메뉴 건너뛰기




Volumn 99, Issue , 2016, Pages 51-70

Fuzzy C-Means clustering of incomplete data based on probabilistic information granules of missing values

Author keywords

Alternating optimization; Fuzzy clustering; Incomplete data; Missing value; Probabilistic information granules

Indexed keywords

AUTOCORRELATION; CLUSTER ANALYSIS; FUZZY CLUSTERING; FUZZY SYSTEMS; GRANULATION; INFORMATION GRANULES; LAGRANGE MULTIPLIERS; MAXIMUM LIKELIHOOD; OPTIMIZATION; PROBABILITY DISTRIBUTIONS; VIRTUAL REALITY;

EID: 84976232108     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2016.01.048     Document Type: Article
Times cited : (103)

References (48)
  • 2
    • 0018656141 scopus 로고
    • Pattern recognition with partly missing data
    • J.K. Dixon Pattern recognition with partly missing data IEEE Trans. Syst. Man Cybern. 9 10 1979 617 621
    • (1979) IEEE Trans. Syst. Man Cybern. , vol.9 , Issue.10 , pp. 617-621
    • Dixon, J.K.1
  • 5
    • 84902167456 scopus 로고    scopus 로고
    • A distributed weighted possibilistic c-means algorithm for clustering incomplete big sensor data
    • Q.C. Zhang, Z.K. Chen A distributed weighted possibilistic c-means algorithm for clustering incomplete big sensor data Int. J. Distrib. Sens. Netw. 2014 2014 430814
    • (2014) Int. J. Distrib. Sens. Netw. , vol.2014 , pp. 430814
    • Zhang, Q.C.1    Chen, Z.K.2
  • 6
    • 0842300534 scopus 로고    scopus 로고
    • Clustering incomplete data using kernel-based fuzzy c-means algorithm
    • D.Q. Zhang, S.C Chen Clustering incomplete data using kernel-based fuzzy c-means algorithm Neural Processi. Lett. 18 2003 155 162
    • (2003) Neural Processi. Lett. , vol.18 , pp. 155-162
    • Zhang, D.Q.1    Chen, S.C.2
  • 7
    • 77954868298 scopus 로고    scopus 로고
    • Fuzzy clustering of incomplete data based on cluster dispersion
    • L. Himmelspach, S. Conrad Fuzzy clustering of incomplete data based on cluster dispersion Lect. Notes Comput. Sci. 6178 2010 59 68
    • (2010) Lect. Notes Comput. Sci. , vol.6178 , pp. 59-68
    • Himmelspach, L.1    Conrad, S.2
  • 8
    • 17144402563 scopus 로고    scopus 로고
    • A hybrid neural network system for pattern classification tasks with missing features
    • C.P Lim, J.H Leong, M.M Kuan A hybrid neural network system for pattern classification tasks with missing features IEEE Trans. Pattern Anal. Mach. Intell. 27 4 2005 648 653
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.4 , pp. 648-653
    • Lim, C.P.1    Leong, J.H.2    Kuan, M.M.3
  • 9
    • 84906828396 scopus 로고    scopus 로고
    • A new algorithm for fuzzy clustering handling incomplete dataset
    • A. Balkis, B.Y. Sadok A new algorithm for fuzzy clustering handling incomplete dataset Int. J. Artif. Intell. Tools 23 4 2014, 1460012
    • (2014) Int. J. Artif. Intell. Tools , vol.23 , Issue.4
    • Balkis, A.1    Sadok, B.Y.2
  • 10
    • 84925290273 scopus 로고    scopus 로고
    • Fast progressive training of mixture models for model selection
    • P.R. Adhikari, J. Hollmen Fast progressive training of mixture models for model selection J. Intell. Inf. Syst. 44 2 2015 223 241
    • (2015) J. Intell. Inf. Syst. , vol.44 , Issue.2 , pp. 223-241
    • Adhikari, P.R.1    Hollmen, J.2
  • 11
    • 33644976711 scopus 로고    scopus 로고
    • On fast supervised learning for normal mixture models with missing information
    • T.I. Lin, J.C. Lee, H.J. Ho On fast supervised learning for normal mixture models with missing information Pattern Recognit. 39 6 2006 1177 1187
    • (2006) Pattern Recognit. , vol.39 , Issue.6 , pp. 1177-1187
    • Lin, T.I.1    Lee, J.C.2    Ho, H.J.3
  • 12
    • 84889102495 scopus 로고    scopus 로고
    • Learning from incomplete data via parameterized t mixture models through eigenvalue decomposition
    • T.I. Lin Learning from incomplete data via parameterized t mixture models through eigenvalue decomposition Comput. Stat. Data Anal. 71 2014 183 195
    • (2014) Comput. Stat. Data Anal. , vol.71 , pp. 183-195
    • Lin, T.I.1
  • 14
    • 84877020867 scopus 로고    scopus 로고
    • Robust Bayesian classification with incomplete data
    • X.N. Zhang, S.J. Song, C. Wu Robust Bayesian classification with incomplete data Cognit. Comput. 5 2 2013 170 187
    • (2013) Cognit. Comput. , vol.5 , Issue.2 , pp. 170-187
    • Zhang, X.N.1    Song, S.J.2    Wu, C.3
  • 16
    • 1942532746 scopus 로고    scopus 로고
    • Linear fuzzy clustering techniques with missing values and their application to local principal component analysis
    • K. Honda, H. Ichihashi Linear fuzzy clustering techniques with missing values and their application to local principal component analysis IEEE Trans. Fuzzy Syst. 12 2 2004 183 193
    • (2004) IEEE Trans. Fuzzy Syst. , vol.12 , Issue.2 , pp. 183-193
    • Honda, K.1    Ichihashi, H.2
  • 19
    • 84878866923 scopus 로고    scopus 로고
    • Clustering with missing values
    • K. Siminski Clustering with missing values Fundam. Inf. 123 3 2013 331 350
    • (2013) Fundam. Inf. , vol.123 , Issue.3 , pp. 331-350
    • Siminski, K.1
  • 20
    • 76749163647 scopus 로고    scopus 로고
    • Selection-fusion approach for classification of datasets with missing values
    • M. Ghannad-Rezaie, H. Soltanian-Zadeh, H. Ying, M. Dong Selection-fusion approach for classification of datasets with missing values Pattern Recognit. 43 6 2010 2340 2350
    • (2010) Pattern Recognit. , vol.43 , Issue.6 , pp. 2340-2350
    • Ghannad-Rezaie, M.1    Soltanian-Zadeh, H.2    Ying, H.3    Dong, M.4
  • 21
    • 0036132613 scopus 로고    scopus 로고
    • Clustering incomplete relational data using the non-Euclidean relational fuzzy c-means algorithm
    • R.J. Hathaway, J.C. Bezdek Clustering incomplete relational data using the non-Euclidean relational fuzzy c-means algorithm Pattern Recognit. Lett. 23 1-3 2002 151 160
    • (2002) Pattern Recognit. Lett. , vol.23 , Issue.1-3 , pp. 151-160
    • Hathaway, R.J.1    Bezdek, J.C.2
  • 23
    • 1142291805 scopus 로고    scopus 로고
    • Different approaches to fuzzy clustering of incomplete datasets
    • H. Timm, C. Doring, R. Kruse Different approaches to fuzzy clustering of incomplete datasets Int. J. Approx. Reason. 35 3 2004 239 249
    • (2004) Int. J. Approx. Reason. , vol.35 , Issue.3 , pp. 239-249
    • Timm, H.1    Doring, C.2    Kruse, R.3
  • 24
    • 84861620798 scopus 로고    scopus 로고
    • A new fuzzy c-means method with total variation regularization for segmentation of images with noisy and incomplete data
    • Y.Y. He, H.M. Yousuff, J.W. Ma, B. Shafei, G. Steidl A new fuzzy c-means method with total variation regularization for segmentation of images with noisy and incomplete data Pattern Recognit. 45 9 2012 3463 3471
    • (2012) Pattern Recognit. , vol.45 , Issue.9 , pp. 3463-3471
    • He, Y.Y.1    Yousuff, H.M.2    Ma, J.W.3    Shafei, B.4    Steidl, G.5
  • 25
    • 85042811025 scopus 로고    scopus 로고
    • Clustering algorithm for incomplete data sets with mixed numeric and categorical attributes
    • S. Wu, H. Chen, X.D. Feng Clustering algorithm for incomplete data sets with mixed numeric and categorical attributes Int. J. Database Theory Appl. 6 5 2013 95 104
    • (2013) Int. J. Database Theory Appl. , vol.6 , Issue.5 , pp. 95-104
    • Wu, S.1    Chen, H.2    Feng, X.D.3
  • 26
    • 80054982754 scopus 로고    scopus 로고
    • A comparison of imputation methods for handling missing scores in biometric fusion
    • Y.H. Ding, A. Ross A comparison of imputation methods for handling missing scores in biometric fusion Pattern Recognit. 45 3 2012 919 933
    • (2012) Pattern Recognit. , vol.45 , Issue.3 , pp. 919-933
    • Ding, Y.H.1    Ross, A.2
  • 27
    • 84865249371 scopus 로고    scopus 로고
    • Nearest neighbor selection for iteratively kNN imputation
    • S.C. Zhang Nearest neighbor selection for iteratively kNN imputation J. Syst. Softw. 85 11 2012 2541 2552
    • (2012) J. Syst. Softw. , vol.85 , Issue.11 , pp. 2541-2552
    • Zhang, S.C.1
  • 28
    • 84889688873 scopus 로고    scopus 로고
    • Incomplete-case nearest neighbor imputation in software measurement data
    • H.J. Van, T.M. Khoshgoftaar Incomplete-case nearest neighbor imputation in software measurement data Inf. Sci. 259 2014 596 610
    • (2014) Inf. Sci. , vol.259 , pp. 596-610
    • Van, H.J.1    Khoshgoftaar, T.M.2
  • 29
    • 84886313874 scopus 로고    scopus 로고
    • A fuzzy c-means approach for incomplete data sets based on nearest-neighbor intervals
    • D. Li, C.Q. Zhong, S.Q. Wang A fuzzy c-means approach for incomplete data sets based on nearest-neighbor intervals Appl. Mech. Mater. 411-414 2013 1108 1111
    • (2013) Appl. Mech. Mater. , vol.411-414 , pp. 1108-1111
    • Li, D.1    Zhong, C.Q.2    Wang, S.Q.3
  • 30
    • 84942048641 scopus 로고    scopus 로고
    • Distributed proximity-based granular clustering: Towards a development of global structural relationships in data
    • W. Pedrycz, R. Al-Hmouz, A. Morfeq, A.S. Balamash Distributed proximity-based granular clustering: towards a development of global structural relationships in data Soft Comput. 19 10 2015 2751 2767
    • (2015) Soft Comput. , vol.19 , Issue.10 , pp. 2751-2767
    • Pedrycz, W.1    Al-Hmouz, R.2    Morfeq, A.3    Balamash, A.S.4
  • 31
    • 84877787248 scopus 로고    scopus 로고
    • The particle swarm and fuzzy c-means hybrid method for incomplete data clustering
    • Z.H. Bing, L. Zhang, L.Y. Zhang, B.L. Wang The particle swarm and fuzzy c-means hybrid method for incomplete data clustering ICIC Express Lett. 7 8 2013 2437 2441
    • (2013) ICIC Express Lett. , vol.7 , Issue.8 , pp. 2437-2441
    • Bing, Z.H.1    Zhang, L.2    Zhang, L.Y.3    Wang, B.L.4
  • 32
    • 84939887085 scopus 로고    scopus 로고
    • A hybrid clustering algorithm based on missing attribute interval estimation for incomplete data
    • L. Zhang, Z.H. Bing, L.Y. Zhang A hybrid clustering algorithm based on missing attribute interval estimation for incomplete data Pattern Anal. Appl. 18 2 2015 377 384
    • (2015) Pattern Anal. Appl. , vol.18 , Issue.2 , pp. 377-384
    • Zhang, L.1    Bing, Z.H.2    Zhang, L.Y.3
  • 35
    • 84926201555 scopus 로고    scopus 로고
    • Systematic mapping study on granular computing
    • S. Salehi, A. Selamat, H. Fujita Systematic mapping study on granular computing Knowl. Based Syst. 80 2015 78 97
    • (2015) Knowl. Based Syst. , vol.80 , pp. 78-97
    • Salehi, S.1    Selamat, A.2    Fujita, H.3
  • 36
    • 33644682134 scopus 로고    scopus 로고
    • Testing experimental data for univariate normality
    • A. Ralph Henderson Testing experimental data for univariate normality Clinica Chim. Acta 366 1-2 2006 112 129
    • (2006) Clinica Chim. Acta , vol.366 , Issue.1-2 , pp. 112-129
    • Ralph Henderson, A.1
  • 37
    • 79960321628 scopus 로고    scopus 로고
    • The limit distribution of a modified Shapiro-Wilk statistic for normality to Type II censored data
    • N. Kim The limit distribution of a modified Shapiro-Wilk statistic for normality to Type II censored data J. Korean Stat. Soc. 40 3 2011 257 266
    • (2011) J. Korean Stat. Soc. , vol.40 , Issue.3 , pp. 257-266
    • Kim, N.1
  • 38
    • 0000898845 scopus 로고
    • An analysis of variance test for normality (complete samples)
    • S.S. Shapiro, M.B. Wilk An analysis of variance test for normality (complete samples) Biometrika 52 3-4 1965 591 611
    • (1965) Biometrika , vol.52 , Issue.3-4 , pp. 591-611
    • Shapiro, S.S.1    Wilk, M.B.2
  • 39
    • 84950652331 scopus 로고
    • An approximate analysis of variance test for normality
    • S.S. Shapiro, R.S. Francia An approximate analysis of variance test for normality J. Am. Stat. Assoc. 67 337 1972 215 216
    • (1972) J. Am. Stat. Assoc. , vol.67 , Issue.337 , pp. 215-216
    • Shapiro, S.S.1    Francia, R.S.2
  • 41
    • 84873687895 scopus 로고    scopus 로고
    • A multivariate fuzzy c-means method
    • B.A. Pimentel, R.M.C.R. Souza A multivariate fuzzy c-means method Appl. Soft Comput. 13 4 2013 1592 1607
    • (2013) Appl. Soft Comput. , vol.13 , Issue.4 , pp. 1592-1607
    • Pimentel, B.A.1    Souza, R.M.C.R.2
  • 42
    • 0036531325 scopus 로고    scopus 로고
    • Reducing the time complexity of the fuzzy c-means algorithm
    • J.F. Kolen, T. Hutcheson Reducing the time complexity of the fuzzy c-means algorithm IEEE Trans. Fuzzy Syst. 10 2 2002 263 267
    • (2002) IEEE Trans. Fuzzy Syst. , vol.10 , Issue.2 , pp. 263-267
    • Kolen, J.F.1    Hutcheson, T.2
  • 43
    • 84899692098 scopus 로고    scopus 로고
    • An interval weighed fuzzy c-means clustering by genetically guided alternating optimization
    • L.Y. Zhang, W. Pedrycz, W. Lu, X.D. Liu, L. Zhang An interval weighed fuzzy c-means clustering by genetically guided alternating optimization Expert Syst. Appl. 41 13 2014 5960 5971
    • (2014) Expert Syst. Appl. , vol.41 , Issue.13 , pp. 5960-5971
    • Zhang, L.Y.1    Pedrycz, W.2    Lu, W.3    Liu, X.D.4    Zhang, L.5
  • 45
    • 84886567160 scopus 로고    scopus 로고
    • University of California, School of Information and Computer Science Irvine, CA
    • M. Lichman UCI Machine Learning Repository 2015 University of California, School of Information and Computer Science Irvine, CA http://archive.ics.uci.edu/ml
    • (2015) UCI Machine Learning Repository
    • Lichman, M.1
  • 46
    • 0026860799 scopus 로고
    • Robust linear programming discrimination of two linearly inseparable sets
    • K.P. Bennett, O.L. Mangasarian Robust linear programming discrimination of two linearly inseparable sets Optim. Methods Softw. 1 1 1992 23 34
    • (1992) Optim. Methods Softw. , vol.1 , Issue.1 , pp. 23-34
    • Bennett, K.P.1    Mangasarian, O.L.2
  • 48
    • 57849144858 scopus 로고
    • Optimization of clustering criteria by reformulation
    • R.J. Hathaway, J.C. Bezdek Optimization of clustering criteria by reformulation IEEE Trans. Fuzzy Syst. 3 2 1995 241 245
    • (1995) IEEE Trans. Fuzzy Syst. , vol.3 , Issue.2 , pp. 241-245
    • Hathaway, R.J.1    Bezdek, J.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.