-
1
-
-
84911401229
-
Structure-Based Virtual Screening for Drug Discovery: Principles, Applications and Recent Advances
-
Lionta, E., Spyrou, G., Vassilatis, D., Cournia, Z.: Structure-Based Virtual Screening for Drug Discovery: Principles, Applications and Recent Advances. Curr. Top. Med. Chem. 14, 1923-1938 (2014)
-
(2014)
Curr. Top. Med. Chem
, vol.14
, pp. 1923-1938
-
-
Lionta, E.1
Spyrou, G.2
Vassilatis, D.3
Cournia, Z.4
-
2
-
-
79956024935
-
State-of-the-art in ligand-based virtual screening. Drug Discov
-
Ripphausen, P., Nisius, B., Bajorath, J.: State-of-the-art in ligand-based virtual screening. Drug Discov. Today 16, 372-376 (2011)
-
(2011)
Today
, vol.16
, pp. 372-376
-
-
Ripphausen, P.1
Nisius, B.2
Bajorath, J.3
-
3
-
-
84866686849
-
Machine learning techniques and drug design
-
Gertrudes, J.C., Maltarollo, V.G., Silva, R.A., Oliveira, P.R., Honorio, K.M., da Silva, A.B.F.: Machine learning techniques and drug design. Curr. Med. Chem. 19, 4289-4297 (2012)
-
(2012)
Curr. Med. Chem
, vol.19
, pp. 4289-4297
-
-
Gertrudes, J.C.1
Maltarollo, V.G.2
Silva, R.A.3
Oliveira, P.R.4
Honorio, K.M.5
Da Silva, A.B.F.6
-
4
-
-
84930630277
-
-
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436-444 (2015)
-
(2015)
Deep Learning. Nature
, vol.521
, pp. 436-444
-
-
Lecun, Y.1
Bengio, Y.2
Hinton, G.3
-
5
-
-
82155171291
-
Virtual screening strategies in drug design-methods and applications
-
Bielska, E., Lucas, X., Czerwoniec, A., Kasprzak, J.M., Kaminska, K.H., Bujnicki, J.M.: Virtual screening strategies in drug design-methods and applications. Biotechnologia 92, 249-264 (2011)
-
(2011)
Biotechnologia
, vol.92
, pp. 249-264
-
-
Bielska, E.1
Lucas, X.2
Czerwoniec, A.3
Kasprzak, J.M.4
Kaminska, K.H.5
Bujnicki, J.M.6
-
6
-
-
8844263008
-
Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat
-
Kitchen, D.B., Decornez, H., Furr, J.R., Bajorath, J.: Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov. 3, 935-949 (2004)
-
(2004)
Rev. Drug Discov
, vol.3
, pp. 935-949
-
-
Kitchen, D.B.1
Decornez, H.2
Furr, J.R.3
Bajorath, J.4
-
8
-
-
84879242302
-
Combination of ligand-and structure-based methods in virtual screening. Drug Discov. Today
-
Drwal, M.N., Griffith, R.: Combination of ligand-and structure-based methods in virtual screening. Drug Discov. Today. Technol. 10, e395-e401 (2013)
-
(2013)
Technol
, vol.10
, pp. e395-e401
-
-
Drwal, M.N.1
Griffith, R.2
-
9
-
-
0036007208
-
Virtual screening and fast automated docking methods. Drug Discov
-
Schneider, G., Böhm, H.J.: Virtual screening and fast automated docking methods. Drug Discov. Today 7, 64-70 (2002)
-
(2002)
Today
, vol.7
, pp. 64-70
-
-
Schneider, G.1
Böhm, H.J.2
-
10
-
-
33745007656
-
Chemogenomics in drug discovery. Ernst Schering Res. Found
-
Kubinyi, H.: Chemogenomics in drug discovery. Ernst Schering Res. Found. Workshop, 1-19 (2006)
-
(2006)
Workshop
, pp. 1-19
-
-
Kubinyi, H.1
-
11
-
-
34548319109
-
Chemogenomic approaches to drug discovery: Similar receptors bind similar ligands
-
Klabunde, T.: Chemogenomic approaches to drug discovery: similar receptors bind similar ligands. Br. J. Pharmacol. 152, 5-7 (2007)
-
(2007)
Br. J. Pharmacol
, vol.152
, pp. 5-7
-
-
Klabunde, T.1
-
13
-
-
67650391204
-
Application of machine learning approaches on quantitative structure activity relationships
-
IEEE
-
Butkiewicz, M., Mueller, R., Selic, D., Dawson, E., Meiler, J.: Application of machine learning approaches on quantitative structure activity relationships. In: 2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, pp. 255-262. IEEE (2009)
-
(2009)
2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology
, pp. 255-262
-
-
Butkiewicz, M.1
Mueller, R.2
Selic, D.3
Dawson, E.4
Meiler, J.5
-
14
-
-
66249086244
-
Machine learning in virtual screening. Comb
-
Melville, J.L., Burke, E.K., Hirst, J.D.: Machine learning in virtual screening. Comb. Chem. High Throughput Screen. 12, 332-343 (2009)
-
(2009)
Chem. High Throughput Screen
, vol.12
, pp. 332-343
-
-
Melville, J.L.1
Burke, E.K.2
Hirst, J.D.3
-
15
-
-
84879854889
-
Representation learning: A review and new perspectives
-
Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798-1828 (2013)
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.35
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
16
-
-
69349090197
-
Learning Deep Architectures for AI. Found
-
Bengio, Y.: Learning Deep Architectures for AI. Found. Trends Mach. Learn. 2, 1-127 (2009)
-
(2009)
Trends Mach. Learn
, vol.2
, pp. 1-127
-
-
Bengio, Y.1
-
17
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Networks 2, 359-366 (1989)
-
(1989)
Neural Networks
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
18
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527-1554 (2006)
-
(2006)
Neural Comput
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
19
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
ACM Press, New York
-
Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.-A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning-ICML 2008, pp. 1096-1103. ACM Press, New York (2008)
-
(2008)
Proceedings of the 25Th International Conference on Machine Learning-Icml 2008
, pp. 1096-1103
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.-A.4
-
20
-
-
84864069017
-
Efficient learning of sparse representations with an energy-based model
-
Poultney, C., Chopra, S., Lecun, Y.: Efficient learning of sparse representations with an energy-based model. In: Advances in Neural Information Processing Systems (NIPS 2006), pp. 1137-1144. MIT Press (2006)
-
(2006)
Advances in Neural Information Processing Systems (NIPS 2006), Pp. 1137-1144. MIT Press
-
-
Poultney, C.1
Chopra, S.2
Lecun, Y.3
-
22
-
-
84880542260
-
Deep Architectures and Deep Learning in Chemoinformatics: The Prediction of Aqueous Solubility for Drug-Like Molecules
-
Lusci, A., Pollastri, G., Baldi, P.: Deep Architectures and Deep Learning in Chemoinformatics: The Prediction of Aqueous Solubility for Drug-Like Molecules. J. Chem. Inf. Model. 53, 1563-1575 (2013)
-
(2013)
J. Chem. Inf. Model
, vol.53
, pp. 1563-1575
-
-
Lusci, A.1
Pollastri, G.2
Baldi, P.3
-
23
-
-
84945557463
-
Deep Learning for Drug-Induced Liver Injury
-
Xu, Y., Dai, Z., Chen, F., Gao, S., Pei, J., Lai, L.: Deep Learning for Drug-Induced Liver Injury. J. Chem. Inf. Model. (2015). 151013124508007
-
(2015)
J. Chem. Inf. Model
-
-
Xu, Y.1
Dai, Z.2
Chen, F.3
Gao, S.4
Pei, J.5
Lai, L.6
-
25
-
-
84923367417
-
Deep neural nets as a method for quantitative structure-activity relationships
-
Ma, J., Sheridan, R.P., Liaw, A., Dahl, G.E., Svetnik, V.: Deep neural nets as a method for quantitative structure-activity relationships. J. Chem. Inf. Model. 55, 263-274 (2015)
-
(2015)
J. Chem. Inf. Model
, vol.55
, pp. 263-274
-
-
Ma, J.1
Sheridan, R.P.2
Liaw, A.3
Dahl, G.E.4
Svetnik, V.5
-
27
-
-
33746931581
-
On outliers and activity cliffs-why QSAR often disappoints
-
Maggiora, G.M.: On outliers and activity cliffs-why QSAR often disappoints. J. Chem. Inf. Model. 46, 1535 (2006)
-
(2006)
J. Chem. Inf. Model
, vol.46
, pp. 1535
-
-
Maggiora, G.M.1
|