메뉴 건너뛰기




Volumn 2014, Issue , 2014, Pages

A distributed weighted possibilistic c-means algorithm for clustering incomplete big sensor data

Author keywords

[No Author keywords available]

Indexed keywords

PATTERN RECOGNITION; SENSORS;

EID: 84902167456     PISSN: 15501329     EISSN: 15501477     Source Type: Journal    
DOI: 10.1155/2014/430814     Document Type: Article
Times cited : (29)

References (38)
  • 1
    • 84883292258 scopus 로고    scopus 로고
    • The internet of things: The next technological revolution
    • 10.1109/MC.2013.63
    • Feki M. A., Kawsar F., Boussard M., Trappeniers L., The internet of things: the next technological revolution. Computer 2013 46 2 24 25 10.1109/MC.2013.63
    • (2013) Computer , vol.46 , Issue.2 , pp. 24-25
    • Feki, M.A.1    Kawsar, F.2    Boussard, M.3    Trappeniers, L.4
  • 2
    • 77956877124 scopus 로고    scopus 로고
    • The internet of things: A survey
    • 2-s2.0-77956877124 10.1016/j.comnet.2010.05.010
    • Atzori L., Iera A., Morabito G., The internet of things: a survey. Computer Networks 2010 54 15 2787 2805 2-s2.0-77956877124 10.1016/j.comnet.2010. 05.010
    • (2010) Computer Networks , vol.54 , Issue.15 , pp. 2787-2805
    • Atzori, L.1    Iera, A.2    Morabito, G.3
  • 3
    • 55949105799 scopus 로고    scopus 로고
    • Nonthreshold-based event detection for 3D environment monitoring in sensor networks
    • 2-s2.0-55949105799 10.1109/TKDE.2008.114
    • Li M., Liu Y., Chen L., Nonthreshold-based event detection for 3D environment monitoring in sensor networks. IEEE Transactions on Knowledge and Data Engineering 2008 20 12 1699 1711 2-s2.0-55949105799 10.1109/TKDE.2008.114
    • (2008) IEEE Transactions on Knowledge and Data Engineering , vol.20 , Issue.12 , pp. 1699-1711
    • Li, M.1    Liu, Y.2    Chen, L.3
  • 4
    • 34250312116 scopus 로고    scopus 로고
    • Bounds on coverage and target detection capabilities for models of networks of mobile sensors
    • 2-s2.0-34250312116 10.1145/1240226.1240229 1240229 ARTICLE 9
    • Brass P., Bounds on coverage and target detection capabilities for models of networks of mobile sensors. ACM Transactions on Sensor Networks 2007 3 2, article 9 2-s2.0-34250312116 10.1145/1240226.1240229 1240229
    • (2007) ACM Transactions on Sensor Networks , vol.3 , Issue.2
    • Brass, P.1
  • 5
    • 84859964364 scopus 로고    scopus 로고
    • Exploiting data fusion to improve the coverage of wireless sensor networks
    • 2-s2.0-84859964364 10.1109/TNET.2011.2164620
    • Tan R., Xing G., Liu B., Wang J., Jia X., Exploiting data fusion to improve the coverage of wireless sensor networks. IEEE/ACM Transactions on Networking 2012 20 2 450 462 2-s2.0-84859964364 10.1109/TNET.2011.2164620
    • (2012) IEEE/ACM Transactions on Networking , vol.20 , Issue.2 , pp. 450-462
    • Tan, R.1    Xing, G.2    Liu, B.3    Wang, J.4    Jia, X.5
  • 7
    • 0027595430 scopus 로고
    • A possibilistic approach to clustering
    • 2-s2.0-0027595430 10.1109/91.227387
    • Krishnapuram R., Keller J. M., A possibilistic approach to clustering. IEEE Transactions on Fuzzy Systems 1993 1 2 98 110 2-s2.0-0027595430 10.1109/91.227387
    • (1993) IEEE Transactions on Fuzzy Systems , vol.1 , Issue.2 , pp. 98-110
    • Krishnapuram, R.1    Keller, J.M.2
  • 8
    • 1942532748 scopus 로고    scopus 로고
    • Improved possibilistic C-means clustering algorithms
    • 2-s2.0-1942532748 10.1109/TFUZZ.2004.825079
    • Zhang J.-S., Leung Y.-W., Improved possibilistic C-means clustering algorithms. IEEE Transactions on Fuzzy Systems 2004 12 2 209 217 2-s2.0-1942532748 10.1109/TFUZZ.2004.825079
    • (2004) IEEE Transactions on Fuzzy Systems , vol.12 , Issue.2 , pp. 209-217
    • Zhang, J.-S.1    Leung, Y.-W.2
  • 9
    • 79551622290 scopus 로고    scopus 로고
    • A robust automatic merging possibilistic clustering method
    • 2-s2.0-79551622290 10.1109/TFUZZ.2010.2077640
    • Yang M.-S., Lai C.-Y., A robust automatic merging possibilistic clustering method. IEEE Transactions on Fuzzy Systems 2011 19 1 26 41 2-s2.0-79551622290 10.1109/TFUZZ.2010.2077640
    • (2011) IEEE Transactions on Fuzzy Systems , vol.19 , Issue.1 , pp. 26-41
    • Yang, M.-S.1    Lai, C.-Y.2
  • 10
    • 0030212286 scopus 로고    scopus 로고
    • Comments on a possibilistic approach to clustering
    • 10.1109/91.531780
    • Barni M., Cappellini V., Mecocci A., Comments on a possibilistic approach to clustering. IEEE Transactions on Fuzzy Systems 1996 4 3 393 396 10.1109/91.531780
    • (1996) IEEE Transactions on Fuzzy Systems , vol.4 , Issue.3 , pp. 393-396
    • Barni, M.1    Cappellini, V.2    Mecocci, A.3
  • 11
    • 26844532803 scopus 로고    scopus 로고
    • A possibilistic fuzzy C-means clustering algorithm
    • 2-s2.0-26844532803 10.1109/TFUZZ.2004.840099
    • Pal N. R., Pal K., Keller J. M., Bezdek J. C., A possibilistic fuzzy C-means clustering algorithm. IEEE Transactions on Fuzzy Systems 2005 13 4 517 530 2-s2.0-26844532803 10.1109/TFUZZ.2004.840099
    • (2005) IEEE Transactions on Fuzzy Systems , vol.13 , Issue.4 , pp. 517-530
    • Pal, N.R.1    Pal, K.2    Keller, J.M.3    Bezdek, J.C.4
  • 13
    • 78649930585 scopus 로고    scopus 로고
    • A fuzzy C-means clustering algorithm based on nearest-neighbor intervals for incomplete data
    • 2-s2.0-78649930585 10.1016/j.eswa.2010.03.028
    • Li D., Gu H., Zhang L., A fuzzy C-means clustering algorithm based on nearest-neighbor intervals for incomplete data. Expert Systems with Applications 2010 37 10 6942 6947 2-s2.0-78649930585 10.1016/j.eswa.2010.03.028
    • (2010) Expert Systems with Applications , vol.37 , Issue.10 , pp. 6942-6947
    • Li, D.1    Gu, H.2    Zhang, L.3
  • 15
    • 84859225071 scopus 로고    scopus 로고
    • A sample-weighted possibilistic fuzzy clustering algorithm
    • Liu B., Xia S. X., Zhou Y., A sample-weighted possibilistic fuzzy clustering algorithm. Acta Electronica Sinica 2012 40 2 371 375
    • (2012) Acta Electronica Sinica , vol.40 , Issue.2 , pp. 371-375
    • Liu, B.1    Xia, S.X.2    Zhou, Y.3
  • 16
    • 0033685035 scopus 로고    scopus 로고
    • Weighted possibilistic C-means clustering algorithms
    • 10.1109/FUZZY.2000.838654
    • Schneider A., Weighted possibilistic C-means clustering algorithms. IEEE Transactions on Fuzzy Systems 2000 1 176 180 10.1109/FUZZY.2000.838654
    • (2000) IEEE Transactions on Fuzzy Systems , vol.1 , pp. 176-180
    • Schneider, A.1
  • 17
    • 77953110999 scopus 로고    scopus 로고
    • Applying the possibilistic C-means algorithm in kernel-induced spaces
    • 2-s2.0-77953110999 10.1109/TFUZZ.2010.2043440
    • Filippone M., Masulli F., Rovetta S., Applying the possibilistic C-means algorithm in kernel-induced spaces. IEEE Transactions on Fuzzy Systems 2010 18 3 572 584 2-s2.0-77953110999 10.1109/TFUZZ.2010.2043440
    • (2010) IEEE Transactions on Fuzzy Systems , vol.18 , Issue.3 , pp. 572-584
    • Filippone, M.1    Masulli, F.2    Rovetta, S.3
  • 19
    • 84927967071 scopus 로고    scopus 로고
    • A nodes scheduling model based on Markov chain prediction for big streaming data analysis
    • 10.1002/dac.2779
    • Zhang Q., Chen Z., Yang L. T., A nodes scheduling model based on Markov chain prediction for big streaming data analysis. International Journal of Communication Systems 2014 10.1002/dac.2779
    • (2014) International Journal of Communication Systems
    • Zhang, Q.1    Chen, Z.2    Yang, L.T.3
  • 20
    • 37549003336 scopus 로고    scopus 로고
    • MapReduce: Simplified data processing on large clusters
    • 2-s2.0-37549003336 10.1145/1327452.1327492
    • Dean J., Ghemawat S., MapReduce: simplified data processing on large clusters. Communications of the ACM 2008 51 1 107 113 2-s2.0-37549003336 10.1145/1327452.1327492
    • (2008) Communications of the ACM , vol.51 , Issue.1 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 25
    • 78651524475 scopus 로고    scopus 로고
    • A new agglomerative hierarchical clustering algorithm implementation based on the map reduce framework
    • 2-s2.0-78651524475 10.4156/jdcta.vol4.issue3.9
    • Gao H., Jiang J., She L., Fu Y., A new agglomerative hierarchical clustering algorithm implementation based on the map reduce framework. International Journal of Digital Content Technology and Its Applications 2010 4 3 95 100 2-s2.0-78651524475 10.4156/jdcta.vol4.issue3.9
    • (2010) International Journal of Digital Content Technology and Its Applications , vol.4 , Issue.3 , pp. 95-100
    • Gao, H.1    Jiang, J.2    She, L.3    Fu, Y.4
  • 28
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • 2-s2.0-33847172327 10.1126/science.1136800
    • Frey B. J., Dueck D., Clustering by passing messages between data points. Science 2007 315 5814 972 976 2-s2.0-33847172327 10.1126/science.1136800
    • (2007) Science , vol.315 , Issue.5814 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2
  • 31
    • 85008256273 scopus 로고    scopus 로고
    • Parallel fuzzy C-means algorithm based on MapReduce
    • Yu Q., Dai M., Parallel fuzzy C-means algorithm based on MapReduce. Computer Engineering and Applications 2013 49 14 133 151
    • (2013) Computer Engineering and Applications , vol.49 , Issue.14 , pp. 133-151
    • Yu, Q.1    Dai, M.2
  • 32
    • 67149126890 scopus 로고    scopus 로고
    • DisCo: Distributed Co-clustering with map-reduce: A case study towards petabyte-scale end-to-end mining
    • December 2008 Pisa, Italy IEEE 2-s2.0-67149126890 10.1109/ICDM.2008.142
    • Papadimitriou S., Sun J., DisCo: distributed Co-clustering with map-reduce: a case study towards petabyte-scale end-to-end mining. Proceeding of the 8th IEEE International Conference on Data Mining, (ICDM '08) December 2008 Pisa, Italy IEEE 512 521 2-s2.0-67149126890 10.1109/ICDM.2008.142
    • Proceeding of the 8th IEEE International Conference on Data Mining, (ICDM '08) , pp. 512-521
    • Papadimitriou, S.1    Sun, J.2
  • 34
    • 79951763568 scopus 로고    scopus 로고
    • DSimpleGraph: A novel distributed clustering algorithm for exploring very large scale unknown data sets
    • December 2010 Washington, DC, USA 2-s2.0-79951763568 10.1109/ICDMW.2010. 12
    • Lu L., Gu Y., Grossman R., dSimpleGraph: a novel distributed clustering algorithm for exploring very large scale unknown data sets. Proceeding of the10th IEEE International Conference on Data Mining Workshops (ICDMW '10) December 2010 Washington, DC, USA 162 169 2-s2.0-79951763568 10.1109/ICDMW.2010.12
    • Proceeding of the10th IEEE International Conference on Data Mining Workshops (ICDMW '10) , pp. 162-169
    • Lu, L.1    Gu, Y.2    Grossman, R.3
  • 38
    • 84885851456 scopus 로고    scopus 로고
    • Kernel-based fast improved possibilistic C-means clustering method
    • Han X. D., Xia Z. X., Liu B., Zhou Y., Kernel-based fast improved possibilistic C-means clustering method. Computer Engineering and Applications 2011 47 6 176 180
    • (2011) Computer Engineering and Applications , vol.47 , Issue.6 , pp. 176-180
    • Han, X.D.1    Xia, Z.X.2    Liu, B.3    Zhou, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.