메뉴 건너뛰기




Volumn 26, Issue 7, 2016, Pages 476-485

On the Archaeal Origins of Eukaryotes and the Challenges of Inferring Phenotype from Genotype

Author keywords

Eukaryogenesis; Evolution; GTPase; Lokiarchaeum

Indexed keywords

GUANOSINE TRIPHOSPHATASE;

EID: 84974696661     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2016.03.009     Document Type: Review
Times cited : (35)

References (77)
  • 1
    • 0017868469 scopus 로고
    • The outer membrane proteins of Gram-negative bacteria: biosynthesis, assembly, and functions
    • DiRienzo J.M., et al. The outer membrane proteins of Gram-negative bacteria: biosynthesis, assembly, and functions. Annu. Rev. Biochem. 1978, 47:481-532.
    • (1978) Annu. Rev. Biochem. , vol.47 , pp. 481-532
    • DiRienzo, J.M.1
  • 2
    • 34247623568 scopus 로고    scopus 로고
    • Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle
    • Cai H., et al. Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev. Cell 2007, 12:671-682.
    • (2007) Dev. Cell , vol.12 , pp. 671-682
    • Cai, H.1
  • 3
    • 84859393636 scopus 로고    scopus 로고
    • Organelle segregation during mitosis: lessons from asymmetrically dividing cells
    • Ouellet J., Barral Y. Organelle segregation during mitosis: lessons from asymmetrically dividing cells. J. Cell Biol. 2012, 196:305-313.
    • (2012) J. Cell Biol. , vol.196 , pp. 305-313
    • Ouellet, J.1    Barral, Y.2
  • 4
    • 84954517726 scopus 로고    scopus 로고
    • A comparison of autogenous theories for the origin of eukaryotic cells
    • Baum D.A. A comparison of autogenous theories for the origin of eukaryotic cells. Am. J. Bot. 2015, 102:1954-1965.
    • (2015) Am. J. Bot. , vol.102 , pp. 1954-1965
    • Baum, D.A.1
  • 6
    • 84940488362 scopus 로고    scopus 로고
    • Endosymbiotic origin and differential loss of eukaryotic genes
    • Ku C., et al. Endosymbiotic origin and differential loss of eukaryotic genes. Nature 2015, 524:427-432.
    • (2015) Nature , vol.524 , pp. 427-432
    • Ku, C.1
  • 7
    • 84905513696 scopus 로고    scopus 로고
    • The dispersed archaeal eukaryome and the complex archaeal ancestor of eukaryotes
    • Koonin E.V., Yutin N. The dispersed archaeal eukaryome and the complex archaeal ancestor of eukaryotes. Cold Spring Harb. Perspect. Biol. 2014, 6:a016188.
    • (2014) Cold Spring Harb. Perspect. Biol. , vol.6
    • Koonin, E.V.1    Yutin, N.2
  • 8
    • 84868624185 scopus 로고    scopus 로고
    • An archaeal origin for the actin cytoskeleton: implications for eukaryogenesis
    • Bernander R., et al. An archaeal origin for the actin cytoskeleton: implications for eukaryogenesis. Commun. Integr. Biol. 2011, 4:664-667.
    • (2011) Commun. Integr. Biol. , vol.4 , pp. 664-667
    • Bernander, R.1
  • 10
    • 84929329445 scopus 로고    scopus 로고
    • Complex archaea that bridge the gap between prokaryotes and eukaryotes
    • Spang A., et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 2015, 521:173-179.
    • (2015) Nature , vol.521 , pp. 173-179
    • Spang, A.1
  • 12
    • 84883454656 scopus 로고    scopus 로고
    • Rab GTPase regulation of membrane identity
    • Pfeffer S.R. Rab GTPase regulation of membrane identity. Curr. Opin. Cell Biol. 2013, 25:414-419.
    • (2013) Curr. Opin. Cell Biol. , vol.25 , pp. 414-419
    • Pfeffer, S.R.1
  • 13
    • 84880816067 scopus 로고    scopus 로고
    • Review series: Rab GTPases and membrane identity: causal or inconsequential?
    • Barr F.A. Review series: Rab GTPases and membrane identity: causal or inconsequential?. J. Cell Biol. 2013, 202:191-199.
    • (2013) J. Cell Biol. , vol.202 , pp. 191-199
    • Barr, F.A.1
  • 14
    • 84878823061 scopus 로고    scopus 로고
    • New organelles by gene duplication in a biophysical model of eukaryote endomembrane evolution
    • Ramadas R., Thattai M. New organelles by gene duplication in a biophysical model of eukaryote endomembrane evolution. Biophys. J. 2013, 104:2553-2563.
    • (2013) Biophys. J. , vol.104 , pp. 2553-2563
    • Ramadas, R.1    Thattai, M.2
  • 15
    • 38649092668 scopus 로고    scopus 로고
    • Phylogeny of endocytic components yields insight into the process of nonendosymbiotic organelle evolution
    • Dacks J.B., et al. Phylogeny of endocytic components yields insight into the process of nonendosymbiotic organelle evolution. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:588-593.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 588-593
    • Dacks, J.B.1
  • 16
    • 84903169239 scopus 로고    scopus 로고
    • Evolutionary mechanisms for establishing eukaryotic cellular complexity
    • Mast F.D., et al. Evolutionary mechanisms for establishing eukaryotic cellular complexity. Trends Cell Biol. 2014, 24:435-442.
    • (2014) Trends Cell Biol. , vol.24 , pp. 435-442
    • Mast, F.D.1
  • 17
    • 84957899485 scopus 로고    scopus 로고
    • Pathogen to powerhouse
    • Ball S.G., et al. Pathogen to powerhouse. Science 2016, 351:659-660.
    • (2016) Science , vol.351 , pp. 659-660
    • Ball, S.G.1
  • 18
    • 84943402350 scopus 로고    scopus 로고
    • Endosymbiosis and eukaryotic cell evolution
    • Archibald J.M. Endosymbiosis and eukaryotic cell evolution. Curr. Biol. 2015, 25:R911-R921.
    • (2015) Curr. Biol. , vol.25 , pp. R911-R921
    • Archibald, J.M.1
  • 19
    • 84929376441 scopus 로고    scopus 로고
    • Evolution: steps on the road to eukaryotes
    • Embley T.M., Williams T.A. Evolution: steps on the road to eukaryotes. Nature 2015, 521:169-170.
    • (2015) Nature , vol.521 , pp. 169-170
    • Embley, T.M.1    Williams, T.A.2
  • 20
    • 84960153141 scopus 로고    scopus 로고
    • Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry
    • Pittis A.A., Gabaldón T. Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry. Nature 2016, 531:101-104.
    • (2016) Nature , vol.531 , pp. 101-104
    • Pittis, A.A.1    Gabaldón, T.2
  • 22
    • 33746358181 scopus 로고    scopus 로고
    • Dynamic filaments of the bacterial cytoskeleton
    • Michie K.A., Löwe J. Dynamic filaments of the bacterial cytoskeleton. Annu. Rev. Biochem. 2006, 75:467-492.
    • (2006) Annu. Rev. Biochem. , vol.75 , pp. 467-492
    • Michie, K.A.1    Löwe, J.2
  • 23
    • 84973352485 scopus 로고    scopus 로고
    • Tracing the archaeal origins of eukaryotic membrane-trafficking system building blocks
    • Published online February 17, 2016
    • Klinger C.M., et al. Tracing the archaeal origins of eukaryotic membrane-trafficking system building blocks. Mol. Biol. Evol. Published online February 2016, Published online February 17, 2016. 10.1093/molbev/msw034.
    • (2016) Mol. Biol. Evol. Published online February
    • Klinger, C.M.1
  • 24
    • 33644748150 scopus 로고    scopus 로고
    • Thematic review series: lipid posttranslational modifications. geranylgeranylation of Rab GTPases
    • Leung K.F., et al. Thematic review series: lipid posttranslational modifications. geranylgeranylation of Rab GTPases. J. Lipid Res. 2006, 47:467-475.
    • (2006) J. Lipid Res. , vol.47 , pp. 467-475
    • Leung, K.F.1
  • 25
    • 33846260506 scopus 로고    scopus 로고
    • Targeting and localized signalling by small GTPases
    • ten Klooster J.P., Hordijk P.L. Targeting and localized signalling by small GTPases. Biol. Cell 2007, 99:1-12.
    • (2007) Biol. Cell , vol.99 , pp. 1-12
    • ten Klooster, J.P.1    Hordijk, P.L.2
  • 26
    • 84877972355 scopus 로고    scopus 로고
    • Covalent lipid modifications of proteins
    • Resh M.D. Covalent lipid modifications of proteins. Curr. Biol. 2013, 23:R431-R435.
    • (2013) Curr. Biol. , vol.23 , pp. R431-R435
    • Resh, M.D.1
  • 27
    • 21744432683 scopus 로고    scopus 로고
    • GDIs: central regulatory molecules in Rho GTPase activation
    • DerMardirossian C., Bokoch G.M. GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol. 2005, 15:356-363.
    • (2005) Trends Cell Biol. , vol.15 , pp. 356-363
    • DerMardirossian, C.1    Bokoch, G.M.2
  • 28
    • 0029847554 scopus 로고    scopus 로고
    • Selfish operons: horizontal transfer may drive the evolution of gene clusters
    • Lawrence J.G., Roth J.R. Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics 1996, 143:1843-1860.
    • (1996) Genetics , vol.143 , pp. 1843-1860
    • Lawrence, J.G.1    Roth, J.R.2
  • 29
    • 0034780910 scopus 로고    scopus 로고
    • Horizontal gene transfer in prokaryotes: quantification and classification
    • Koonin E.V., et al. Horizontal gene transfer in prokaryotes: quantification and classification. Annu. Rev. Microbiol. 2001, 55:709-742.
    • (2001) Annu. Rev. Microbiol. , vol.55 , pp. 709-742
    • Koonin, E.V.1
  • 30
    • 77954299061 scopus 로고    scopus 로고
    • A comprehensive comparison of transmembrane domains reveals organelle-specific properties
    • Sharpe H.J., et al. A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell 2010, 142:158-169.
    • (2010) Cell , vol.142 , pp. 158-169
    • Sharpe, H.J.1
  • 31
    • 62349137215 scopus 로고    scopus 로고
    • The origins of phagocytosis and eukaryogenesis
    • Yutin N., et al. The origins of phagocytosis and eukaryogenesis. Biol. Direct 2009, 4:9.
    • (2009) Biol. Direct , vol.4 , pp. 9
    • Yutin, N.1
  • 32
    • 58149230938 scopus 로고    scopus 로고
    • A role for the ESCRT system in cell division in archaea
    • Samson R.Y., et al. A role for the ESCRT system in cell division in archaea. Science 2008, 322:1710-1713.
    • (2008) Science , vol.322 , pp. 1710-1713
    • Samson, R.Y.1
  • 33
    • 0036306726 scopus 로고    scopus 로고
    • The Ran GTPase as a marker of chromosome position in spindle formation and nuclear envelope assembly
    • Hetzer M., et al. The Ran GTPase as a marker of chromosome position in spindle formation and nuclear envelope assembly. Nat. Cell Biol. 2002, 4:E177-E184.
    • (2002) Nat. Cell Biol. , vol.4 , pp. E177-E184
    • Hetzer, M.1
  • 34
    • 44349165873 scopus 로고    scopus 로고
    • Spatial and temporal coordination of mitosis by Ran GTPase
    • Clarke P.R., Zhang C. Spatial and temporal coordination of mitosis by Ran GTPase. Nat. Rev. Mol. Cell Biol. 2008, 9:464-477.
    • (2008) Nat. Rev. Mol. Cell Biol. , vol.9 , pp. 464-477
    • Clarke, P.R.1    Zhang, C.2
  • 35
    • 49249126936 scopus 로고    scopus 로고
    • Origin of the nucleus and Ran-dependent transport to safeguard ribosome biogenesis in a chimeric cell
    • Jékely G. Origin of the nucleus and Ran-dependent transport to safeguard ribosome biogenesis in a chimeric cell. Biol. Direct 2008, 3:31.
    • (2008) Biol. Direct , vol.3 , pp. 31
    • Jékely, G.1
  • 36
    • 0242551350 scopus 로고    scopus 로고
    • Small GTPases and the evolution of the eukaryotic cell
    • Jékely G. Small GTPases and the evolution of the eukaryotic cell. Bioessays 2003, 25:1129-1138.
    • (2003) Bioessays , vol.25 , pp. 1129-1138
    • Jékely, G.1
  • 37
    • 84924341763 scopus 로고    scopus 로고
    • An inside-out origin for the eukaryotic cell
    • Baum D.A., Baum B. An inside-out origin for the eukaryotic cell. BMC Biol. 2014, 12:76.
    • (2014) BMC Biol. , vol.12 , pp. 76
    • Baum, D.A.1    Baum, B.2
  • 38
    • 84937231854 scopus 로고    scopus 로고
    • Small GTP-binding protein Ran is regulated by posttranslational lysine acetylation
    • de Boor S., et al. Small GTP-binding protein Ran is regulated by posttranslational lysine acetylation. Proc. Natl. Acad. Sci. U.S.A. 2015, 112:E3679-E3688.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. E3679-E3688
    • de Boor, S.1
  • 39
    • 85062197940 scopus 로고    scopus 로고
    • The RanGTP pathway: from nucleo-cytoplasmic transport to spindle assembly and beyond
    • Cavazza T., Vernos I. The RanGTP pathway: from nucleo-cytoplasmic transport to spindle assembly and beyond. Front. Cell Dev. Biol. 2015, 3:82.
    • (2015) Front. Cell Dev. Biol. , vol.3 , pp. 82
    • Cavazza, T.1    Vernos, I.2
  • 40
    • 84857788913 scopus 로고    scopus 로고
    • Chromosome- and spindle-pole-derived signals generate an intrinsic code for spindle position and orientation
    • Kiyomitsu T., Cheeseman I.M. Chromosome- and spindle-pole-derived signals generate an intrinsic code for spindle position and orientation. Nat. Cell Biol. 2012, 14:311-317.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 311-317
    • Kiyomitsu, T.1    Cheeseman, I.M.2
  • 41
    • 80054715604 scopus 로고    scopus 로고
    • The Ran importin system in cilia trafficking
    • Fan S., Margolis B. The Ran importin system in cilia trafficking. Organogenesis 2011, 7:147-153.
    • (2011) Organogenesis , vol.7 , pp. 147-153
    • Fan, S.1    Margolis, B.2
  • 42
    • 77954244487 scopus 로고    scopus 로고
    • Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-β2 and RanGTP
    • Dishinger J.F., et al. Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-β2 and RanGTP. Nat. Cell Biol. 2010, 12:703-710.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 703-710
    • Dishinger, J.F.1
  • 43
    • 29144454715 scopus 로고    scopus 로고
    • Regulation of Sar1 NH2 terminus by GTP binding and hydrolysis promotes membrane deformation to control COPII vesicle fission
    • Bielli A., et al. Regulation of Sar1 NH2 terminus by GTP binding and hydrolysis promotes membrane deformation to control COPII vesicle fission. J. Cell Biol. 2005, 171:919-924.
    • (2005) J. Cell Biol. , vol.171 , pp. 919-924
    • Bielli, A.1
  • 44
    • 33646117742 scopus 로고    scopus 로고
    • The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking
    • Fransson S., et al. The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking. Biochem. Biophys. Res. Commun. 2006, 344:500-510.
    • (2006) Biochem. Biophys. Res. Commun. , vol.344 , pp. 500-510
    • Fransson, S.1
  • 45
    • 0037458579 scopus 로고    scopus 로고
    • Atypical Rho GTPases have roles in mitochondrial homeostasis and apoptosis
    • Fransson A., et al. Atypical Rho GTPases have roles in mitochondrial homeostasis and apoptosis. J. Biol. Chem. 2002, 278:6495-6502.
    • (2002) J. Biol. Chem. , vol.278 , pp. 6495-6502
    • Fransson, A.1
  • 46
    • 33645456207 scopus 로고    scopus 로고
    • Eukaryotic evolution, changes and challenges
    • Embley T.M., Martin W. Eukaryotic evolution, changes and challenges. Nature 2006, 440:623-630.
    • (2006) Nature , vol.440 , pp. 623-630
    • Embley, T.M.1    Martin, W.2
  • 47
    • 77951768486 scopus 로고    scopus 로고
    • Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
    • Sancak Y., et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010, 141:290-303.
    • (2010) Cell , vol.141 , pp. 290-303
    • Sancak, Y.1
  • 48
    • 84885597339 scopus 로고    scopus 로고
    • Prenylation: from bacteria to eukaryotes
    • Marakasova E.S., et al. Prenylation: from bacteria to eukaryotes. Mol. Biol. 2013, 47:622-633.
    • (2013) Mol. Biol. , vol.47 , pp. 622-633
    • Marakasova, E.S.1
  • 49
    • 84875766625 scopus 로고    scopus 로고
    • Diversity and subcellular distribution of archaeal secreted proteins
    • Szabo Z., Pohlschroder M. Diversity and subcellular distribution of archaeal secreted proteins. Front. Microbiol. 2012, 3:207.
    • (2012) Front. Microbiol. , vol.3 , pp. 207
    • Szabo, Z.1    Pohlschroder, M.2
  • 50
    • 84928794055 scopus 로고    scopus 로고
    • A complete pathway model for lipid A biosynthesis in Escherichia coli
    • Emiola A., et al. A complete pathway model for lipid A biosynthesis in Escherichia coli. PLoS ONE 2014, 10:e0121216.
    • (2014) PLoS ONE , vol.10
    • Emiola, A.1
  • 51
    • 1942532925 scopus 로고    scopus 로고
    • Origins and evolution of isoprenoid lipid biosynthesis in archaea
    • Boucher Y., et al. Origins and evolution of isoprenoid lipid biosynthesis in archaea. Mol. Microbiol. 2004, 52:515-527.
    • (2004) Mol. Microbiol. , vol.52 , pp. 515-527
    • Boucher, Y.1
  • 52
    • 34848893349 scopus 로고    scopus 로고
    • Multiple domain insertions and losses in the evolution of the Rab prenylation complex
    • Rasteiro R., Pereira-Leal J.B. Multiple domain insertions and losses in the evolution of the Rab prenylation complex. BMC Evol. Biol. 2007, 7:140.
    • (2007) BMC Evol. Biol. , vol.7 , pp. 140
    • Rasteiro, R.1    Pereira-Leal, J.B.2
  • 53
    • 0037276552 scopus 로고    scopus 로고
    • Protein prenyltransferases
    • Maurer-Stroh S., et al. Protein prenyltransferases. Genome Biol. 2003, 4:212.
    • (2003) Genome Biol. , vol.4 , pp. 212
    • Maurer-Stroh, S.1
  • 54
    • 84898058598 scopus 로고    scopus 로고
    • Phylogenomic reconstruction of archaeal fatty acid metabolism
    • Dibrova D.V., et al. Phylogenomic reconstruction of archaeal fatty acid metabolism. Environ. Microbiol. 2014, 16:907-918.
    • (2014) Environ. Microbiol. , vol.16 , pp. 907-918
    • Dibrova, D.V.1
  • 55
    • 33749005392 scopus 로고    scopus 로고
    • The COPII cage: unifying principles of vesicle coat assembly
    • Gürkan C., et al. The COPII cage: unifying principles of vesicle coat assembly. Nat. Rev. Mol. Cell Biol. 2006, 7:727-738.
    • (2006) Nat. Rev. Mol. Cell Biol. , vol.7 , pp. 727-738
    • Gürkan, C.1
  • 56
    • 84924359180 scopus 로고    scopus 로고
    • Ancient dynamin segments capture early stages of host-mitochondrial integration
    • Purkanti R., Thattai M. Ancient dynamin segments capture early stages of host-mitochondrial integration. Proc. Natl. Acad. Sci. U.S.A. 2015, 112:2800-2805.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. 2800-2805
    • Purkanti, R.1    Thattai, M.2
  • 57
    • 33845672530 scopus 로고    scopus 로고
    • A bacterial dynamin-like protein
    • Low H.H., Löwe J. A bacterial dynamin-like protein. Nature 2006, 444:766-769.
    • (2006) Nature , vol.444 , pp. 766-769
    • Low, H.H.1    Löwe, J.2
  • 58
    • 84949920853 scopus 로고    scopus 로고
    • Structure and function of longin SNAREs
    • Daste F., et al. Structure and function of longin SNAREs. J. Cell Sci. 2015, 128:4263-4272.
    • (2015) J. Cell Sci. , vol.128 , pp. 4263-4272
    • Daste, F.1
  • 59
    • 8544275815 scopus 로고    scopus 로고
    • Longins and their longin domains: regulated SNAREs and multifunctional SNARE regulators
    • Rossi V., et al. Longins and their longin domains: regulated SNAREs and multifunctional SNARE regulators. Trends Biochem. Sci. 2004, 29:682-688.
    • (2004) Trends Biochem. Sci. , vol.29 , pp. 682-688
    • Rossi, V.1
  • 60
    • 84889597180 scopus 로고    scopus 로고
    • Longin and GAF domains: structural evolution and adaptation to the subcellular trafficking machinery
    • De Franceschi N., et al. Longin and GAF domains: structural evolution and adaptation to the subcellular trafficking machinery. Traffic 2014, 15:104-121.
    • (2014) Traffic , vol.15 , pp. 104-121
    • De Franceschi, N.1
  • 61
    • 84974697861 scopus 로고    scopus 로고
    • Conserved regulators of Rag GTPases orchestrate amino acid-dependent TORC1 signaling
    • Powis K., De Virgilio C. Conserved regulators of Rag GTPases orchestrate amino acid-dependent TORC1 signaling. Cell Discov. 2016, 2:15049.
    • (2016) Cell Discov. , vol.2 , pp. 15049
    • Powis, K.1    De Virgilio, C.2
  • 62
    • 84948460072 scopus 로고    scopus 로고
    • Liquid but durable: molecular dynamics simulations explain the unique properties of archaeal-like membranes
    • Chugunov A.O., et al. Liquid but durable: molecular dynamics simulations explain the unique properties of archaeal-like membranes. Sci. Rep. 2014, 4:7462.
    • (2014) Sci. Rep. , vol.4 , pp. 7462
    • Chugunov, A.O.1
  • 63
    • 33947380915 scopus 로고    scopus 로고
    • Adaptations to energy stress dictate the ecology and evolution of the Archaea
    • Valentine D.L. Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat. Rev. Microbiol. 2007, 5:316-323.
    • (2007) Nat. Rev. Microbiol. , vol.5 , pp. 316-323
    • Valentine, D.L.1
  • 64
    • 79951705599 scopus 로고    scopus 로고
    • Intercellular nanotubes mediate bacterial communication
    • Dubey G.P., Ben-Yehuda S. Intercellular nanotubes mediate bacterial communication. Cell 2011, 144:590-600.
    • (2011) Cell , vol.144 , pp. 590-600
    • Dubey, G.P.1    Ben-Yehuda, S.2
  • 65
    • 84873200576 scopus 로고    scopus 로고
    • Membrane vesicles, nanopods and/or nanotubes produced by hyperthermophilic archaea of the genus Thermococcus
    • Marguet E., et al. Membrane vesicles, nanopods and/or nanotubes produced by hyperthermophilic archaea of the genus Thermococcus. Biochem. Soc. Trans. 2013, 41:436-442.
    • (2013) Biochem. Soc. Trans. , vol.41 , pp. 436-442
    • Marguet, E.1
  • 66
    • 84923340856 scopus 로고    scopus 로고
    • Metabolic cross-feeding via intercellular nanotubes among bacteria
    • Pande S., et al. Metabolic cross-feeding via intercellular nanotubes among bacteria. Nat. Commun. 2015, 6:6238.
    • (2015) Nat. Commun. , vol.6 , pp. 6238
    • Pande, S.1
  • 67
    • 0037468612 scopus 로고    scopus 로고
    • C-terminal 15 kDa fragment of cytoskeletal actin is posttranslationally N-myristoylated upon caspase-mediated cleavage and targeted to mitochondria
    • Utsumi T., et al. C-terminal 15 kDa fragment of cytoskeletal actin is posttranslationally N-myristoylated upon caspase-mediated cleavage and targeted to mitochondria. FEBS Lett. 2003, 539:37-44.
    • (2003) FEBS Lett. , vol.539 , pp. 37-44
    • Utsumi, T.1
  • 68
    • 0036316720 scopus 로고    scopus 로고
    • Origin and evolution of eukaryotic apoptosis: the bacterial connection
    • Koonin E.V., Aravind L. Origin and evolution of eukaryotic apoptosis: the bacterial connection. Cell Death Differ. 2002, 9:394-404.
    • (2002) Cell Death Differ. , vol.9 , pp. 394-404
    • Koonin, E.V.1    Aravind, L.2
  • 69
    • 14744271077 scopus 로고    scopus 로고
    • N-myristoylation determines dual targeting of mammalian NADH-cytochrome b5 reductase to ER and mitochondrial outer membranes by a mechanism of kinetic partitioning
    • Colombo S., et al. N-myristoylation determines dual targeting of mammalian NADH-cytochrome b5 reductase to ER and mitochondrial outer membranes by a mechanism of kinetic partitioning. J. Cell Biol. 2005, 168:735-745.
    • (2005) J. Cell Biol. , vol.168 , pp. 735-745
    • Colombo, S.1
  • 70
    • 20044387943 scopus 로고    scopus 로고
    • Single translation-dual destination: mechanisms of dual protein targeting in eukaryotes
    • Karniely S., Pines O. Single translation-dual destination: mechanisms of dual protein targeting in eukaryotes. EMBO Rep. 2005, 6:420-425.
    • (2005) EMBO Rep. , vol.6 , pp. 420-425
    • Karniely, S.1    Pines, O.2
  • 71
    • 43149116339 scopus 로고    scopus 로고
    • Rac1 accumulates in the nucleus during the G2 phase of the cell cycle and promotes cell division
    • Michaelson D., et al. Rac1 accumulates in the nucleus during the G2 phase of the cell cycle and promotes cell division. J. Cell Biol. 2008, 181:485-496.
    • (2008) J. Cell Biol. , vol.181 , pp. 485-496
    • Michaelson, D.1
  • 72
    • 84896709336 scopus 로고    scopus 로고
    • Crenactin from Pyrobaculum calidifontis is closely related to actin in structure and forms steep helical filaments
    • Izoré T., et al. Crenactin from Pyrobaculum calidifontis is closely related to actin in structure and forms steep helical filaments. FEBS Lett. 2014, 588:776-782.
    • (2014) FEBS Lett. , vol.588 , pp. 776-782
    • Izoré, T.1
  • 73
    • 84885179258 scopus 로고    scopus 로고
    • A nuclear F-actin scaffold stabilizes ribonucleoprotein droplets against gravity in large cells
    • Feric M., Brangwynne C.P. A nuclear F-actin scaffold stabilizes ribonucleoprotein droplets against gravity in large cells. Nat. Cell Biol. 2013, 15:1253-1259.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 1253-1259
    • Feric, M.1    Brangwynne, C.P.2
  • 74
    • 77954766868 scopus 로고    scopus 로고
    • Actin-related proteins in the nucleus: life beyond chromatin remodelers
    • Dion V., et al. Actin-related proteins in the nucleus: life beyond chromatin remodelers. Curr. Opin. Cell Biol. 2010, 22:383-391.
    • (2010) Curr. Opin. Cell Biol. , vol.22 , pp. 383-391
    • Dion, V.1
  • 75
    • 84874768439 scopus 로고    scopus 로고
    • Excess membrane synthesis drives a primitive mode of cell proliferation
    • Mercier R., et al. Excess membrane synthesis drives a primitive mode of cell proliferation. Cell 2013, 152:997-1007.
    • (2013) Cell , vol.152 , pp. 997-1007
    • Mercier, R.1
  • 76
    • 84867081093 scopus 로고    scopus 로고
    • Versatile genetic tool box for the crenarchaeote Sulfolobus acidocaldarius
    • Wagner M., et al. Versatile genetic tool box for the crenarchaeote Sulfolobus acidocaldarius. Front. Microbiol. 2012, 3:214.
    • (2012) Front. Microbiol. , vol.3 , pp. 214
    • Wagner, M.1
  • 77
    • 84870055317 scopus 로고    scopus 로고
    • Membrane curvature and its generation by BAR proteins
    • Mim C., Unger V.M. Membrane curvature and its generation by BAR proteins. Trends Biochem. Sci. 2012, 37:526-533.
    • (2012) Trends Biochem. Sci. , vol.37 , pp. 526-533
    • Mim, C.1    Unger, V.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.