-
1
-
-
84872967522
-
Cancer statistics, 2013
-
Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63(1):11-30.
-
(2013)
CA Cancerj Clin
, vol.63
, Issue.1
, pp. 11-30
-
-
Siegel, R.1
Naishadham, D.2
Jemal, A.3
-
2
-
-
84956588049
-
F-fluorodeoxyglucosepositron emission tomography/computed tomography accuracy in the staging of non-small cell lung cancer: Review and cost-effectiveness
-
Gomez Leon N, Escalona S, Bandres B, et al. F-fluorodeoxyglucose positron emission tomography/computed tomography accuracy in the staging of non-small cell lung cancer: review and cost-effectiveness. Radiol Res Pract. 2014;2014:135934
-
(2014)
Radiol Res Pract
, vol.2014
-
-
Gomez Leon, N.1
Escalona, S.2
Bandres, B.3
-
3
-
-
84877669189
-
-
3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest
-
Gould MK, Donington J, Lynch WR, et al. Evaluation of individuals with pulmonary nodules: when is it lung cancer? Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143 (5 Suppl):e93S-e120S.
-
(2013)
Evaluation of Individuals with Pulmonary Nodules: When is It Lung Cancer? Diagnosis and Management of Lung Cancer
, vol.143
, Issue.5
, pp. ee93S-e120S
-
-
Gould, M.K.1
Donington, J.2
Lynch, W.R.3
-
4
-
-
34247171748
-
Computer-aided diagnosis in medical imaging: Historical review,current status and future potential
-
Doi K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Graph. 2007; 31(4-5):198-211.
-
(2007)
Comput Med Imaging Graph
, vol.31
, Issue.4-5
, pp. 198-211
-
-
Doi, K.1
-
5
-
-
81555205692
-
Computer-aideddiagnosis: How to move from the laboratory to the clinic
-
van Ginneken B, Schaefer-Prokop CM, Prokop M. Computer-aided diagnosis: how to move from the laboratory to the clinic. Radiology. 2011;261(3):719-732.
-
(2011)
Radiology
, vol.261
, Issue.3
, pp. 719-732
-
-
Van Ginneken, B.1
Schaefer-Prokop, C.M.2
Prokop, M.3
-
6
-
-
77952688313
-
Computer-aided US diagnosisof breast lesions by using cell-based contour grouping
-
Cheng J-Z, Chou Y-H, Huang C-S, et al. Computer-aided US diagnosis of breast lesions by using cell-based contour grouping. Radiology. 2010;255(3):746-754.
-
(2010)
Radiology
, vol.255
, Issue.3
, pp. 746-754
-
-
Cheng, J.-Z.1
Chou, Y.-H.2
Huang, C.-S.3
-
7
-
-
80055038967
-
Evaluation of geometricfeature descriptors for detection and classification of lung nodules in low dose CT scans of the chest
-
Chicago, IL, USA, March 30 to April 2
-
Farag A, Ali A, Graham J, Elshazly S, Falk R. Evaluation of geometric feature descriptors for detection and classification of lung nodules in low dose CT scans of the chest. Paper presented at the Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium, Chicago, IL, USA, March 30 to April 2, 2011.
-
(2011)
Paper Presented at the Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium
-
-
Farag, A.1
Ali, A.2
Graham, J.3
Elshazly, S.4
Falk, R.5
-
8
-
-
78651084527
-
Statistical modeling of the lung nodulesin low dose computed tomography scans of the chest
-
Hong Kong, People’s Republic of China, September 26-29
-
Farag A, Graham J, Elshazly S. Statistical modeling of the lung nodules in low dose computed tomography scans of the chest. Paper presented at Image Processing (ICIP), 17th IEEE International Conference, Hong Kong, People’s Republic of China, September 26-29, 2010.
-
(2010)
Paper Presented at Image Processing (ICIP), 17Th IEEE International Conference
-
-
Farag, A.1
Graham, J.2
Elshazly, S.3
-
9
-
-
84881051969
-
Automatic classification for solitary pulmonary nodule in CT image by fractal analysis based on fractional Brownian motion model
-
Lin P-L, Huang P-W, Lee C-H, Wu M-T. Automatic classification for solitary pulmonary nodule in CT image by fractal analysis based on fractional Brownian motion model. Pattern Recognit. 2013;46(12): 3279-3287.
-
(2013)
Pattern Recognit
, vol.46
, Issue.12
, pp. 3279-3287
-
-
Lin, P.-L.1
Huang, P.-W.2
Lee, C.-H.3
Wu, M.-T.4
-
10
-
-
78650599059
-
Computer-aidedclassification of breast masses: Performance and interobserver variability of expert radiologists versus residents
-
Singh S, Maxwell J, Baker JA, Nicholas JL, Lo JY. Computer-aided classification of breast masses: Performance and interobserver variability of expert radiologists versus residents. Radiology. 2011;258(1): 73-80.
-
(2011)
Radiology
, vol.258
, Issue.1
, pp. 73-80
-
-
Singh, S.1
Maxwell, J.2
Baker, J.A.3
Nicholas, J.L.4
Lo, J.Y.5
-
11
-
-
67649607477
-
Computer-aided diagnosis ofpulmonary nodules on CT scans: Improvement of classification performance with nodule surface features
-
Way TW, Sahiner B, Chan H-P, et al. Computer-aided diagnosis of pulmonary nodules on CT scans: improvement of classification performance with nodule surface features. Med Phys. 2009;36:3086.
-
(2009)
Med Phys
, vol.36
-
-
Way, T.W.1
Sahiner, B.2
Chan, H.-P.3
-
12
-
-
71149084080
-
Supervised learning from multiple experts: Whom to trust when everyone lies a bit. Paper presented at the 26th Annual International Conference on Machine Learning, Montreal, QC, Canada
-
Raykar VC, Yu S, Zhao LH, et al. Supervised learning from multiple experts: whom to trust when everyone lies a bit. Paper presented at the 26th Annual International Conference on Machine Learning, Montreal, QC, Canada, June 14-18, 2009.
-
(2009)
June
, pp. 14-18
-
-
Raykar, V.C.1
Yu, S.2
Zhao, L.H.3
-
13
-
-
0032203257
-
Gradient-based learning appliedto document recognition
-
LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE Inst Electr Electron Eng. 1998;86(11): 2278-2324.
-
(1998)
Proc IEEE Inst Electr Electron Eng
, vol.86
, Issue.11
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
14
-
-
33745805403
-
A fast learning algorithm for deepbelief nets
-
Hinton GE, Osindero S, Teh Y-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006;18(7):1527-1554.
-
(2006)
Neural Comput
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
16
-
-
84885898432
-
Deep learning-based feature representation for AD/MCI classification
-
Mori K, Sakuma I, Sato Y, Barillot C, Navab N, Berlin, Germany: Springer
-
Suk H-I, Shen D. Deep learning-based feature representation for AD/MCI classification. In: Mori K, Sakuma I, Sato Y, Barillot C, Navab N, editors. Medical Image Computing and Computer-Assisted Intervention MICCAI 2013. Berlin, Germany: Springer; 2013.
-
(2013)
Medical Image Computing and Computer-Assisted Intervention MICCAI 2013
-
-
Suk, H.-I.1
Shen, D.2
-
17
-
-
80053540444
-
Unsupervised learning of hierarchical representations with convolutional deep belief networks
-
Lee H, Grosse R, Ranganath R, Ng AY. Unsupervised learning of hierarchical representations with convolutional deep belief networks. Commun ACM. 2011;54(10):95-103.
-
(2011)
Commun ACM
, vol.54
, Issue.10
, pp. 95-103
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
19
-
-
79551672468
-
The Lung Image DatabaseConsortium (LIDC) and Image Database Resource Initiative (IDRI): A completed reference database of lung nodules on CT scans
-
Armato SG, McLennan G, Bidaut L, et al. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys. 2011;38:915
-
(2011)
Med Phys
, vol.38
, pp. 915
-
-
Armato, S.G.1
McLennan, G.2
Bidaut, L.3
-
20
-
-
4143056820
-
Lung imagedatabase consortium: Developing a resource for the medical imaging research community
-
Armato SG III, McLennan G, McNitt-Gray MF, et al. Lung image database consortium: developing a resource for the medical imaging research community. Radiology. 2004;232(3):739-748.
-
(2004)
Radiology
, vol.232
, Issue.3
, pp. 739-748
-
-
Armato, S.1
McLennan, G.2
McNitt-Gray, M.F.3
-
21
-
-
84876194732
-
-
Medical Image Computing and Computer-Assisted Intervention MICCAI 2010: Berlin, Germany: Springer
-
Farag A, Elhabian S, Graham J, Farag A, Falk R. Toward precise pulmonary nodule descriptors for nodule type classification. Medical Image Computing and Computer-Assisted Intervention MICCAI 2010: Berlin, Germany: Springer; 2010
-
(2010)
Toward Precise Pulmonary Nodule Descriptors for Nodule Type Classification
-
-
Farag, A.1
Elhabian, S.2
Graham, J.3
Farag, A.4
Falk, R.5
|