메뉴 건너뛰기




Volumn 45, Issue 3, 2012, Pages 919-933

A comparison of imputation methods for handling missing scores in biometric fusion

Author keywords

Imputation; Missing data; Multibiometric fusion

Indexed keywords

BIOMETRIC FUSION; BIOMETRIC INFORMATIONS; DATA AVAILABILITY; GAUSSIAN MIXTURE MODEL; IMPUTATION; IMPUTATION METHODS; K-NEAREST NEIGHBORS; KNN IMPUTATION; MATCH SCORE; MISSING DATA; MISSING RATE; MISSING VALUES; MULTIBIOMETRIC FUSION; MULTIBIOMETRIC SYSTEMS; MULTIPLE IMPUTATION; MULTIPLE SOURCE; RECOGNITION ACCURACY; RECOGNITION PERFORMANCE; SCORE-LEVEL FUSION; UNIMODAL;

EID: 80054982754     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2011.08.002     Document Type: Article
Times cited : (43)

References (49)
  • 2
    • 25144471298 scopus 로고    scopus 로고
    • Score normalization in multimodal biometric systems
    • DOI 10.1016/j.patcog.2005.01.012, PII S0031320305000592
    • A. Jain, K. Nandakumar, and A. Ross Score normalization in multimodal biometric systems Pattern Recognition 38 12 2005 2270 2285 (Pubitemid 41336698)
    • (2005) Pattern Recognition , vol.38 , Issue.12 , pp. 2270-2285
    • Jain, A.1    Nandakumar, K.2    Ross, A.3
  • 4
    • 0035285349 scopus 로고    scopus 로고
    • Analyzing incomplete political science data: An alternative algorithm for multiple imputation
    • G. King, J. Honaker, A. Joseph, and K. Scheve Analyzing incomplete political science data: an alternative algorithm for multiple imputation American Political Science Review 95 2001 49 69 (Pubitemid 33390251)
    • (2001) American Political Science Review , vol.95 , Issue.1 , pp. 49-69
    • King, G.1    Honaker, J.2    Joseph, A.3    Scheve, K.4
  • 5
    • 0000783293 scopus 로고
    • Efficacy of the indirect approach for estimating structural equation models with missing data: A comparison of five methods
    • R. Brown Efficacy of the indirect approach for estimating structural equation models with missing data: a comparison of five methods Structural Equation Modeling 1 1994 287 316
    • (1994) Structural Equation Modeling , vol.1 , pp. 287-316
    • Brown, R.1
  • 6
    • 0030527014 scopus 로고    scopus 로고
    • Maximizing the usefulness of data obtained with planned missing value patterns: An application of maximum likelihood procedures
    • J. Graham, S. Hofer, and D. MacKinnon Maximizing the usefulness of data obtained with planned missing value patterns: an application of maximum likelihood procedures Multivariate Behavioral Research 31 1996 197 218 (Pubitemid 126173947)
    • (1996) Multivariate Behavioral Research , vol.31 , Issue.2 , pp. 197-218
    • Graham, J.W.1    Hofer, S.M.2    MacKinnon, D.P.3
  • 8
    • 33744584654 scopus 로고
    • Induction of decision trees
    • J. Quinlan Induction of decision trees Machine Learning 1 1986 81 106
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.1
  • 13
    • 0031276011 scopus 로고    scopus 로고
    • Bayesian Network Classifiers
    • N. Friedman, D. Geiger, and M. Goldszmidt Bayesian network classifiers Machine Learning 29 23 1997 131 163 (Pubitemid 127510036)
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 131-163
    • Friedman, N.1    Geiger, D.2    Goldszmidt, M.3
  • 14
    • 0001342385 scopus 로고
    • A method of estimation of missing values in multivariate data suitable for use with an electronic computer
    • S.F. Buck A method of estimation of missing values in multivariate data suitable for use with an electronic computer Journal of the Royal Statistical Society 22 2 1960 302 306
    • (1960) Journal of the Royal Statistical Society , vol.22 , Issue.2 , pp. 302-306
    • Buck, S.F.1
  • 18
    • 0001876297 scopus 로고
    • The treatment of missing survey data
    • G. Kalton, and D. Kasprzyk The treatment of missing survey data Survey Methodology 1 12 1986 1 16
    • (1986) Survey Methodology , vol.1 , Issue.12 , pp. 1-16
    • Kalton, G.1    Kasprzyk, D.2
  • 21
    • 34247854939 scopus 로고    scopus 로고
    • Imputation through finite Gaussian mixture models
    • DOI 10.1016/j.csda.2006.10.002, PII S0167947306003707
    • M. Di Zio, U. Guarnera, and O. Luzi Imputation through finite gaussian mixture models Computational Statistics and Data Analysis 51 11 2007 5305 5316 (Pubitemid 46694027)
    • (2007) Computational Statistics and Data Analysis , vol.51 , Issue.11 , pp. 5305-5316
    • Di Zio, M.1    Guarnera, U.2    Luzi, O.3
  • 23
    • 80055024369 scopus 로고    scopus 로고
    • Multivariate Imputation by Chained Equations
    • TNO Prevention and Health, Leiden
    • B. Stef Van, O. Karin (CGM), Multivariate Imputation by Chained Equations. MICE V1.0 Users manual, Vol. PG/VGZ/00.038., TNO Prevention and Health, Leiden, 2000.
    • (2000) MICE V1.0 Users Manual, Vol. PG/VGZ/00.038
    • Van, B.S.1    Karin, O.2
  • 24
    • 0002344593 scopus 로고    scopus 로고
    • A multivariate technique for multiply imputing missing values using a sequence of regression models
    • T.E. Raghunathan, J.M. Lepkowski, J.V. Hoewyk, and P. Solenberger A multivariate technique for multiply imputing missing values using a sequence of regression models Survey Methodology 27 2001 85 95
    • (2001) Survey Methodology , vol.27 , pp. 85-95
    • Raghunathan, T.E.1    Lepkowski, J.M.2    Hoewyk, J.V.3    Solenberger, P.4
  • 25
    • 0002415125 scopus 로고
    • Efficiently creating multiple imputations for incomplete multivariate normal data
    • D. Rubin, and J. Schafer Efficiently creating multiple imputations for incomplete multivariate normal data Proceedings of the Statistical Computing Section 1990 83 88
    • (1990) Proceedings of the Statistical Computing Section , pp. 83-88
    • Rubin, D.1    Schafer, J.2
  • 26
    • 84950918760 scopus 로고
    • Multiple imputation for interval estimation from simple random samples with ignorable nonresponse
    • D.B. Rubin, and N. Schenker Multiple imputation for interval estimation from simple random samples with ignorable nonresponse Journal of the American Statistical Association 81 1986 366 374
    • (1986) Journal of the American Statistical Association , vol.81 , pp. 366-374
    • Rubin, D.B.1    Schenker, N.2
  • 29
    • 0043198674 scopus 로고    scopus 로고
    • Robust Learning with Missing Data
    • DOI 10.1023/A:1010968702992
    • M. Ramoni, and P. Sebastiani Robust learning with missing data Machine Learning 45 2 2001 147 170 (Pubitemid 33635983)
    • (2001) Machine Learning , vol.45 , Issue.2 , pp. 147-170
    • Ramoni, M.1    Sebastiani, P.2
  • 33
    • 0038343934 scopus 로고    scopus 로고
    • Information fusion in biometrics
    • DOI 10.1016/S0167-8655(03)00079-5
    • A. Ross, and A. Jain Information fusion in biometrics Pattern Recognition 13 2003 2115 2125 (Pubitemid 36810733)
    • (2003) Pattern Recognition Letters , vol.24 , Issue.13 , pp. 2115-2125
    • Ross, A.1    Jain, A.2
  • 34
    • 77649320234 scopus 로고    scopus 로고
    • A classification procedure for highly imbalanced class sizes
    • E. Byon, A. Shrivastava, and Y. Ding A classification procedure for highly imbalanced class sizes IIE Transactions 4 42 2010 288 303
    • (2010) IIE Transactions , vol.4 , Issue.42 , pp. 288-303
    • Byon, E.1    Shrivastava, A.2    Ding, Y.3
  • 35
    • 0242643743 scopus 로고    scopus 로고
    • A Bayesian missing value estimation method for gene expression profile data
    • DOI 10.1093/bioinformatics/btg287
    • S. Oba, M. Sato, I. Takemasa, M. Monden, K. Matsubara, and S. Ishii A bayesian missing value estimation method for gene expression profile data Bioinformatics 19 16 2003 2088 2096 (Pubitemid 37408160)
    • (2003) Bioinformatics , vol.19 , Issue.16 , pp. 2088-2096
    • Oba, S.1    Sato, M.-A.2    Takemasa, I.3    Monden, M.4    Matsubara, K.-I.5    Ishii, S.6
  • 36
    • 0017133178 scopus 로고
    • Inference and missing data
    • D. Rubin Inference and missing data Biometrika 63 1976 581 592
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.1
  • 45
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz Estimating the dimension of a model The Annals of Statistics 6 2 1978 461 464
    • (1978) The Annals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 46
    • 0042909010 scopus 로고    scopus 로고
    • Nonparametric conditional mean imputation
    • DOI 10.1016/S0378-3758(01)00087-8, PII S0378375801000878
    • S. Nielsen Nonparametric conditional mean imputation Journal of Statistical Planning and Inference 99 2001 129 150 (Pubitemid 33619473)
    • (2001) Journal of Statistical Planning and Inference , vol.99 , Issue.2 , pp. 129-150
    • Nielsen, S.F.1
  • 48
    • 33745047455 scopus 로고    scopus 로고
    • Missing data methods to correct for measurement error in a distribution function
    • G. Durrant, and C. Skinner Missing data methods to correct for measurement error in a distribution function Survey Methodology 32 1 2006 25 36
    • (2006) Survey Methodology , vol.32 , Issue.1 , pp. 25-36
    • Durrant, G.1    Skinner, C.2
  • 49
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentatio
    • M. Tanner, and W. Wong The calculation of posterior distributions by data augmentatio Journal of the American Statistical Association 82 398 1987 528 540
    • (1987) Journal of the American Statistical Association , vol.82 , Issue.398 , pp. 528-540
    • Tanner, M.1    Wong, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.