메뉴 건너뛰기




Volumn 19, Issue 10, 2015, Pages 2751-2767

Distributed proximity-based granular clustering: towards a development of global structural relationships in data

Author keywords

Consensus formation; Distributed data; Fuzzy clustering; Global structure; Granular clustering; Granular proximity; Proximity matrix

Indexed keywords

FUZZY CLUSTERING;

EID: 84942048641     PISSN: 14327643     EISSN: 14337479     Source Type: Journal    
DOI: 10.1007/s00500-014-1439-x     Document Type: Article
Times cited : (5)

References (20)
  • 3
    • 77953023706 scopus 로고    scopus 로고
    • A fuzzy clustering model for multivariate spatial time series
    • Coppi R, D’Urso P, Giordani P (2010) A fuzzy clustering model for multivariate spatial time series. J Classif 27:54–88
    • (2010) J Classif , vol.27 , pp. 54-88
    • Coppi, R.1    D’Urso, P.2    Giordani, P.3
  • 4
    • 20444409097 scopus 로고    scopus 로고
    • A new fuzzy relational clustering algorithm based on the fuzzy C-means algorithm
    • Corsini P, Lazzerini B, Marcelloni F (2005) A new fuzzy relational clustering algorithm based on the fuzzy C-means algorithm. Soft Comput 9:439–447
    • (2005) Soft Comput , vol.9 , pp. 439-447
    • Corsini, P.1    Lazzerini, B.2    Marcelloni, F.3
  • 5
    • 0346724786 scopus 로고    scopus 로고
    • Clustering of interval data based on city-block distances
    • de Souza RMCR, de Carvalho F (2004) Clustering of interval data based on city-block distances. Pattern Recognit Lett 25(3):353–365
    • (2004) Pattern Recognit Lett , vol.25 , Issue.3 , pp. 353-365
    • de Souza, R.M.C.R.1    de Carvalho, F.2
  • 6
    • 84881374187 scopus 로고    scopus 로고
    • Description, analysis, and classification of biomedical signals: a computational intelligence approach
    • Gacek A, Pedrycz W (2013) Description, analysis, and classification of biomedical signals: a computational intelligence approach. Soft Comput 17:1659–1671
    • (2013) Soft Comput , vol.17 , pp. 1659-1671
    • Gacek, A.1    Pedrycz, W.2
  • 7
    • 84857993256 scopus 로고    scopus 로고
    • Clustering with proximity knowledge and relational knowledge
    • Graves D, Noppen J, Pedrycz W (2012) Clustering with proximity knowledge and relational knowledge. Pattern Recognit 45(7):2633–2644
    • (2012) Pattern Recognit , vol.45 , Issue.7 , pp. 2633-2644
    • Graves, D.1    Noppen, J.2    Pedrycz, W.3
  • 8
    • 0030216669 scopus 로고    scopus 로고
    • A parametric model for fusing heterogeneous fuzzy data
    • Hathaway R, Bezdek JC, Pedrycz W (1996) A parametric model for fusing heterogeneous fuzzy data. IEEE Trans Fuzzy Syst 4:270–281
    • (1996) IEEE Trans Fuzzy Syst , vol.4 , pp. 270-281
    • Hathaway, R.1    Bezdek, J.C.2    Pedrycz, W.3
  • 9
    • 33947430572 scopus 로고    scopus 로고
    • Uncertain fuzzy clustering: interval type-2 fuzzy approach to C-Means
    • Hwang C, Rhee FC-H (2007) Uncertain fuzzy clustering: interval type-2 fuzzy approach to C-Means. IEEE Trans Fuzzy Syst 15(1):107–120
    • (2007) IEEE Trans Fuzzy Syst , vol.15 , Issue.1 , pp. 107-120
    • Hwang, C.1    Rhee, F.C.-H.2
  • 10
    • 0042341570 scopus 로고    scopus 로고
    • Clustering and its validation in a symbolic framework
    • Mali K, Mitra S (2003) Clustering and its validation in a symbolic framework. Pattern Recognit Lett 24(14):2367–2376
    • (2003) Pattern Recognit Lett , vol.24 , Issue.14 , pp. 2367-2376
    • Mali, K.1    Mitra, S.2
  • 13
    • 46849094944 scopus 로고    scopus 로고
    • Collaborative clustering with the use of Fuzzy C-Means and its quantification
    • Pedrycz W, Rai P (2008) Collaborative clustering with the use of Fuzzy C-Means and its quantification. Fuzzy Sets Syst 15:2399–2427
    • (2008) Fuzzy Sets Syst , vol.15 , pp. 2399-2427
    • Pedrycz, W.1    Rai, P.2
  • 14
    • 46749112873 scopus 로고    scopus 로고
    • Granular computing—the emerging paradigm
    • Pedrycz W (2007) Granular computing—the emerging paradigm. J Uncertain Syst 1(1):38–61
    • (2007) J Uncertain Syst , vol.1 , Issue.1 , pp. 38-61
    • Pedrycz, W.1
  • 15
    • 4944220798 scopus 로고    scopus 로고
    • P-FCM: a proximity-based fuzzy clustering
    • Pedrycz W, Loia V, Senatore S (2004) P-FCM: a proximity-based fuzzy clustering. Fuzzy Sets Syst 148(1):21–41
    • (2004) Fuzzy Sets Syst , vol.148 , Issue.1 , pp. 21-41
    • Pedrycz, W.1    Loia, V.2    Senatore, S.3
  • 17
    • 0442312343 scopus 로고    scopus 로고
    • Fuzzy clustering with a knowledge-based guidance
    • Pedrycz W (2004) Fuzzy clustering with a knowledge-based guidance. Pattern Recognit Lett 25(4):469–480
    • (2004) Pattern Recognit Lett , vol.25 , Issue.4 , pp. 469-480
    • Pedrycz, W.1
  • 18
    • 82455164453 scopus 로고    scopus 로고
    • Granular box regression
    • Peters G (2011) Granular box regression. IEEE Trans Fuzzy Syst 19(6):1141–1152
    • (2011) IEEE Trans Fuzzy Syst , vol.19 , Issue.6 , pp. 1141-1152
    • Peters, G.1
  • 19
    • 84877649629 scopus 로고    scopus 로고
    • Application of interval clustering approach to water quality evaluation
    • Wong H, Hu BQ (2013) Application of interval clustering approach to water quality evaluation. J Hydrol 491:1–12
    • (2013) J Hydrol , vol.491 , pp. 1-12
    • Wong, H.1    Hu, B.Q.2
  • 20
    • 84899692098 scopus 로고    scopus 로고
    • An interval weighed fuzzy c-means clustering by genetically guided alternating optimization
    • Zhang L, Pedrycz W, Lu W, Liu X, Zhang L (2014) An interval weighed fuzzy c-means clustering by genetically guided alternating optimization. Expert Syst Appl 41(13):5960–5971
    • (2014) Expert Syst Appl , vol.41 , Issue.13 , pp. 5960-5971
    • Zhang, L.1    Pedrycz, W.2    Lu, W.3    Liu, X.4    Zhang, L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.