메뉴 건너뛰기




Volumn 477, Issue , 2016, Pages 13-22

Virtual screening: A challenge for deep learning

Author keywords

Deep Learning; Drug discovery; Ligand based; Machine Learning; Structure based; Virtual Screening

Indexed keywords

BIOINFORMATICS; E-LEARNING; LEARNING SYSTEMS;

EID: 84976394354     PISSN: 21945357     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-319-40126-3_2     Document Type: Conference Paper
Times cited : (15)

References (27)
  • 1
    • 84911401229 scopus 로고    scopus 로고
    • Structure-Based Virtual Screening for Drug Discovery: Principles, Applications and Recent Advances
    • Lionta, E., Spyrou, G., Vassilatis, D., Cournia, Z.: Structure-Based Virtual Screening for Drug Discovery: Principles, Applications and Recent Advances. Curr. Top. Med. Chem. 14, 1923-1938 (2014)
    • (2014) Curr. Top. Med. Chem , vol.14 , pp. 1923-1938
    • Lionta, E.1    Spyrou, G.2    Vassilatis, D.3    Cournia, Z.4
  • 2
    • 79956024935 scopus 로고    scopus 로고
    • State-of-the-art in ligand-based virtual screening. Drug Discov
    • Ripphausen, P., Nisius, B., Bajorath, J.: State-of-the-art in ligand-based virtual screening. Drug Discov. Today 16, 372-376 (2011)
    • (2011) Today , vol.16 , pp. 372-376
    • Ripphausen, P.1    Nisius, B.2    Bajorath, J.3
  • 6
    • 8844263008 scopus 로고    scopus 로고
    • Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat
    • Kitchen, D.B., Decornez, H., Furr, J.R., Bajorath, J.: Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov. 3, 935-949 (2004)
    • (2004) Rev. Drug Discov , vol.3 , pp. 935-949
    • Kitchen, D.B.1    Decornez, H.2    Furr, J.R.3    Bajorath, J.4
  • 8
    • 84879242302 scopus 로고    scopus 로고
    • Combination of ligand-and structure-based methods in virtual screening. Drug Discov. Today
    • Drwal, M.N., Griffith, R.: Combination of ligand-and structure-based methods in virtual screening. Drug Discov. Today. Technol. 10, e395-e401 (2013)
    • (2013) Technol , vol.10 , pp. e395-e401
    • Drwal, M.N.1    Griffith, R.2
  • 9
    • 0036007208 scopus 로고    scopus 로고
    • Virtual screening and fast automated docking methods. Drug Discov
    • Schneider, G., Böhm, H.J.: Virtual screening and fast automated docking methods. Drug Discov. Today 7, 64-70 (2002)
    • (2002) Today , vol.7 , pp. 64-70
    • Schneider, G.1    Böhm, H.J.2
  • 10
    • 33745007656 scopus 로고    scopus 로고
    • Chemogenomics in drug discovery. Ernst Schering Res. Found
    • Kubinyi, H.: Chemogenomics in drug discovery. Ernst Schering Res. Found. Workshop, 1-19 (2006)
    • (2006) Workshop , pp. 1-19
    • Kubinyi, H.1
  • 11
    • 34548319109 scopus 로고    scopus 로고
    • Chemogenomic approaches to drug discovery: Similar receptors bind similar ligands
    • Klabunde, T.: Chemogenomic approaches to drug discovery: similar receptors bind similar ligands. Br. J. Pharmacol. 152, 5-7 (2007)
    • (2007) Br. J. Pharmacol , vol.152 , pp. 5-7
    • Klabunde, T.1
  • 16
    • 69349090197 scopus 로고    scopus 로고
    • Learning Deep Architectures for AI. Found
    • Bengio, Y.: Learning Deep Architectures for AI. Found. Trends Mach. Learn. 2, 1-127 (2009)
    • (2009) Trends Mach. Learn , vol.2 , pp. 1-127
    • Bengio, Y.1
  • 17
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Networks 2, 359-366 (1989)
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 18
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527-1554 (2006)
    • (2006) Neural Comput , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 22
    • 84880542260 scopus 로고    scopus 로고
    • Deep Architectures and Deep Learning in Chemoinformatics: The Prediction of Aqueous Solubility for Drug-Like Molecules
    • Lusci, A., Pollastri, G., Baldi, P.: Deep Architectures and Deep Learning in Chemoinformatics: The Prediction of Aqueous Solubility for Drug-Like Molecules. J. Chem. Inf. Model. 53, 1563-1575 (2013)
    • (2013) J. Chem. Inf. Model , vol.53 , pp. 1563-1575
    • Lusci, A.1    Pollastri, G.2    Baldi, P.3
  • 25
    • 84923367417 scopus 로고    scopus 로고
    • Deep neural nets as a method for quantitative structure-activity relationships
    • Ma, J., Sheridan, R.P., Liaw, A., Dahl, G.E., Svetnik, V.: Deep neural nets as a method for quantitative structure-activity relationships. J. Chem. Inf. Model. 55, 263-274 (2015)
    • (2015) J. Chem. Inf. Model , vol.55 , pp. 263-274
    • Ma, J.1    Sheridan, R.P.2    Liaw, A.3    Dahl, G.E.4    Svetnik, V.5
  • 27
    • 33746931581 scopus 로고    scopus 로고
    • On outliers and activity cliffs-why QSAR often disappoints
    • Maggiora, G.M.: On outliers and activity cliffs-why QSAR often disappoints. J. Chem. Inf. Model. 46, 1535 (2006)
    • (2006) J. Chem. Inf. Model , vol.46 , pp. 1535
    • Maggiora, G.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.