메뉴 건너뛰기




Volumn 5, Issue 2, 2013, Pages 170-187

Robust Bayesian Classification with Incomplete Data

Author keywords

Bayesian classification; EM algorithm; Incomplete data; Propensity scores

Indexed keywords

GAUSSIAN DISTRIBUTION; IMAGE SEGMENTATION; LITHOLOGY; MAXIMUM PRINCIPLE; OPTICAL CHARACTER RECOGNITION;

EID: 84877020867     PISSN: 18669956     EISSN: 18669964     Source Type: Journal    
DOI: 10.1007/s12559-012-9188-6     Document Type: Article
Times cited : (16)

References (39)
  • 1
    • 79957638704 scopus 로고    scopus 로고
    • Recognition of handwritten Arabic literal amounts using a hybrid approach
    • Boukharouba A, Bennia A. Recognition of handwritten Arabic literal amounts using a hybrid approach. Cogn Comput. 2011; 3(2): 382-393.
    • (2011) Cogn Comput , vol.3 , Issue.2 , pp. 382-393
    • Boukharouba, A.1    Bennia, A.2
  • 2
    • 78649913777 scopus 로고    scopus 로고
    • Face recognition with quantum associative networks using overcomplete Gabor wavelet
    • Tay NW, Loo CK, Perus M. Face recognition with quantum associative networks using overcomplete Gabor wavelet. Cogn Comput. 2010; 2(4): 297-302.
    • (2010) Cogn Comput , vol.2 , Issue.4 , pp. 297-302
    • Tay, N.W.1    Loo, C.K.2    Perus, M.3
  • 3
    • 78650911205 scopus 로고    scopus 로고
    • Land cover classification of cloud-contaminated multitemporal high-resolution images
    • Salberg AB. Land cover classification of cloud-contaminated multitemporal high-resolution images. IEEE Trans Geosci Remote Sens. 2011; 49(1): 377-387.
    • (2011) IEEE Trans Geosci Remote Sens , vol.49 , Issue.1 , pp. 377-387
    • Salberg, A.B.1
  • 4
    • 80052268389 scopus 로고    scopus 로고
    • Developing prognosis tools to identify learning difficulties in children using machine learning technologies
    • Loizou A and Laouris Y. Developing prognosis tools to identify learning difficulties in children using machine learning technologies. Cogn Comput. 2011; 3(3): 50-490.
    • (2011) Cogn Comput , vol.3 , Issue.3 , pp. 50-490
    • Loizou, A.1    Laouris, Y.2
  • 5
    • 59549087165 scopus 로고    scopus 로고
    • On discriminative vs. generative classifiers: a comparison of logistic regression and naive Bayes
    • Cambridge: MIT Press
    • Ng AY, Jordan MI. On discriminative vs. generative classifiers: a comparison of logistic regression and naive Bayes. In: Advances in neural information processing systems. Cambridge: MIT Press; 2002. p. 841-848.
    • (2002) In: Advances in neural information processing systems , pp. 841-848
    • Ng, A.Y.1    Jordan, M.I.2
  • 6
    • 79955532338 scopus 로고    scopus 로고
    • Classification of mental task from EEG signals using immune feature weighted support vector machines
    • Guo L, Wu YX, Zhao L, et al. Classification of mental task from EEG signals using immune feature weighted support vector machines. IEEE Trans Magn. 2011; 47(5): 866-869.
    • (2011) IEEE Trans Magn , vol.47 , Issue.5 , pp. 866-869
    • Guo, L.1    Wu, Y.X.2    Zhao, L.3
  • 7
    • 83655192093 scopus 로고    scopus 로고
    • Data-core-based fuzzy min-max neural network for pattern classification
    • Zhang HG, Liu JH, Ma DZ, et al. Data-core-based fuzzy min-max neural network for pattern classification. IEEE Trans Neural Netw. 2011; 22(12): 2339-2352.
    • (2011) IEEE Trans Neural Netw. , vol.22 , Issue.12 , pp. 2339-2352
    • Zhang, H.G.1    Liu, J.H.2    Ma, D.Z.3
  • 9
    • 84859974404 scopus 로고    scopus 로고
    • Exact sample conditioned MSE performance of the Bayesian MMSE estimator for classification error-part I: representation
    • Dalton LA, Dougherty ER. Exact sample conditioned MSE performance of the Bayesian MMSE estimator for classification error-part I: representation. IEEE Trans Signal Process. 2012; 60(5): 2575-2587.
    • (2012) IEEE Trans Signal Process , vol.60 , Issue.5 , pp. 2575-2587
    • Dalton, L.A.1    Dougherty, E.R.2
  • 10
    • 0032905966 scopus 로고    scopus 로고
    • Bayesian classification by iterated weighting
    • Baram Y. Bayesian classification by iterated weighting. Neurocomputing 1999; 25(1-3): 73-79.
    • (1999) Neurocomputing , vol.25 , Issue.1-3 , pp. 73-79
    • Baram, Y.1
  • 11
    • 37649020425 scopus 로고    scopus 로고
    • Landscapes of naive Bayes classifiers
    • Hoare Z. Landscapes of naive Bayes classifiers. Pattern Anal Appl. 2008; 11(1): 59-72.
    • (2008) Pattern Anal Appl , vol.11 , Issue.1 , pp. 59-72
    • Hoare, Z.1
  • 13
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: our view of the state of the art
    • Schafer JL, Graham JW. Missing data: Our view of the state of the art. Psychol Methods. 2002; 7(2): 147-177.
    • (2002) Psychol Methods , vol.7 , Issue.2 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2
  • 16
    • 77957130052 scopus 로고    scopus 로고
    • Missing data imputation using statistical and machine learning methods in a real breast cancer problem
    • Jerez JM, Molina I, Garcia-Laencina PJ, et al. Missing data imputation using statistical and machine learning methods in a real breast cancer problem. Artif Intell Med. 2010; 50(2): 105-115.
    • (2010) Artif Intell Med , vol.50 , Issue.2 , pp. 105-115
    • Jerez, J.M.1    Molina, I.2    Garcia-Laencina, P.J.3
  • 17
    • 78650175506 scopus 로고    scopus 로고
    • A neural network-based framework for the reconstruction of incomplete data sets
    • Gheyas IA, Smith LS. A neural network-based framework for the reconstruction of incomplete data sets. Neurocomputing 2010; 73(16-18): 3039-3065.
    • (2010) Neurocomputing , vol.73 , Issue.16-18 , pp. 3039-3065
    • Gheyas, I.A.1    Smith, L.S.2
  • 18
    • 78649645941 scopus 로고    scopus 로고
    • Missing value imputation on missing completely at random data using multilayer perceptrons
    • Silva-Ramirez EL, Pino-Mejias R, Lopez-Coello M, et al. Missing value imputation on missing completely at random data using multilayer perceptrons. Neural Netw. 2011; 24(1): 121-129.
    • (2011) Neural Netw , vol.24 , Issue.1 , pp. 121-129
    • Silva-Ramirez, E.L.1    Pino-Mejias, R.2    Lopez-Coello, M.3
  • 19
    • 76749163647 scopus 로고    scopus 로고
    • Selection-fusion approach for classification of datasets with missing values
    • Ghannad-Rezaie M, Soltanian-Zadeh H, Ying H, et al. Selection-fusion approach for classification of datasets with missing values. Pattern Recognit. 2010; 43(6): 2340-2350.
    • (2010) Pattern Recognit , vol.43 , Issue.6 , pp. 2340-2350
    • Ghannad-Rezaie, M.1    Soltanian-Zadeh, H.2    Ying, H.3
  • 20
    • 0242493761 scopus 로고    scopus 로고
    • On the use of conceptual reconstruction for mining massively incomplete data sets
    • Parthasarathy S, Aggarwal CC. On the use of conceptual reconstruction for mining massively incomplete data sets. IEEE Trans Knowl Data Eng. 2003; 15(6): 1512-1521.
    • (2003) IEEE Trans Knowl Data Eng , vol.15 , Issue.6 , pp. 1512-1521
    • Parthasarathy, S.1    Aggarwal, C.C.2
  • 24
    • 77958000637 scopus 로고    scopus 로고
    • A kernel-based parametric method for conditional density estimation
    • Gang F, Shih FY, Haimin W. A kernel-based parametric method for conditional density estimation. Pattern Recognit. 2011; 44(2): 284-294.
    • (2011) Pattern Recognit , vol.44 , Issue.2 , pp. 284-294
    • Gang, F.1    Shih, F.Y.2    Haimin, W.3
  • 26
    • 78751701647 scopus 로고    scopus 로고
    • Estimation of the MISE and the optimal bandwidth vector of a product kernel density estimate
    • Dutta S. Estimation of the MISE and the optimal bandwidth vector of a product kernel density estimate. J Stat Plan Inference. 2011; 141(5): 1817-1831.
    • (2011) J Stat Plan Inference , vol.141 , Issue.5 , pp. 1817-1831
    • Dutta, S.1
  • 27
    • 33750512342 scopus 로고    scopus 로고
    • Kernel-based classification using quantum mechanics
    • Nasios N, Bors AG. Kernel-based classification using quantum mechanics. Pattern Recognit. 2007; 40(3): 875-889.
    • (2007) Pattern Recognit , vol.40 , Issue.3 , pp. 875-889
    • Nasios, N.1    Bors, A.G.2
  • 28
    • 82755160600 scopus 로고    scopus 로고
    • Kernel smoothing density estimation when group membership is subject to missing
    • Tang W, He H, Gunzler D. Kernel smoothing density estimation when group membership is subject to missing. J Stat Plan Inference. 2012; 142(3): 685-694.
    • (2012) J Stat Plan Inference , vol.142 , Issue.3 , pp. 685-694
    • Tang, W.1    He, H.2    Gunzler, D.3
  • 29
    • 0001050272 scopus 로고    scopus 로고
    • A brief survey of bandwidth selection for density estimation
    • Jones MC, Marron JS, Sheather SJ. A brief survey of bandwidth selection for density estimation. J Am Stat Assoc. 1996; 91(433): 401-407.
    • (1996) J Am Stat Assoc , vol.91 , Issue.433 , pp. 401-407
    • Jones, M.C.1    Marron, J.S.2    Sheather, S.J.3
  • 30
    • 79958782071 scopus 로고    scopus 로고
    • Multivariate online kernel density estimation with Gaussian kernels
    • Kristan M, Leonardis A, Skocaj D. Multivariate online kernel density estimation with Gaussian kernels. Pattern Recognit. 2011; 44(10-11): 2630-2642.
    • (2011) Pattern Recognit , vol.44 , Issue.10-11 , pp. 2630-2642
    • Kristan, M.1    Leonardis, A.2    Skocaj, D.3
  • 31
    • 33644976711 scopus 로고    scopus 로고
    • On fast supervised learning for normal mixture models with missing information
    • Lin TI, Lee JC, Ho HJ. On fast supervised learning for normal mixture models with missing information. Pattern Recognit. 2006; 39(6): 1177-1187.
    • (2006) Pattern Recognit , vol.39 , Issue.6 , pp. 1177-1187
    • Lin, T.I.1    Lee, J.C.2    Ho, H.J.3
  • 33
    • 36049006516 scopus 로고    scopus 로고
    • Probability density estimation with data missing at random when covariables are present
    • Wang QH. Probability density estimation with data missing at random when covariables are present. J Stat Plan Inference. 2008; 138(3): 568-587.
    • (2008) J Stat Plan Inference , vol.138 , Issue.3 , pp. 568-587
    • Wang, Q.H.1
  • 34
    • 69949107089 scopus 로고    scopus 로고
    • Kernel density estimation with missing data and auxiliary variables
    • Dubnicka SR. Kernel density estimation with missing data and auxiliary variables. Aust. N Z J Stat. 2009; 51(3): 247-270.
    • (2009) Aust. N Z J Stat , vol.51 , Issue.3 , pp. 247-270
    • Dubnicka, S.R.1
  • 35
    • 84877042496 scopus 로고    scopus 로고
    • UCI machine learning repository, [Online]. Available
    • UCI machine learning repository, 2012. [Online]. Available: http://archive. ics. uci. edu/ml/datasets. html.
    • (2012)
  • 36
    • 82055194240 scopus 로고    scopus 로고
    • LS-SVR method of ore grade estimation in Solwara 1 region with missing data
    • Zhang XN, Song SJ, Li JB, et al. LS-SVR method of ore grade estimation in Solwara 1 region with missing data. J Central S Univ. 2011; 42(suppl. 2): 147-155.
    • (2011) J Central S Univ , vol.42 , Issue.SUPPL. 2 , pp. 147-155
    • Zhang, X.N.1    Song, S.J.2    Li, J.B.3
  • 38
    • 67349117085 scopus 로고    scopus 로고
    • An edge-based color-aided method for license plate detection
    • Abolghasemi V and Ahmadyfard A. An edge-based color-aided method for license plate detection. Image Vis Comput. 2009; 27(8): 1134-1142.
    • (2009) Image Vis Comput , vol.27 , Issue.8 , pp. 1134-1142
    • Abolghasemi, V.1    Ahmadyfard, A.2
  • 39
    • 33745800909 scopus 로고    scopus 로고
    • Second order cone programming approaches for handling missing and uncertain data
    • Shivaswamy PK, Bhattacharyya C, Smola AJ. Second order cone programming approaches for handling missing and uncertain data. J Mach Learn Res. 2006; 7: 1283-1314.
    • (2006) J Mach Learn Res , vol.7 , pp. 1283-1314
    • Shivaswamy, P.K.1    Bhattacharyya, C.2    Smola, A.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.