-
2
-
-
34249812361
-
A tutorial on geometric programming
-
S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi. A tutorial on geometric programming. Optimization and Engineering, 8(1):67-127, 2007.
-
(2007)
Optimization and Engineering
, vol.8
, Issue.1
, pp. 67-127
-
-
Boyd, S.1
Kim, S.-J.2
Vandenberghe, L.3
Hassibi, A.4
-
3
-
-
85121572269
-
Nonlinear inverse scale space methods
-
M. Burger, G. Gilboa, S. Osher, and J. Xu. Nonlinear inverse scale space methods. Communications in Mathematical Sciences, 4:179-212, 2006.
-
(2006)
Communications in Mathematical Sciences
, vol.4
, pp. 179-212
-
-
Burger, M.1
Gilboa, G.2
Osher, S.3
Xu, J.4
-
4
-
-
33947416035
-
Near optimal signal recovery from random projections: Universal encoding strategies?
-
E.J. Candés and T. Tao. Near optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans. Inform. Theory, 52(2):5406-5425, 2006.
-
(2006)
IEEE Trans. Inform. Theory
, vol.52
, Issue.2
, pp. 5406-5425
-
-
Candés, E.J.1
Tao, T.2
-
5
-
-
31744440684
-
Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
-
E.J. Candés, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory, 52(2):489-509, 2006.
-
(2006)
IEEE Trans. Inform. Theory
, vol.52
, Issue.2
, pp. 489-509
-
-
Candés, E.J.1
Romberg, J.2
Tao, T.3
-
7
-
-
0000364765
-
Robust modeling with erratic data
-
J.F. Claerbout and F. Muir. Robust modeling with erratic data. Geophysics, 38(5):826-844, 1973.
-
(1973)
Geophysics
, vol.38
, Issue.5
, pp. 826-844
-
-
Claerbout, J.F.1
Muir, F.2
-
8
-
-
84898968483
-
A direct formulation for sparse pca using semidefinite programming
-
MIT Press
-
A. d'Aspremont, L. El Ghaoui, M. Jordan, and G. Lanckriet. A direct formulation for sparse pca using semidefinite programming. In Advances in Neural Information Processing Systems, pages 41-48. MIT Press, 2005.
-
(2005)
Advances in Neural Information Processing Systems
, pp. 41-48
-
-
D'aspremont, A.1
El Ghaoui, L.2
Jordan, M.3
Lanckriet, G.4
-
10
-
-
0037418225
-
1 minimization
-
D.L. Donoho and M. Elad. Optimally sparse representations in general nonorthogonal dictionaries by ℓ1 minimization. Proc. Nat'l Academy of Science, 100(5):2197-2202, 2003.
-
(2003)
Proc. Nat'l Academy of Science
, vol.100
, Issue.5
, pp. 2197-2202
-
-
Donoho, D.L.1
Elad, M.2
-
11
-
-
0035504028
-
Uncertainty principles and ideal atomic decomposition
-
D.L. Donoho and X. Huo. Uncertainty principles and ideal atomic decomposition. IEEE. Trans. Inform. Theory, 48(9):2845-2862, 2001.
-
(2001)
IEEE. Trans. Inform. Theory
, vol.48
, Issue.9
, pp. 2845-2862
-
-
Donoho, D.L.1
Huo, X.2
-
12
-
-
0026845575
-
Signal recovery and the large sieve
-
D.L. Donoho and B.F. Logan. Signal recovery and the large sieve. SIAM J. Appl. Math., 52(2): 577-591, 1992.
-
(1992)
SIAM J. Appl. Math.
, vol.52
, Issue.2
, pp. 577-591
-
-
Donoho, D.L.1
Logan, B.F.2
-
13
-
-
0001616908
-
Uncertainty principle and signal recovery
-
D.L. Donoho and P.B. Stark. Uncertainty principle and signal recovery. SIAM J. Appl. Math., 49(3): 906-931, 1989.
-
(1989)
SIAM J. Appl. Math.
, vol.49
, Issue.3
, pp. 906-931
-
-
Donoho, D.L.1
Stark, P.B.2
-
14
-
-
0000742672
-
Wavelet shrinkage: Asymptopia?
-
D.L. Donoho, I. Johnstone, G. Kerkyacharian, and D. Picard. Wavelet shrinkage: Asymptopia? J. Roy. Stat. Soc. B, 57(2):301-337, 1995.
-
(1995)
J. Roy. Stat. Soc. B
, vol.57
, Issue.2
, pp. 301-337
-
-
Donoho, D.L.1
Johnstone, I.2
Kerkyacharian, G.3
Picard, D.4
-
15
-
-
3242708140
-
Least angle regression
-
B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Annals of Statistics, 32(2):407-499, 2004.
-
(2004)
Annals of Statistics
, vol.32
, Issue.2
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
-
16
-
-
23844537417
-
Sparse bayesian classifiers for text categorization. Technical report
-
S. Eyheramendy, A. Genkin, W. Ju, D. Lewis, and D. Madigan. Sparse bayesian classifiers for text categorization. Technical report, J. Intelligence Community Research and Development, 2003.
-
(2003)
J. Intelligence Community Research and Development
-
-
Eyheramendy, S.1
Genkin, A.2
Ju, W.3
Lewis, D.4
Madigan, D.5
-
19
-
-
39449126969
-
Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems
-
M. Figueiredo, R. Nowak, and S.Wright. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Selected Topics in Signal Processing: Special Issue on Convex Optimization Methods for Signal Processing, 1(4):586-598, 2007.
-
(2007)
IEEE J. Selected Topics in Signal Processing: Special Issue on Convex Optimization Methods for Signal Processing
, vol.1
, Issue.4
, pp. 586-598
-
-
Figueiredo, M.1
Nowak, R.2
Wright, S.3
-
20
-
-
34548105186
-
Large-scale bayesian logistic regression for text categorization
-
A. Genkin, D.D. Lewis, and D. Madigan. Large-scale bayesian logistic regression for text categorization. Technometrics, 49(3):291-304, 2007.
-
(2007)
Technometrics
, vol.49
, Issue.3
, pp. 291-304
-
-
Genkin, A.1
Lewis, D.D.2
Madigan, D.3
-
21
-
-
26644448212
-
Cortical origins of response time variability during rapid discrimination of visual objects
-
A.D. Gerson, L.C. Parra, and P. Sajda. Cortical origins of response time variability during rapid discrimination of visual objects. Neuroimage, 28(2):342-353, 2005.
-
(2005)
Neuroimage
, vol.28
, Issue.2
, pp. 342-353
-
-
Gerson, A.D.1
Parra, L.C.2
Sajda, P.3
-
24
-
-
69649095451
-
Fixed-point continuation for ℓ1-minimization: Methodology and convergence
-
E. Hale, W. Yin, and Y. Zhang. Fixed-point continuation for ℓ1-minimization: methodology and convergence. SIAM J. Optimization, 19(3):1107-1130, 2008.
-
(2008)
SIAM J. Optimization
, vol.19
, Issue.3
, pp. 1107-1130
-
-
Hale, E.1
Yin, W.2
Zhang, Y.3
-
25
-
-
0033228328
-
Low-authority controller design via convex optimization
-
A. Hassibi, J. How, and S. Boyd. Low-authority controller design via convex optimization. AIAA Journal of Guidance, Control and Dynamics, 22(6):862-872, 1999.
-
(1999)
AIAA Journal of Guidance, Control and Dynamics
, vol.22
, Issue.6
, pp. 862-872
-
-
Hassibi, A.1
How, J.2
Boyd, S.3
-
26
-
-
34547688865
-
1-regularized logistic regression
-
K. Koh, S.-J. Kim, and S. Boyd. An interior-point method for large-scale ℓ1-regularized logistic regression. J. Machine Learning Research, 8:1519-1555, 2007.
-
(2007)
J. Machine Learning Research
, vol.8
, pp. 1519-1555
-
-
Koh, K.1
Kim, S.-J.2
Boyd, S.3
-
28
-
-
21244437589
-
Sparse multinomial logistic regression: Fast algorithms and generalization bounds
-
B. Krishnapuram, L. Carin, and M. Figueiredo. Sparse multinomial logistic regression: fast algorithms and generalization bounds. IEEE Trans. Pattern Analysis and Machine Intelligence, 27(6): 957-968, 2005.
-
(2005)
IEEE Trans. Pattern Analysis and Machine Intelligence
, vol.27
, Issue.6
, pp. 957-968
-
-
Krishnapuram, B.1
Carin, L.2
Figueiredo, M.3
-
30
-
-
84876811202
-
Rcv1: A new benchmark collection for text categorization research
-
D.D. Lewis, Y. Yang, T.G. Rose, and F. Li. Rcv1: A new benchmark collection for text categorization research. J. Machine Learning Research, 5:361-397, 2004.
-
(2004)
J. Machine Learning Research
, vol.5
, pp. 361-397
-
-
Lewis, D.D.1
Yang, Y.2
Rose, T.G.3
Li, F.4
-
31
-
-
34548125448
-
Logistic regression for disease classification using microarray data: Model selection in a large p and small n case
-
J.G. Liao and K.V. Chin. Logistic regression for disease classification using microarray data: model selection in a large p and small n case. Bioinformatics, 23(15):1945-1951, 2007.
-
(2007)
Bioinformatics
, vol.23
, Issue.15
, pp. 1945-1951
-
-
Liao, J.G.1
Chin, K.V.2
-
32
-
-
34250091945
-
Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm
-
N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning, 2:285-318, 1988.
-
(1988)
Machine Learning
, vol.2
, pp. 285-318
-
-
Littlestone, N.1
-
33
-
-
33847366224
-
Portfolio optimization with linear and fixed transaction costs
-
M. Lobo, M. Fazel, and S. Boyd. Portfolio optimization with linear and fixed transaction costs. Annals of Operations Research, 152(1):376-394, 2007.
-
(2007)
Annals of Operations Research
, vol.152
, Issue.1
, pp. 376-394
-
-
Lobo, M.1
Fazel, M.2
Boyd, S.3
-
34
-
-
1242318326
-
The lasso and generalised linear models
-
University of Adelaide, South Australia, Australia
-
J. Lokhorst. The lasso and generalised linear models. Technical report, Honors Project, Department of Statistics, University of Adelaide, South Australia, Australia, 1999.
-
(1999)
Technical Report, Honors Project, Department of Statistics
-
-
Lokhorst, J.1
-
35
-
-
33751240089
-
Bayesian multinomial logistic regression for author identification
-
D. Madigan, A. Genkin, D. Lewis, and D Fradkin. Bayesian multinomial logistic regression for author identification. In Maxent Conference, pages 509-516, 2005.
-
(2005)
Maxent Conference
, pp. 509-516
-
-
Madigan, D.1
Genkin, A.2
Lewis, D.3
Fradkin, D.4
-
36
-
-
0029291966
-
Sparse approximate solutions to linear system
-
B.K. Natarajan. Sparse approximate solutions to linear system. SIAMJ. Computing, 24(2):227-234, 1995.
-
(1995)
SIAMJ. Computing
, vol.24
, Issue.2
, pp. 227-234
-
-
Natarajan, B.K.1
-
37
-
-
14344249889
-
2 regularization, and rotational invariance
-
ACM Press, New York
-
A. Ng. Feature selection, ℓ1 vs ℓ2 regularization, and rotational invariance. In International Conference on Machine Learning (ICML), pages 78-85. ACM Press, New York, 2004.
-
(2004)
International Conference on Machine Learning (ICML)
, pp. 78-85
-
-
Ng, A.1
-
38
-
-
0013161560
-
On feature selection: Learning with exponentially many irrelevant features as training examples
-
A. Ng. On feature selection: Learning with exponentially many irrelevant features as training examples. In International Conference on Machine Learning (ICML), pages 404-412, 1998.
-
(1998)
International Conference on Machine Learning (ICML)
, pp. 404-412
-
-
Ng, A.1
-
39
-
-
77349126814
-
Fast linearized bregman iteration for compressive sensing and sparse denoising
-
S. Osher, Y. Mao, B. Dong, and W. Yin. Fast linearized bregman iteration for compressive sensing and sparse denoising. Communications in Mathematical Sciences, 8(1):93-111, 2010.
-
(2010)
Communications in Mathematical Sciences
, vol.8
, Issue.1
, pp. 93-111
-
-
Osher, S.1
Mao, Y.2
Dong, B.3
Yin, W.4
-
40
-
-
34547849507
-
1 regularized path algorithm for generalized linear models
-
M.Y. Park and T. Hastie. ℓ1 regularized path algorithm for generalized linear models. J. R. Statist. Soc. B, 69:659-677, 2007.
-
(2007)
J. R. Statist. Soc. B
, vol.69
, pp. 659-677
-
-
Park, M.Y.1
Hastie, T.2
-
41
-
-
84898988668
-
Higher-order statistical properties arising from the nonstationarity of natural signals
-
L.C. Parra, C. Spence, and P. Sajda. Higher-order statistical properties arising from the nonstationarity of natural signals. In Advances in Neural Information Processing Systems, volume 13, pages 786-792, 2001.
-
(2001)
Advances in Neural Information Processing Systems, Volume
, vol.13
, pp. 786-792
-
-
Parra, L.C.1
Spence, C.2
Sajda, P.3
-
42
-
-
26644455601
-
Recipes for the linear analysis of EEG
-
L.C. Parra, C.D. Spence, A.D. Gerson, and P. Sajda. Recipes for the linear analysis of EEG. Neuroimage, 28(2):326-341, 2005.
-
(2005)
Neuroimage
, vol.28
, Issue.2
, pp. 326-341
-
-
Parra, L.C.1
Spence, C.D.2
Gerson, A.D.3
Sajda, P.4
-
44
-
-
33644928473
-
Temporal characterization of the neural correlates of perceptual decision making in the human brain
-
M.G. Philiastides and P. Sajda. Temporal characterization of the neural correlates of perceptual decision making in the human brain. Cereb Cortex, 16(4):509-518, 2006.
-
(2006)
Cereb Cortex
, vol.16
, Issue.4
, pp. 509-518
-
-
Philiastides, M.G.1
Sajda, P.2
-
46
-
-
1242263806
-
The generalized lasso
-
V. Roth. The generalized lasso. IEEE Tran. Neural Networks, 15(1):16-28, 2004.
-
(2004)
IEEE Tran. Neural Networks
, vol.15
, Issue.1
, pp. 16-28
-
-
Roth, V.1
-
47
-
-
44049111982
-
Nonlinear total variation based noise removal algorithms
-
L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Physica D, 60(1-4):259-268, 1992.
-
(1992)
Physica D
, vol.60
, Issue.1-4
, pp. 259-268
-
-
Rudin, L.1
Osher, S.2
Fatemi, E.3
-
48
-
-
38049108135
-
Fast optimization methods for l1 regularization: A comparative study and two new approaches
-
M. Schmidt, G. Fung, and R. Rosales. Fast optimization methods for l1 regularization: a comparative study and two new approaches. In European Conference on Machine Learning (ECML), pages 286-297, 2007.
-
(2007)
European Conference on Machine Learning (ECML)
, pp. 286-297
-
-
Schmidt, M.1
Fung, G.2
Rosales, R.3
-
49
-
-
84907734262
-
A nonlinear inverse scale space method for a convex multiplicative noise model
-
J. Shi and S. Osher. A nonlinear inverse scale space method for a convex multiplicative noise model. SIAM J. Imaging Sciences, 1(3):294-321, 2008.
-
(2008)
SIAM J. Imaging Sciences
, vol.1
, Issue.3
, pp. 294-321
-
-
Shi, J.1
Osher, S.2
-
50
-
-
70350238439
-
Perceptual decision making investigated via sparse decoding of a spiking neuron model of V1
-
J. Shi, J. Wielaard, R.T. Smith, and P. Sajda. Perceptual decision making investigated via sparse decoding of a spiking neuron model of V1. In 4th International IEEE/EMBS Conference on Neural Engineering, pages 558-561, 2009.
-
(2009)
4th International IEEE/EMBS Conference on Neural Engineering
, pp. 558-561
-
-
Shi, J.1
Wielaard, J.2
Smith, R.T.3
Sajda, P.4
-
52
-
-
0001770611
-
Deconvolution with the ℓ1 norm
-
H.L. Taylor, S.C. Banks, and J.F. McCoy. Deconvolution with the ℓ1 norm. Geophysics, 44(1): 39-52, 1979.
-
(1979)
Geophysics
, vol.44
, Issue.1
, pp. 39-52
-
-
Taylor, H.L.1
Banks, S.C.2
McCoy, J.F.3
-
53
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
R. Tibshirani. Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. B, 58(1):267-288, 1996.
-
(1996)
J. Roy. Stat. Soc. B
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
54
-
-
35748966977
-
Learning string similarity measures for gene/protein name dictionary look-up using logistic regression
-
Y. Tsuruoka, J. McNaught, J. Tsujii, and S. Ananiadou. Learning string similarity measures for gene/protein name dictionary look-up using logistic regression. Bioinformatics, 23(20):2768-2774, 2007.
-
(2007)
Bioinformatics
, vol.23
, Issue.20
, pp. 2768-2774
-
-
Tsuruoka, Y.1
McNaught, J.2
Tsujii, J.3
Ananiadou, S.4
-
56
-
-
0032001494
-
Optimizing dominant time constant in RC circuits
-
L. Vandenberghe, S. Boyd, and A. El Gamal. Optimizing dominant time constant in RC circuits. IEEE Trans. Computer-Aided Design, 17(2):110-125, 1998.
-
(1998)
IEEE Trans. Computer-Aided Design
, vol.17
, Issue.2
, pp. 110-125
-
-
Vandenberghe, L.1
Boyd, S.2
El Gamal, A.3
-
59
-
-
70349977242
-
-
Technical report, Rice University CAAM TR09-01
-
Z. Wen, W. Yin, D. Goldfarb, and Y. Zhang. A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation. Technical report, Rice University CAAM TR09-01, 2009.
-
(2009)
A Fast Algorithm for Sparse Reconstruction Based on Shrinkage, Subspace Optimization and Continuation
-
-
Wen, Z.1
Yin, W.2
Goldfarb, D.3
Zhang, Y.4
-
60
-
-
84977895355
-
1-minimization with applications to compressed sensing
-
W. Yin, S. Osher, J. Darbon, and D. Goldfarb. Bregman iterative algorithm for ℓ1-minimization with applications to compressed sensing. SIAM J. Imaging Science, 1(1):143-168, 2008.
-
(2008)
SIAM J. Imaging Science
, vol.1
, Issue.1
, pp. 143-168
-
-
Yin, W.1
Osher, S.2
Darbon, J.3
Goldfarb, D.4
-
61
-
-
33845263263
-
On model selection consistency of lasso
-
P. Zhao and B. Yu. On model selection consistency of lasso. J. Machine Learning Research, 7: 2541-2567, 2007.
-
(2007)
J. Machine Learning Research
, vol.7
, pp. 2541-2567
-
-
Zhao, P.1
Yu, B.2
-
62
-
-
84899024917
-
1-Norm support vector machines
-
MIT Press
-
J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani. 1-norm support vector machines. In Advances in Neural Information Processing Systems, volume 16, pages 49-56. MIT Press, 2004.
-
(2004)
Advances in Neural Information Processing Systems
, vol.16
, pp. 49-56
-
-
Zhu, J.1
Rosset, S.2
Hastie, T.3
Tibshirani, R.4
-
63
-
-
33745309913
-
Sparse principle component analysis
-
H. Zou, T. Hastie, and R. Tibshirani. Sparse principle component analysis. J. Computational and Graphical Statistics, 15(2):262-286, 2006.
-
(2006)
J. Computational and Graphical Statistics
, vol.15
, Issue.2
, pp. 262-286
-
-
Zou, H.1
Hastie, T.2
Tibshirani, R.3
|