997) Pattern Recognition Letters , vol.18 , pp. 781-790
    • Rahman, A.F.R.1    Fairhurst, M.C.2
  • 368
    • 0032786303 scopus 로고    scopus 로고
    • Structurally adaptive modular networks for non-stationary environments
    • Ramamurti, V., and Ghosh, J., Structurally Adaptive Modular Networks for Non-Stationary Environments, IEEE Transactions on Neural Networks, 10 (1):152-160, 1999.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.1 , pp. 152-160
    • Ramamurti, V.1    Ghosh, J.2
  • 369
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • Rand, W. M., Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66: 846-850, 1971.
    • (1971) Journal of the American Statistical Association , vol.66 , pp. 846-850
    • Rand, W.M.1
  • 370
    • 85115704629 scopus 로고
    • For every generalization action, is there really an equal or opposite reaction? Analysis of conservation law
    • Morgan Kaufmann
    • Rao, R., Gordon, D., and Spears, W., For every generalization action, is there really an equal or opposite reaction? Analysis of conservation law. In Proc. Of the Twelveth International Conference on Machine Learning, pp. 471-479. Morgan Kaufmann, 1995.
    • (1995) Proc. Of the Twelveth International Conference on Machine Learning , pp. 471-479
    • Rao, R.1    Gordon, D.2    Spears, W.3
  • 375
    • 33745826106 scopus 로고    scopus 로고
    • Stages of the discovery process
    • Klosgen W. And Zytkow J. M. (Eds.), Oxford University Press
    • Buczak A. L. And Ziarko W., “Stages of The Discovery Process”, Klosgen W. And Zytkow J. M. (Eds.), Handbook of Data Mining and Knowledge Discovery, pages 185-192. Oxford University Press, 2002.
    • (2002) Handbook of Data Mining and Knowledge Discovery , pp. 185-192
    • Buczak, A.L.1    Ziarko, W.2
  • 377
    • 0031858446 scopus 로고    scopus 로고
    • Combinatorial pattern discovery in biological sequences: The teiresias algorithm
    • Rigoutsos I. And Floratos A., Combinatorial pattern discovery in biological sequences: The TEIRESIAS algorithm, Bioinformatics, 14(2): page 229, 1998.
    • (1998) Bioinformatics , vol.14 , Issue.2 , pp. 229
    • Rigoutsos, I.1    Floratos, A.2
  • 378
    • 0004087635 scopus 로고
    • Stochastic complexity and statistical inquiry
    • Rissanen, J., Stochastic complexity and statistical inquiry. World Scientific, 1989.
    • (1989) World Scientific
    • Rissanen, J.1
  • 382
    • 27844467756 scopus 로고    scopus 로고
    • Top down induction of decision trees classifiers: A survey
    • Rokach L. And Maimon O., Top Down Induction of Decision Trees Classifiers: A Survey, IEEE SMC Transactions Part C. Volume 35, Number 3, 2005a.
    • (2005) IEEE SMC Transactions Part C , vol.35 , Issue.3
    • Rokach, L.1    Maimon, O.2
  • 383
    • 38349127796 scopus 로고    scopus 로고
    • Feature set decomposition for decision trees
    • Rokach L. And Maimon O., Feature Set Decomposition for Decision Trees, Journal of Intelligent Data Analysis, Volume 9, Number 2, 2005b, pp 131-158.
    • (2005) Journal of Intelligent Data Analysis , vol.9 , Issue.2 , pp. 131-158
    • Rokach, L.1    Maimon, O.2
  • 385
    • 0030367578 scopus 로고    scopus 로고
    • Ensemble learning using decorrelated neural networks
    • Rosen B. E., Ensemble Learning Using Decorrelated Neural Networks. Connect. Sci. 8(3): 373-384 (1996)
    • (1996) Connect. Sci , vol.8 , Issue.3 , pp. 373-384
    • Rosen, B.E.1
  • 386
    • 0019181932 scopus 로고
    • A combined non-parametric approach to feature selection and binary decision tree design
    • Rounds, E., A combined non-parametric approach to feature selection and binary decision tree design, Pattern Recognition 12, 313-317, 1980.
    • (1980) Pattern Recognition , vol.12 , pp. 313-317
    • Rounds, E.1
  • 387
  • 391
    • 0027557830 scopus 로고
    • Growing and pruning neural tree networks
    • Sakar A., Mammone R.J., Growing and pruning neural tree networks, IEEE Trans. On Computers 42, 291-299, 1993.
    • (1993) IEEE Trans. On Computers , vol.42 , pp. 291-299
    • Sakar, A.1    Mammone, R.J.2
  • 392
    • 27144463192 scopus 로고    scopus 로고
    • On comparing classifiers: Pitfalls to avoid and a recommended approach
    • Kluwer Academic Publishers, Bosto
    • Salzberg S. L., On Comparing Classifiers: Pitfalls to Avoid and a Recommended Approach. Data Mining and Knowledge Discovery, 1: 312-327, Kluwer Academic Publishers, Bosto, 1997.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , pp. 312-327
    • Salzberg, S.L.1
  • 393
    • 0001201757 scopus 로고
    • Some studies in machine learning using the game of checkers ii: Recent progress
    • Samuel, A., Some studies in machine learning using the game of checkers II: Recent progress. Ibm J. Res. Develop., 11:601-617, 1967.
    • (1967) IBM J. Res. Develop , vol.11 , pp. 601-617
    • Samuel, A.1
  • 394
    • 85031797664 scopus 로고
    • When does overfitting decrease prediction accuracy in induced decision trees and rule sets?
    • Berlin
    • Schaffer, C., When does overfitting decrease prediction accuracy in induced decision trees and rule sets? In Proceedings of the European Working Session on Learning (EWSL-91), pp. 192-205, Berlin, 1991.
    • (1991) Proceedings of the European Working Session on Learning (EWSL-91) , pp. 192-205
    • Schaffer, C.1
  • 395
    • 0000245470 scopus 로고
    • Selecting a classification method by cross-validation
    • Schaffer, C., Selecting a classification method by cross-validation. Machine Learning 13(1):135-143, 1993.
    • (1993) Machine Learning , vol.13 , Issue.1 , pp. 135-143
    • Schaffer, C.1
  • 397
    • 0025448521 scopus 로고
    • The strength of week learnability
    • Schapire, R.E., The strength of week learnability. In Machine learning 5(2), 197-227, 1990.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 398
    • 0036482614 scopus 로고    scopus 로고
    • On the complexity of computing and learning with multiplicative neural networks
    • Schmitt, M., On the complexity of computing and learning with multiplicative neural networks, Neural Computation 14: 2, 241-301, 2002.
    • (2002) Neural Computation , vol.14 , Issue.2 , pp. 241-301
    • Schmitt, M.1
  • 399
    • 85152626023 scopus 로고
    • Efficiently inducing determinations: A complete and systematic search algorithm that uses optimal pruning
    • San Mateo, CA, Morgan Kaufmann
    • Schlimmer, J. C., Efficiently inducing determinations: A complete and systematic search algorithm that uses optimal pruning. In Proceedings of the 1993 International Conference on Machine Learning: pp 284-290, San Mateo, CA, Morgan Kaufmann, 1993.
    • (1993) Proceedings of the 1993 International Conference on Machine Learning , pp. 284-290
    • Schlimmer, J.C.1
  • 401
    • 0021202650 scopus 로고
    • K-means-type algorithms: A generalized convergence theorem and characterization of local optimality
    • January
    • Selim, S.Z., and Ismail, M.A. K-means-type algorithms: a generalized convergence theorem and characterization of local optimality. In IEEE transactions on pattern analysis and machine learning, vol. Pami-6, no. 1, January, 1984.
    • (1984) IEEE Transactions on Pattern Analysis and Machine Learning , vol.6 , Issue.1
    • Selim, S.Z.1    Ismail, M.A.2
  • 402
    • 0026359031 scopus 로고
    • A simulated annealing algorithm for the clustering problem
    • Selim, S. Z. And Al-Sultan, K. 1991. A simulated annealing algorithm for the clustering problem. Pattern Recogn. 24, 10 (1991), 1003-1008.
    • (1991) Pattern Recogn , vol.24 , Issue.10 , pp. 1003-1008
    • Selim, S.Z.1    Al-Sultan, K.2
  • 404
    • 3142730058 scopus 로고    scopus 로고
    • On learning monotone dnf under product distributions
    • Servedio, R., On Learning Monotone DNF under Product Distributions. Information and Computation 193, pp. 57-74, 2004.
    • (2004) Information and Computation , vol.193 , pp. 57-74
    • Servedio, R.1
  • 405
    • 0028464458 scopus 로고
    • Design of multicategory, multifeature split decision trees using perceptron learning
    • Sethi, K., and Yoo, J. H., Design of multicategory, multifeature split decision trees using perceptron learning. Pattern Recognition, 27(7):939-947, 1994.
    • (1994) Pattern Recognition , vol.27 , Issue.7 , pp. 939-947
    • Sethi, K.1    Yoo, J.H.2
  • 406
    • 0009339920 scopus 로고
    • Automatic induction of classification rules for a chess endgame
    • M. R. B. Clarke, ed., Pergamon, Oxford
    • Shapiro, A. D. And Niblett, T., Automatic induction of classification rules for a chess endgame, in M. R. B. Clarke, ed., Advances in Computer Chess 3, Pergamon, Oxford, pp. 73-92, 1982.
    • (1982) Advances in Computer Chess 3 , pp. 73-92
    • Shapiro, A.D.1    Niblett, T.2
  • 408
    • 0030372023 scopus 로고    scopus 로고
    • On combining artificial neural nets
    • Sharkey, A., On combining artificial neural nets, Connection Science, Vol. 8, pp.299-313, 1996.
    • (1996) Connection Science , vol.8 , pp. 299-313
    • Sharkey, A.1
  • 410
    • 0002139432 scopus 로고    scopus 로고
    • Sprint: A scalable parallel classifier for data mining
    • T. M. Vijayaraman and Alejandro P. Buchmann and C. Mohan and Nandlal L. Sarda (eds), Morgan Kaufmann
    • Shafer, J. C., Agrawal, R. And Mehta, M., SPRINT: A Scalable Parallel Classifier for Data Mining, Proc. 22Nd Int. Conf. Very Large Databases, T. M. Vijayaraman and Alejandro P. Buchmann and C. Mohan and Nandlal L. Sarda (eds), 544-555, Morgan Kaufmann, 1996.
    • (1996) Proc. 22Nd Int. Conf. Very Large Databases , pp. 544-555
    • Shafer, J.C.1    Agrawal, R.2    Mehta, M.3
  • 411
    • 0025588128 scopus 로고
    • Multiple binary tree classifiers
    • Shilen, S., Multiple binary tree classifiers. Pattern Recognition 23(7): 757-763, 1990.
    • (1990) Pattern Recognition , vol.23 , Issue.7 , pp. 757-763
    • Shilen, S.1
  • 412
    • 38249014667 scopus 로고
    • Nonparametric classification using matched binary decision trees
    • Shilen, S., Nonparametric classification using matched binary decision trees. Pattern Recognition Letters 13: 83-87, 1992.
    • (1992) Pattern Recognition Letters , vol.13 , pp. 83-87
    • Shilen, S.1
  • 414
    • 0036080160 scopus 로고    scopus 로고
    • Bagging, boosting and the random subspace method for linear classifiers
    • Skurichina M. And Duin R.P.W., Bagging, boosting and the random subspace method for linear classifiers. Pattern Analysis and Applications, 5(2):121-135, 2002
    • (2002) Pattern Analysis and Applications , vol.5 , Issue.2 , pp. 121-135
    • Skurichina, M.1    Duin, R.P.W.2
  • 417
    • 0003632935 scopus 로고
    • Owa State University Press, Ames, IA, 8th Edition
    • Snedecor, G. And Cochran, W. (1989). Statistical Methods. Owa State University Press, Ames, IA, 8th Edition.
    • (1989) Statistical Methods
    • Snedecor, G.1    Cochran, W.2
  • 418
  • 423
  • 425
    • 0032157958 scopus 로고    scopus 로고
    • Learning from examples and membership queries with structured determinations
    • Tadepalli, P. And Russell, S., Learning from examples and membership queries with structured determinations, Machine Learning, 32(3), pp. 245-295, 1998.
    • (1998) Machine Learning , vol.32 , Issue.3 , pp. 245-295
    • Tadepalli, P.1    Russell, S.2
  • 426
    • 14944354760 scopus 로고    scopus 로고
    • Multi-class protein fold classification using a new ensemble machine learning approach
    • Tan A. C., Gilbert D., Deville Y., Multi-class Protein Fold Classification using a New Ensemble Machine Learning Approach. Genome Informatics, 14:206-217, 2003.
    • (2003) Genome Informatics , vol.14 , pp. 206-217
    • Tan, A.C.1    Gilbert, D.2    Deville, Y.3
  • 427
    • 0027001146 scopus 로고
    • Fuzzy modeling by id3 algorithm and its application to prediction of heater outlet temperature
    • on Fuzzy Systems, March
    • Tani T. And Sakoda M., Fuzzy modeling by ID3 algorithm and its application to prediction of heater outlet temperature, Proc. Ieee Internat. Conf. On Fuzzy Systems, March 1992, pp. 923-930.
    • (1992) Proc. Ieee Internat. Conf , pp. 923-930
    • Tani, T.1    Sakoda, M.2
  • 428
    • 0000687440 scopus 로고
    • Block diagrams and splitting criteria for classification trees
    • Taylor P. C., and Silverman, B. W., Block diagrams and splitting criteria for classification trees. Statistics and Computing, 3(4):147-161, 1993.
    • (1993) Statistics and Computing , vol.3 , Issue.4 , pp. 147-161
    • Taylor, P.C.1    Silverman, B.W.2
  • 429
    • 0003414440 scopus 로고    scopus 로고
    • Estimating the number of clusters in a dataset via the gap statistic
    • Dept. Of Statistics, Stanford University
    • Tibshirani, R., Walther, G. And Hastie, T. (2000). Estimating the number of clusters in a dataset via the gap statistic. Tech. Rep. 208, Dept. Of Statistics, Stanford University.
    • (2000) Tech. Rep , pp. 208
    • Tibshirani, R.1    Walther, G.2    Hastie, T.3
  • 430
    • 0028529307 scopus 로고
    • Knowledge-based artificial neural networks
    • Towell, G. Shavlik, J., Knowledge-based artificial neural networks, Artificial Intelligence, 70: 119-165, 1994.
    • (1994) Artificial Intelligence , vol.70 , pp. 119-165
    • Towell, G.1    Shavlik, J.2
  • 431
    • 85153970023 scopus 로고
    • Combining estimators using non-constant weighting functions
    • Tesauro, G., Touretzky, D., & Leen, T. (Eds.), The MIT Press
    • Tresp, V. And Taniguchi, M. Combining estimators using non-constant weighting functions. In Tesauro, G., Touretzky, D., & Leen, T. (Eds.), Advances in Neural Information Processing Systems, volume 7: pp. 419-426, The MIT Press, 1995.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 419-426
    • Tresp, V.1    Taniguchi, M.2
  • 432
    • 33646516485 scopus 로고
    • Possible generalization of boltzmann-gibbs statistics
    • Tsallis C., Possible Generalization of Boltzmann-Gibbs Statistics, J. Stat. Phys., 52, 479-487, 1988.
    • (1988) J. Stat. Phys , vol.52 , pp. 479-487
    • Tsallis, C.1
  • 433
    • 0036064007 scopus 로고    scopus 로고
    • Ensemble feature selection with the simple bayesian classification in medical diagnostics
    • Maribor, Slovenia, IEEE CS Press
    • Tsymbal A., and Puuronen S., Ensemble Feature Selection with the Simple Bayesian Classification in Medical Diagnostics, In: Proc. 15Thieee Symp. On Computer-Based Medical Systems CBMS2002, Maribor, Slovenia, IEEE CS Press, 2002, pp. 225-230.
    • (2002) Proc. 15Thieee Symp. On Computer-Based Medical Systems CBMS2002 , pp. 225-230
    • Tsymbal, A.1    Puuronen, S.2
  • 434
    • 78650176398 scopus 로고    scopus 로고
    • Feature selection for ensembles of simple bayesian classifiers
    • LNAI, Springer
    • Tsymbal A., and Puuronen S., and D. Patterson, Feature Selection for Ensembles of Simple Bayesian Classifiers, In: Foundations of Intelligent Systems: ISMIS2002, LNAI, Vol. 2366, Springer, 2002, pp. 592-600
    • (2002) Foundations of Intelligent Systems: ISMIS2002 , vol.2366 , pp. 592-600
    • Tsymbal, A.1    Puuronen, S.2    Patterson, D.3
  • 435
    • 10444238133 scopus 로고    scopus 로고
    • Diversity in search strategies for ensemble feature selection
    • Tsymbal A., Pechenizkiy M., Cunningham P., Diversity in search strategies for ensemble feature selection. Information Fusion 6(1): 83-98, 2005.
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 83-98
    • Tsymbal, A.1    Pechenizkiy, M.2    Cunningham, P.3
  • 438
    • 0001562581 scopus 로고    scopus 로고
    • Linear and order statistics combiners for pattern classification
    • A. Sharkey (Ed.), Springer-Verlag
    • Tumer, K., and Ghosh J., Linear and Order Statistics Combiners for Pattern Classification, in Combining Articial Neural Nets, A. Sharkey (Ed.), pp. 127-162, Springer-Verlag, 1999.
    • (1999) Combining Articial Neural Nets , pp. 127-162
    • Tumer, K.1    Ghosh, J.2
  • 439
    • 0001979856 scopus 로고    scopus 로고
    • Robust order statistics based ensembles for distributed data mining
    • Kargupta, H. And Chan P., eds, AAAI/MIT Press
    • Tumer, K., and Ghosh J., Robust Order Statistics based Ensembles for Distributed Data Mining. In Kargupta, H. And Chan P., eds, Advances in Distributed and Parallel Knowledge Discovery, pp. 185-210, AAAI/MIT Press, 2000.
    • (2000) Advances in Distributed and Parallel Knowledge Discovery , pp. 185-210
    • Tumer, K.1    Ghosh, J.2
  • 440
    • 0000865580 scopus 로고
    • Cost-sensitive classification: Empirical evaluation of hybrid, genetic decision tree induction algorithm
    • Turney P. (1995): Cost-Sensitive Classification: Empirical Evaluation of Hybrid, Genetic Decision Tree Induction Algorithm. Journal of Artificial Intelligence Research 2, pp. 369-409.
    • (1995) Journal of Artificial Intelligence Research , vol.2 , pp. 369-409
    • Turney, P.1
  • 444
    • 0019999522 scopus 로고
    • Graph-theoretical clustering, based on limited neighborhood sets
    • Urquhart, R. Graph-theoretical clustering, based on limited neighborhood sets. Pattern recognition, vol. 15, pp. 173-187, 1982.
    • (1982) Pattern Recognition , vol.15 , pp. 173-187
    • Urquhart, R.1
  • 445
    • 84945766475 scopus 로고
    • Perceptron trees: A case study in hybrid concept representations
    • Utgoff, P. E., Perceptron trees: A case study in hybrid concept representations. Connection Science, 1(4):377-391, 1989.
    • (1989) Connection Science , vol.1 , Issue.4 , pp. 377-391
    • Utgoff, P.E.1
  • 446
    • 77952642202 scopus 로고
    • Incremental induction of decision trees
    • Utgoff, P. E., Incremental induction of decision trees. Machine Learning, 4:161-186, 1989.
    • (1989) Machine Learning , vol.4 , pp. 161-186
    • Utgoff, P.E.1
  • 447
    • 0031246271 scopus 로고    scopus 로고
    • Decision tree induction based on efficient tree restructuring
    • Utgoff, P. E., Decision tree induction based on efficient tree restructuring, Machine Learning 29 (1):5-44, 1997.
    • (1997) Machine Learning , vol.29 , Issue.1 , pp. 5-44
    • Utgoff, P.E.1
  • 449
  • 450
  • 455
    • 0001687975 scopus 로고    scopus 로고
    • Mml inference of predictive trees, graphs and nets
    • A. Gam-merman (ed), Wiley
    • Wallace, C. S., MML Inference of Predictive Trees, Graphs and Nets. In A. Gam-merman (ed), Computational Learning and Probabilistic Reasoning, pp 43-66, Wiley, 1996.
    • (1996) Computational Learning and Probabilistic Reasoning , pp. 43-66
    • Wallace, C.S.1
  • 458
    • 16644380249 scopus 로고    scopus 로고
    • An artificial neural network ensemble to predict disposition and length of stay in children presenting with bronchiolitis
    • Walsh P., Cunningham P., Rothenberg S., O’Doherty S., Hoey H., Healy R., An artificial neural network ensemble to predict disposition and length of stay in children presenting with bronchiolitis. European Journal of Emergency Medicine. 11(5):259-264, 2004.
    • (2004) European Journal of Emergency Medicine , vol.11 , Issue.5 , pp. 259-264
    • Walsh, P.1    Cunningham, P.2    Rothenberg, S.3    O’Doherty, S.4    Hoey, H.5    Healy, R.6
  • 459
    • 0026971476 scopus 로고
    • A new approach to the decomposition of incompletely specified functions based on graph-coloring and local transformations and its application to fpgamapping
    • Wan, W. And Perkowski, M. A., A new approach to the decomposition of incompletely specified functions based on graph-coloring and local transformations and its application to FPGAmapping, In Proc. Of the IEEE EURO-DAC’92, pp. 230-235, 1992.
    • (1992) Proc. Of the IEEE EURO-DAC’92 , pp. 230-235
    • Wan, W.1    Perkowski, M.A.2
  • 460
    • 84867049048 scopus 로고    scopus 로고
    • Diversity between neural networks and decision trees for building multiple classifier systems
    • Springer, Calgiari, Italy
    • Wang W., Jones P., Partridge D., Diversity between neural networks and decision trees for building multiple classifier systems, in: Proc. Int. Workshop on Multiple Classifier Systems (LNCS 1857), Springer, Calgiari, Italy, 2000, pp. 240-249.
    • (2000) Proc. Int. Workshop on Multiple Classifier Systems , pp. 240-249
    • Wang, W.1    Jones, P.2    Partridge, D.3
  • 462
    • 84944178665 scopus 로고
    • Hierarchical grouping to optimize an objective function
    • Ward, J. H. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58:236-244, 1963.
    • (1963) Journal of the American Statistical Association , vol.58 , pp. 236-244
    • Ward, J.H.1
  • 463
    • 84945708259 scopus 로고
    • A theorem on boolean matrices
    • Warshall S., A theorem on Boolean matrices, Journal of the ACM 9, 1112, 1962.
    • (1962) Journal of the ACM , vol.9 , pp. 1112
    • Warshall, S.1
  • 464
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • Widmer, G. And Kubat, M., 1996, Learning in the Presence of Concept Drift and Hidden Contexts, Machine Learning 23(1), pp. 69101.
    • (1996) Machine Learning , vol.23 , Issue.1 , pp. 69101
    • Widmer, G.1    Kubat, M.2
  • 465
    • 0034247206 scopus 로고    scopus 로고
    • Multiboosting: A technique for combining boosting and wagging
    • Webb G., MultiBoosting: A technique for combining boosting and wagging. Machine Learning, 40(2): 159-196, 2000.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 159-196
    • Webb, G.1
  • 466
    • 4344706336 scopus 로고    scopus 로고
    • Multistrategy ensemble learning: Reducing error by combining ensemble learning techniques
    • Webb G., and Zheng Z., Multistrategy Ensemble Learning: Reducing Error by Combining Ensemble Learning Techniques. Ieee Transactions on Knowledge and Data Engineering, 16 No. 8:980-991, 2004.
    • (2004) IEEE Transactions on Knowledge and Data Engineering , vol.16 , Issue.8 , pp. 980-991
    • Webb, G.1    Zheng, Z.2
  • 467
    • 0029446195 scopus 로고
    • Nonlinear gated experts for time-series - discovering regimes and avoiding overfitting
    • Weigend, A. S., Mangeas, M., and Srivastava, A. N. Nonlinear gated experts for time-series - discovering regimes and avoiding overfitting. International Journal of Neural Systems 6(5):373-399, 1995.
    • (1995) International Journal of Neural Systems , vol.6 , Issue.5 , pp. 373-399
    • Weigend, A.S.1    Mangeas, M.2    Srivastava, A.N.3
  • 468
    • 27844550205 scopus 로고    scopus 로고
    • Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach
    • Wolf L., Shashua A., Feature Selection for Unsupervised and Supervised Inference: The Emergence of Sparsity in a Weight-Based Approach, Journal of Machine Learning Research, Vol 6, pp. 1855-1887, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1855-1887
    • Wolf, L.1    Shashua, A.2
  • 469
    • 0026692226 scopus 로고
    • Stacked generalization
    • Pergamon Press
    • Wolpert, D.H., Stacked Generalization, Neural Networks, Vol. 5, pp. 241-259, Pergamon Press, 1992.
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.H.1
  • 470
    • 85128067285 scopus 로고
    • The relationship between pac, the statistical physics framework, the bayesian framework, and the vc framework
    • D. H. Wolpert, editor, Addison Wesley
    • Wolpert, D. H., The relationship between PAC, the statistical physics framework, the Bayesian framework, and the VC framework. In D. H. Wolpert, editor, The Mathematics of Generalization, The SFI Studies in the Sciences of Complexity, pages 117-214. Addison Wesley, 1995.
    • (1995) The Mathematics of Generalization, the SFI Studies in the Sciences of Complexity , pp. 117-214
    • Wolpert, D.H.1
  • 471
    • 0000459353 scopus 로고    scopus 로고
    • The lack of a priori distinctions between learning algorithms
    • Wolpert, D. H., “The lack of a priori distinctions between learning algorithms, ” Neural Computation 8: 1341-1390, 1996.
    • (1996) Neural Computation , vol.8 , pp. 1341-1390
    • Wolpert, D.H.1
  • 474
    • 0000868331 scopus 로고
    • Induction of fuzzy decision trees
    • Yuan Y., Shaw M., Induction of fuzzy decision trees, Fuzzy Sets and Systems 69(1995):125-139.
    • (1995) Fuzzy Sets and Systems , vol.69 , pp. 125-139
    • Yuan, Y.1    Shaw, M.2
  • 476
    • 0032627946 scopus 로고    scopus 로고
    • Scalable parallel classification for data mining on shared- memory multiprocessors
    • Sydney, Australia, WKDD99
    • Zaki, M. J., Ho C. T., and Agrawal, R., Scalable parallel classification for data mining on shared- memory multiprocessors, in Proc. Ieee Int. Conf. Data Eng., Sydney, Australia, WKDD99, pp. 198-205, 1999.
    • (1999) Proc. Ieee Int. Conf. Data Eng , pp. 198-205
    • Zaki, M.J.1    Ho, C.T.2    Agrawal, R.3
  • 481
    • 0038154329 scopus 로고    scopus 로고
    • Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error
    • Zenobi, G., and Cunningham, P. Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error. In Proceedings of the European Conference on Machine Learning, 2001.
    • (2001) Proceedings of the European Conference on Machine Learning
    • Zenobi, G.1    Cunningham, P.2
  • 485
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Zhou, Z. H., Wu J., Tang W., Ensembling neural networks: many could be better than all. Artificial Intelligence 137: 239-263, 2002.
    • (2002) Artificial Intelligence , vol.137 , pp. 239-263
    • Zhou, Z.H.1    Wu, J.2    Tang, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.