메뉴 건너뛰기




Volumn 8, Issue , 2015, Pages 2015-2022

Computer-aided classification of lung nodules on computed tomography images via deep learning technique

Author keywords

Convolutional neural network; Deep belief network; Deep learning; Nodule classification

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; COMPUTER ASSISTED DIAGNOSIS; COMPUTER ASSISTED TOMOGRAPHY; CONVOLUTIONAL NEURAL NETWORK; DEEP BELIEF NETWORK; DEEP LEARNING; DISEASE CLASSIFICATION; HUMAN; IMAGE ANALYSIS; IMAGE PROCESSING; LUNG NODULE; MACHINE LEARNING; PATTERN RECOGNITION; SENSITIVITY AND SPECIFICITY;

EID: 84939781083     PISSN: None     EISSN: 11786930     Source Type: Journal    
DOI: 10.2147/OTT.S80733     Document Type: Article
Times cited : (514)

References (21)
  • 2
    • 84956588049 scopus 로고    scopus 로고
    • F-fluorodeoxyglucosepositron emission tomography/computed tomography accuracy in the staging of non-small cell lung cancer: Review and cost-effectiveness
    • Gomez Leon N, Escalona S, Bandres B, et al. F-fluorodeoxyglucose positron emission tomography/computed tomography accuracy in the staging of non-small cell lung cancer: review and cost-effectiveness. Radiol Res Pract. 2014;2014:135934
    • (2014) Radiol Res Pract , vol.2014
    • Gomez Leon, N.1    Escalona, S.2    Bandres, B.3
  • 4
    • 34247171748 scopus 로고    scopus 로고
    • Computer-aided diagnosis in medical imaging: Historical review,current status and future potential
    • Doi K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Graph. 2007; 31(4-5):198-211.
    • (2007) Comput Med Imaging Graph , vol.31 , Issue.4-5 , pp. 198-211
    • Doi, K.1
  • 5
    • 81555205692 scopus 로고    scopus 로고
    • Computer-aideddiagnosis: How to move from the laboratory to the clinic
    • van Ginneken B, Schaefer-Prokop CM, Prokop M. Computer-aided diagnosis: how to move from the laboratory to the clinic. Radiology. 2011;261(3):719-732.
    • (2011) Radiology , vol.261 , Issue.3 , pp. 719-732
    • Van Ginneken, B.1    Schaefer-Prokop, C.M.2    Prokop, M.3
  • 6
    • 77952688313 scopus 로고    scopus 로고
    • Computer-aided US diagnosisof breast lesions by using cell-based contour grouping
    • Cheng J-Z, Chou Y-H, Huang C-S, et al. Computer-aided US diagnosis of breast lesions by using cell-based contour grouping. Radiology. 2010;255(3):746-754.
    • (2010) Radiology , vol.255 , Issue.3 , pp. 746-754
    • Cheng, J.-Z.1    Chou, Y.-H.2    Huang, C.-S.3
  • 8
  • 9
    • 84881051969 scopus 로고    scopus 로고
    • Automatic classification for solitary pulmonary nodule in CT image by fractal analysis based on fractional Brownian motion model
    • Lin P-L, Huang P-W, Lee C-H, Wu M-T. Automatic classification for solitary pulmonary nodule in CT image by fractal analysis based on fractional Brownian motion model. Pattern Recognit. 2013;46(12): 3279-3287.
    • (2013) Pattern Recognit , vol.46 , Issue.12 , pp. 3279-3287
    • Lin, P.-L.1    Huang, P.-W.2    Lee, C.-H.3    Wu, M.-T.4
  • 10
    • 78650599059 scopus 로고    scopus 로고
    • Computer-aidedclassification of breast masses: Performance and interobserver variability of expert radiologists versus residents
    • Singh S, Maxwell J, Baker JA, Nicholas JL, Lo JY. Computer-aided classification of breast masses: Performance and interobserver variability of expert radiologists versus residents. Radiology. 2011;258(1): 73-80.
    • (2011) Radiology , vol.258 , Issue.1 , pp. 73-80
    • Singh, S.1    Maxwell, J.2    Baker, J.A.3    Nicholas, J.L.4    Lo, J.Y.5
  • 11
    • 67649607477 scopus 로고    scopus 로고
    • Computer-aided diagnosis ofpulmonary nodules on CT scans: Improvement of classification performance with nodule surface features
    • Way TW, Sahiner B, Chan H-P, et al. Computer-aided diagnosis of pulmonary nodules on CT scans: improvement of classification performance with nodule surface features. Med Phys. 2009;36:3086.
    • (2009) Med Phys , vol.36
    • Way, T.W.1    Sahiner, B.2    Chan, H.-P.3
  • 12
    • 71149084080 scopus 로고    scopus 로고
    • Supervised learning from multiple experts: Whom to trust when everyone lies a bit. Paper presented at the 26th Annual International Conference on Machine Learning, Montreal, QC, Canada
    • Raykar VC, Yu S, Zhao LH, et al. Supervised learning from multiple experts: whom to trust when everyone lies a bit. Paper presented at the 26th Annual International Conference on Machine Learning, Montreal, QC, Canada, June 14-18, 2009.
    • (2009) June , pp. 14-18
    • Raykar, V.C.1    Yu, S.2    Zhao, L.H.3
  • 14
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deepbelief nets
    • Hinton GE, Osindero S, Teh Y-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006;18(7):1527-1554.
    • (2006) Neural Comput , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 16
    • 84885898432 scopus 로고    scopus 로고
    • Deep learning-based feature representation for AD/MCI classification
    • Mori K, Sakuma I, Sato Y, Barillot C, Navab N, Berlin, Germany: Springer
    • Suk H-I, Shen D. Deep learning-based feature representation for AD/MCI classification. In: Mori K, Sakuma I, Sato Y, Barillot C, Navab N, editors. Medical Image Computing and Computer-Assisted Intervention MICCAI 2013. Berlin, Germany: Springer; 2013.
    • (2013) Medical Image Computing and Computer-Assisted Intervention MICCAI 2013
    • Suk, H.-I.1    Shen, D.2
  • 17
    • 80053540444 scopus 로고    scopus 로고
    • Unsupervised learning of hierarchical representations with convolutional deep belief networks
    • Lee H, Grosse R, Ranganath R, Ng AY. Unsupervised learning of hierarchical representations with convolutional deep belief networks. Commun ACM. 2011;54(10):95-103.
    • (2011) Commun ACM , vol.54 , Issue.10 , pp. 95-103
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 19
    • 79551672468 scopus 로고    scopus 로고
    • The Lung Image DatabaseConsortium (LIDC) and Image Database Resource Initiative (IDRI): A completed reference database of lung nodules on CT scans
    • Armato SG, McLennan G, Bidaut L, et al. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys. 2011;38:915
    • (2011) Med Phys , vol.38 , pp. 915
    • Armato, S.G.1    McLennan, G.2    Bidaut, L.3
  • 20
    • 4143056820 scopus 로고    scopus 로고
    • Lung imagedatabase consortium: Developing a resource for the medical imaging research community
    • Armato SG III, McLennan G, McNitt-Gray MF, et al. Lung image database consortium: developing a resource for the medical imaging research community. Radiology. 2004;232(3):739-748.
    • (2004) Radiology , vol.232 , Issue.3 , pp. 739-748
    • Armato, S.1    McLennan, G.2    McNitt-Gray, M.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.