메뉴 건너뛰기




Volumn 9, Issue 7, 2014, Pages

A kernel-based multivariate feature selection method for microarray data classification

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; CANCER CLASSIFICATION; DISCRIMINANT ANALYSIS; FISHERS LINEAR DISCRIMINANT ANALYSIS; GENE EXPRESSION; GENE INTERACTION; K NEAREST NEIGHBOR; KERNEL METHOD; MICROARRAY ANALYSIS; MULTIVARIATE ANALYSIS; MULTIVARIATE FEATURE SELECTION; NUCLEOTIDE SEQUENCE; PARTIAL LEAST SQUARES REGRESSION; RADIAL BASED FUNCTION; SUPPORT VECTOR MACHINE; ALGORITHM; ARTIFICIAL INTELLIGENCE; COMPUTER PROGRAM; DNA MICROARRAY; GENETICS; HUMAN; NEOPLASM; PROCEDURES; REGRESSION ANALYSIS;

EID: 84904543846     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0102541     Document Type: Article
Times cited : (61)

References (44)
  • 1
    • 84870790399 scopus 로고    scopus 로고
    • An ensemble correlation-based gene selection algorithm for cancer classification with gene expression data
    • Piao Y, Piao M, Park K, Ryu KH (2012) An ensemble correlation-based gene selection algorithm for cancer classification with gene expression data. Bioinformatics 28: 3306-3315.
    • (2012) Bioinformatics , vol.28 , pp. 3306-3315
    • Piao, Y.1    Piao, M.2    Park, K.3    Ryu, K.H.4
  • 2
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • PII S000437029700043X
    • Kohavi R, John GH (1997) Wrappers for feature subset selection. Artificial Intelligence 97: 273-324. (Pubitemid 127401107)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 3
    • 0035184851 scopus 로고    scopus 로고
    • Biomarker identification by feature wrappers
    • Xiong M, Fang X, Zhao J (2001) Biomarker identification by feature wrappers. Genome Research 11: 1878-1887. (Pubitemid 33100429)
    • (2001) Genome Research , vol.11 , Issue.11 , pp. 1878-1887
    • Xiong, M.1    Fang, X.2    Zhao, J.3
  • 4
    • 77955415855 scopus 로고    scopus 로고
    • A novel hybrid feature selection via symmetrical uncertainty ranking based local memetic search algorithm
    • Senthamarai Kannan S, Ramaraj N (2010) A novel hybrid feature selection via symmetrical uncertainty ranking based local memetic search algorithm. Knowledge-Based Systems 23: 580-585.
    • (2010) Knowledge-Based Systems , vol.23 , pp. 580-585
    • Senthamarai Kannan, S.1    Ramaraj, N.2
  • 5
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • Díaz-Uriarte R, Andrés SAd (2006) Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7.
    • (2006) BMC Bioinformatics , vol.7
    • Díaz-Uriarte, R.1    Andrés, S.A.2
  • 6
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • Lei Y, Huan L (2004) Efficient feature selection via analysis of relevance and redundancy. Journal of Machine Learning Research 5: 1205-1224.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1205-1224
    • Lei, Y.1    Huan, L.2
  • 7
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy
    • DOI 10.1109/TPAMI.2005.159
    • Peng H, Fulmi L, Ding C (2005) Feature selection based on mutual information criteria of maxdependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence 27: 1226-1238. (Pubitemid 41245053)
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 8
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • DOI 10.1093/bioinformatics/btm344
    • Saeys Y, Inza I, Larranaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23: 2507-2517. (Pubitemid 350048351)
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 9
    • 84863403768 scopus 로고    scopus 로고
    • Conditional likelihood maximisation: A unifying framework for information theoretic feature selection
    • Gavin B, Adam P, Ming-Jie Z, Mikel L (2012) Conditional likelihood maximisation: a unifying framework for information theoretic feature selection. Journal of Machine Learning Research 13: 27-66.
    • (2012) Journal of Machine Learning Research , vol.13 , pp. 27-66
    • Gavin, B.1    Adam, P.2    Ming-Jie, Z.3    Mikel, L.4
  • 11
    • 77952590681 scopus 로고    scopus 로고
    • On the feature selection criterion based on an approximation of multidimensional mutual information
    • Balagani KS, Phoha VV (2010) On the feature selection criterion based on an approximation of multidimensional mutual information. IEEE Transactions on Pattern Analysis and Machine Intelligence 32: 1342-1343.
    • (2010) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.32 , pp. 1342-1343
    • Balagani, K.S.1    Phoha, V.V.2
  • 14
    • 33747891871 scopus 로고    scopus 로고
    • Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks
    • DOI 10.1093/bioinformatics/btl230
    • Gevaert O, Smet FD, Timmerman D, Moreau Y, Moor BD (2006) Predicting the prognosis of breast cancer by integrating clinical and microarray data with bayesian networks. Bioinformatics 22: e184-e190. (Pubitemid 44288285)
    • (2006) Bioinformatics , vol.22 , Issue.14
    • Gevaert, O.1    De Smet, F.2    Timmerman, D.3    Moreau, Y.4    De Moor, B.5
  • 15
    • 84862789151 scopus 로고    scopus 로고
    • Feature evaluation and selection with cooperative game theory
    • Sun X, Liu Y, Li J, Zhu J, Chen H, et al. (2012) Feature evaluation and selection with cooperative game theory. Pattern Recognition 45: 2992-3002.
    • (2012) Pattern Recognition , vol.45 , pp. 2992-3002
    • Sun, X.1    Liu, Y.2    Li, J.3    Zhu, J.4    Chen, H.5
  • 16
    • 0001681052 scopus 로고
    • The collinearity problem in linear regression. The partial least squares (pls) approach to generalized inverses
    • Wold S, Ruhe A, Wold H, Dunn IW (1984) The collinearity problem in linear regression. the partial least squares (pls) approach to generalized inverses. SIAM Journal of Scientific and Statistical Computations 5: 735-743.
    • (1984) SIAM Journal of Scientific and Statistical Computations , vol.5 , pp. 735-743
    • Wold, S.1    Ruhe, A.2    Wold, H.3    Dunn, I.W.4
  • 17
    • 68149171307 scopus 로고    scopus 로고
    • Slimpls: A method for feature selection in gene expression-based disease classification
    • Gutkin M, Shamir R, Dror G (2009) Slimpls: a method for feature selection in gene expression-based disease classification. Plos One 4.
    • (2009) Plos One , vol.4
    • Gutkin, M.1    Shamir, R.2    Dror, G.3
  • 18
    • 84888306070 scopus 로고    scopus 로고
    • Pls-based recursive feature elimination for high-dimensional small sample
    • You W, Yang Z, Ji G (2014) Pls-based recursive feature elimination for high-dimensional small sample. Knowledge-Based Systems 55: 15-28.
    • (2014) Knowledge-Based Systems , vol.55 , pp. 15-28
    • You, W.1    Yang, Z.2    Ji, G.3
  • 19
    • 84888303630 scopus 로고    scopus 로고
    • Feature selection for high-dimensional multicategory data using pls-based local recursive feature elimination
    • You W, Yang Z, Ji G (2014) Feature selection for high-dimensional multicategory data using pls-based local recursive feature elimination. Expert Systems with Applications 41: 1463-1475.
    • (2014) Expert Systems with Applications , vol.41 , pp. 1463-1475
    • You, W.1    Yang, Z.2    Ji, G.3
  • 21
    • 0001098205 scopus 로고
    • Estimation of principal components and related models by iterative least squares
    • New York: Academic
    • Wold H (1966) Estimation of principal components and related models by iterative least squares. Multivariate Analysis. New York: Academic.
    • (1966) Multivariate Analysis
    • Wold, H.1
  • 23
    • 84984286248 scopus 로고
    • A pls kernel algorithm for data sets with many variables and fewer objects. Part 1: Theory and algorithm
    • Ránnar S, Lindgren F, Geladi P, Wold S (1994) A pls kernel algorithm for data sets with many variables and fewer objects. part 1: Theory and algorithm. Journal of Chemometrics 8: 111-125.
    • (1994) Journal of Chemometrics , vol.8 , pp. 111-125
    • Ránnar, S.1    Lindgren, F.2    Geladi, P.3    Wold, S.4
  • 26
    • 84862821303 scopus 로고    scopus 로고
    • Model selection for partial least squares based dimension reduction
    • Li GZ, Zhao RW, Qu HN, You M (2012) Model selection for partial least squares based dimension reduction. Pattern Recognition Letters 33: 524-529.
    • (2012) Pattern Recognition Letters , vol.33 , pp. 524-529
    • Li, G.Z.1    Zhao, R.W.2    Qu, H.N.3    You, M.4
  • 27
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, et al. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286: 531-537.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3    Huard, C.4    Gaasenbeek, M.5
  • 28
    • 34547691339 scopus 로고    scopus 로고
    • Extracting gene regulation information for cancer classification
    • Wang HQ, Wong HS, Huang DS, Shu J (2007) Extracting gene regulation information for cancer classification. Pattern Recognition 40: 3379-3392.
    • (2007) Pattern Recognition , vol.40 , pp. 3379-3392
    • Wang, H.Q.1    Wong, H.S.2    Huang, D.S.3    Shu, J.4
  • 35
    • 18544375333 scopus 로고    scopus 로고
    • Mll translocations specify a distinct gene expression profile that distinguishes a unique leukemia
    • Armstrong SA, Staunton JE, Silverman LB, Pieters R, de Boer ML, et al. (2002) Mll translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nature Genetics 30: 41-47.
    • (2002) Nature Genetics , vol.30 , pp. 41-47
    • Armstrong, S.A.1    Staunton, J.E.2    Silverman, L.B.3    Pieters, R.4    De Boer, M.L.5
  • 39
    • 84863403768 scopus 로고    scopus 로고
    • Conditional likelihood maximisation: A unifying framework for information theoretic feature selection
    • Brown G, Pocock A, Zhao MJ, Lujn M (2012) Conditional likelihood maximisation: a unifying framework for information theoretic feature selection. The Journal of Machine Learning Research 13: 27-66.
    • (2012) The Journal of Machine Learning Research , vol.13 , pp. 27-66
    • Brown, G.1    Pocock, A.2    Zhao, M.J.3    Lujn, M.4
  • 40
    • 80053173508 scopus 로고    scopus 로고
    • Top scoring pairs for feature selection in machine learning and applications to cancer outcome prediction
    • Shi P, Ray S, Zhu Q, Kon MA (2011) Top scoring pairs for feature selection in machine learning and applications to cancer outcome prediction. Bmc Bioinformatics 12.
    • (2011) Bmc Bioinformatics , vol.12
    • Shi, P.1    Ray, S.2    Zhu, Q.3    Kon, M.A.4
  • 41
    • 84859743404 scopus 로고    scopus 로고
    • Combining multiple approaches for gene microarray classification
    • Nanni L, Brahnam S, Lumini A (2012) Combining multiple approaches for gene microarray classification. Bioinformatics 28: 1151-1157.
    • (2012) Bioinformatics , vol.28 , pp. 1151-1157
    • Nanni, L.1    Brahnam, S.2    Lumini, A.3
  • 43
    • 24044488957 scopus 로고    scopus 로고
    • Biomarker discovery in microarray gene expression data with Gaussian processes
    • DOI 10.1093/bioinformatics/bti526
    • Chu W, Ghahramani Z, Falciani F, Wild DL (2005) Biomarker discovery in microarray gene expression data with gaussian processes. Bioinformatics 21: 3385-3393. (Pubitemid 41222443)
    • (2005) Bioinformatics , vol.21 , Issue.16 , pp. 3385-3393
    • Chu, W.1    Ghahramani, Z.2    Falciani, F.3    Wild, D.L.4
  • 44
    • 12244265090 scopus 로고    scopus 로고
    • Gene selection: A Bayesian variable selection approach
    • DOI 10.1093/bioinformatics/19.1.90
    • Lee KE, Sha N, Dougherty ER, Vannucci M, Mallick BK (2003) Gene selection: a bayesian variable selection approach. Bioinformatics 19: 90-97. (Pubitemid 36150185)
    • (2003) Bioinformatics , vol.19 , Issue.1 , pp. 90-97
    • Lee, K.U.1    Sha, S.2    Dougherty, E.R.3    Vannucci, M.4    Mallick, B.K.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.