메뉴 건너뛰기




Volumn 2, Issue , 2016, Pages

Conserved regulators of Rag GTPases orchestrate amino acid-dependent TORC1 signaling

Author keywords

amino acid signaling; Rag GTPases; target of rapamycin complex 1

Indexed keywords

GATOR1 PROTEIN; GUANOSINE TRIPHOSPHATASE; PROTEIN; RAS RELATED GTP BINDING PROTEIN; TARGET OF RAPAMYCIN COMPLEX 1; TARGET OF RAPAMYCIN KINASE; TERNARY COMPLEX FACTOR; UNCLASSIFIED DRUG; VAM6 PROTEIN;

EID: 84974697861     PISSN: None     EISSN: 20565968     Source Type: Journal    
DOI: 10.1038/celldisc.2015.49     Document Type: Review
Times cited : (65)

References (117)
  • 1
    • 84859778293 scopus 로고    scopus 로고
    • MTOR signaling in growth control and disease
    • Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012; 149: 274-293.
    • (2012) Cell , vol.149 , pp. 274-293
    • Laplante, M.1    Sabatini, D.M.2
  • 2
    • 32044465506 scopus 로고    scopus 로고
    • TOR signaling in growth and metabolism
    • Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell 2006; 124: 471-484.
    • (2006) Cell , vol.124 , pp. 471-484
    • Wullschleger, S.1    Loewith, R.2    Hall, M.N.3
  • 3
    • 67349241955 scopus 로고    scopus 로고
    • DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival
    • Peterson TR, Laplante M, Thoreen CC et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 2009; 137: 873-886.
    • (2009) Cell , vol.137 , pp. 873-886
    • Peterson, T.R.1    Laplante, M.2    Thoreen, C.C.3
  • 4
    • 33947264077 scopus 로고    scopus 로고
    • PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase
    • Sancak Y, Thoreen CC, Peterson TR et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 2007; 25: 903-915.
    • (2007) Mol Cell , vol.25 , pp. 903-915
    • Sancak, Y.1    Thoreen, C.C.2    Peterson, T.R.3
  • 5
    • 45849105156 scopus 로고    scopus 로고
    • The rag GTPases bind raptor and mediate amino acid signaling to mTORC1
    • Sancak Y, Peterson TR, Shaul YD et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008; 320: 1496-1501.
    • (2008) Science , vol.320 , pp. 1496-1501
    • Sancak, Y.1    Peterson, T.R.2    Shaul, Y.D.3
  • 6
    • 0032486268 scopus 로고    scopus 로고
    • Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism
    • Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem 1998; 273: 14484-14494.
    • (1998) J Biol Chem , vol.273 , pp. 14484-14494
    • Hara, K.1    Yonezawa, K.2    Weng, Q.P.3    Kozlowski, M.T.4    Belham, C.5    Avruch, J.6
  • 7
    • 0032528917 scopus 로고    scopus 로고
    • Amino acid availability regulates p70 S6 kinase and multiple translation factors
    • Wang X, Campbell LE, Miller CM, Proud CG. Amino acid availability regulates p70 S6 kinase and multiple translation factors. Biochem J 1998; 334: 261-267.
    • (1998) Biochem J , vol.334 , pp. 261-267
    • Wang, X.1    Campbell, L.E.2    Miller, C.M.3    Proud, C.G.4
  • 8
    • 0037076314 scopus 로고    scopus 로고
    • The TORcontrolled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine
    • Crespo JL, Powers T, Fowler B, Hall MN. The TORcontrolled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine. Proc Natl Acad Sci 2002; 99: 6784-6789.
    • (2002) Proc Natl Acad Sci , vol.99 , pp. 6784-6789
    • Crespo, J.L.1    Powers, T.2    Fowler, B.3    Hall, M.N.4
  • 9
    • 42449130835 scopus 로고    scopus 로고
    • Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs
    • Yao K, Yin YL, Chu W et al. Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs. J Nutr 2008; 138: 867-872.
    • (2008) J Nutr , vol.138 , pp. 867-872
    • Yao, K.1    Yin, Y.L.2    Chu, W.3
  • 10
    • 84865100829 scopus 로고    scopus 로고
    • L-arginine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells
    • Kong X, Tan B, Yin Y et al. L-Arginine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells. J Nutr Biochem 2012; 23: 1178-1183.
    • (2012) J Nutr Biochem , vol.23 , pp. 1178-1183
    • Kong, X.1    Tan, B.2    Yin, Y.3
  • 11
    • 84881154184 scopus 로고    scopus 로고
    • Control of cell growth: Rag GTPases in activation of TORC1
    • Yang H, Gong R, Xu Y. Control of cell growth: Rag GTPases in activation of TORC1. Cell Mol Life Sci 2013; 70: 2873-2885.
    • (2013) Cell Mol Life Sci , vol.70 , pp. 2873-2885
    • Yang, H.1    Gong, R.2    Xu, Y.3
  • 12
    • 80051873144 scopus 로고    scopus 로고
    • Crystal structure of the gtr1p-gtr2p complex reveals new insights into the amino acidinduced TORC1 activation
    • Gong R, Li L, Liu Y et al. Crystal structure of the Gtr1p-Gtr2p complex reveals new insights into the amino acidinduced TORC1 activation. Genes Dev 2011; 25: 1668-1673.
    • (2011) Genes Dev , vol.25 , pp. 1668-1673
    • Gong, R.1    Li, L.2    Liu, Y.3
  • 13
    • 0035831451 scopus 로고    scopus 로고
    • Novel G proteins, rag C and rag D, interact with GTPbinding proteins, rag A and rag B
    • Sekiguchi T, Hirose E, Nakashima N, Ii M, Nishimoto T. Novel G proteins, Rag C and Rag D, interact with GTPbinding proteins, Rag A and Rag B. J Biol Chem 2001; 276: 7246-7257.
    • (2001) J Biol Chem , vol.276 , pp. 7246-7257
    • Sekiguchi, T.1    Hirose, E.2    Nakashima, N.3    Ii, M.4    Nishimoto, T.5
  • 14
    • 0032771639 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae putative G protein, gtr1p, which forms complexes with itself and a novel protein designated as gtr2p, negatively regulates the Ran/Gsp1p G protein cycle through gtr2p
    • Nakashima N, Noguchi E, Nishimoto T. Saccharomyces cerevisiae putative G protein, Gtr1p, which forms complexes with itself and a novel protein designated as Gtr2p, negatively regulates the Ran/Gsp1p G protein cycle through Gtr2p. Genetics 1999; 152: 853-867.
    • (1999) Genetics , vol.152 , pp. 853-867
    • Nakashima, N.1    Noguchi, E.2    Nishimoto, T.3
  • 15
    • 69749113579 scopus 로고    scopus 로고
    • The vam6 GEF controls TORC1 by activating the EGO complex
    • Binda M, Péli-Gulli MP, Bonfils G et al. The Vam6 GEF controls TORC1 by activating the EGO complex. Mol Cell 2009; 35: 563-573.
    • (2009) Mol Cell , vol.35 , pp. 563-573
    • Binda, M.1    Péli-Gulli, M.P.2    Bonfils, G.3
  • 16
    • 33745745910 scopus 로고    scopus 로고
    • A conserved GTPase-containing complex is required for intracellular sorting of the general amino-acid permease in yeast
    • Gao M, Kaiser CA. A conserved GTPase-containing complex is required for intracellular sorting of the general amino-acid permease in yeast. Nat Cell Biol 2006; 8: 657-667.
    • (2006) Nat Cell Biol , vol.8 , pp. 657-667
    • Gao, M.1    Kaiser, C.A.2
  • 18
    • 84926418992 scopus 로고    scopus 로고
    • MCRS1 binds and couples rheb to amino acid-dependent mTORC1 activation
    • Fawal MA, Brandt M, Djouder N. MCRS1 binds and couples Rheb to amino acid-dependent mTORC1 activation. Dev Cell 2015; 33: 67-81.
    • (2015) Dev Cell , vol.33 , pp. 67-81
    • Fawal, M.A.1    Brandt, M.2    Djouder, N.3
  • 19
    • 84894212463 scopus 로고    scopus 로고
    • Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2
    • Demetriades C, Doumpas N, Teleman AA. Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell 2014; 156: 786-799.
    • (2014) Cell , vol.156 , pp. 786-799
    • Demetriades, C.1    Doumpas, N.2    Teleman, A.A.3
  • 20
    • 84901828078 scopus 로고    scopus 로고
    • Requirement for lysosomal localization of mTOR for its activation differs between leucine and other amino acids
    • Averous J, Lambert-Langlais S, Carraro V et al. Requirement for lysosomal localization of mTOR for its activation differs between leucine and other amino acids. Cell Signal 2014; 26: 1918-1927.
    • (2014) Cell Signal , vol.26 , pp. 1918-1927
    • Averous, J.1    Lambert-Langlais, S.2    Carraro, V.3
  • 21
    • 84865371057 scopus 로고    scopus 로고
    • TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1
    • Dibble CC, Elis W, Menon S et al. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol Cell 2012; 47: 535-546.
    • (2012) Mol Cell , vol.47 , pp. 535-546
    • Dibble, C.C.1    Elis, W.2    Menon, S.3
  • 22
    • 0043127125 scopus 로고    scopus 로고
    • Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling
    • Inoki K, Li Y, Xu T, Guan KL. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 2003; 17: 1829-1834.
    • (2003) Genes Dev , vol.17 , pp. 1829-1834
    • Inoki, K.1    Li, Y.2    Xu, T.3    Guan, K.L.4
  • 23
    • 0042701991 scopus 로고    scopus 로고
    • Tuberous sclerosis complex gene products, tuberin and hamartin, control mTOR signaling by acting as a GTPaseactivating protein complex toward rheb
    • Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPaseactivating protein complex toward Rheb. Curr Biol 2003; 13: 1259-1268.
    • (2003) Curr Biol , vol.13 , pp. 1259-1268
    • Tee, A.R.1    Manning, B.D.2    Roux, P.P.3    Cantley, L.C.4    Blenis, J.5
  • 24
    • 84894114029 scopus 로고    scopus 로고
    • Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome
    • Menon S, Dibble CC, Talbott G et al. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 2014; 156: 771-785.
    • (2014) Cell , vol.156 , pp. 771-785
    • Menon, S.1    Dibble, C.C.2    Talbott, G.3
  • 25
    • 84907178314 scopus 로고    scopus 로고
    • Reciprocal conversion of gtr1 and gtr2 nucleotide-binding states by npr2-npr3 inactivates TORC1 and induces autophagy
    • Kira S, Tabata K, Shirahama-Noda K, Nozoe A, Yoshimori T, Noda T. Reciprocal conversion of Gtr1 and Gtr2 nucleotide-binding states by Npr2-Npr3 inactivates TORC1 and induces autophagy. Autophagy 2014; 10: 1565-1578.
    • (2014) Autophagy , vol.10 , pp. 1565-1578
    • Kira, S.1    Tabata, K.2    Shirahama-Noda, K.3    Nozoe, A.4    Yoshimori, T.5    Noda, T.6
  • 26
    • 84865492819 scopus 로고    scopus 로고
    • GDP protein complex reveals large structural rearrangements triggered by GTP-to-GDP conversion
    • GDP protein complex reveals large structural rearrangements triggered by GTP-to-GDP conversion. J Biol Chem 2012; 287: 29648-29653.
    • (2012) J Biol Chem , vol.287 , pp. 29648-29653
    • Jeong, J.H.1    Lee, K.H.2    Kim, Y.M.3    Kim, D.H.4    Oh, B.H.5    Kim, Y.G.6
  • 27
    • 84888200442 scopus 로고    scopus 로고
    • The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1
    • Tsun ZY, Bar-Peled L, Chantranupong L et al. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol Cell 2013; 52: 495-505.
    • (2013) Mol Cell , vol.52 , pp. 495-505
    • Tsun, Z.Y.1    Bar-Peled, L.2    Chantranupong, L.3
  • 28
    • 21244448694 scopus 로고    scopus 로고
    • The TOR and EGO protein complexes orchestrate microautophagy in yeast
    • Dubouloz F, Deloche O, Wanke V, Cameroni E, De Virgilio C. The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol Cell 2005; 19: 15-26.
    • (2005) Mol Cell , vol.19 , pp. 15-26
    • Dubouloz, F.1    Deloche, O.2    Wanke, V.3    Cameroni, E.4    De Virgilio, C.5
  • 29
    • 84870530032 scopus 로고    scopus 로고
    • Ego3 functions as a homodimer to mediate the interaction between gtr1-gtr2 and ego1 in the EGO complex to activate TORC1
    • Zhang T, Péli-Gulli MP, Yang H, De Virgilio C, Ding J. Ego3 functions as a homodimer to mediate the interaction between Gtr1-Gtr2 and Ego1 in the EGO complex to activate TORC1. Structure 2012; 20: 2151-2160.
    • (2012) Structure , vol.20 , pp. 2151-2160
    • Zhang, T.1    Péli-Gulli, M.P.2    Yang, H.3    De Virgilio, C.4    Ding, J.5
  • 30
    • 84940891788 scopus 로고    scopus 로고
    • Crystal structure of the ego1-ego2-ego3 complex and its role in promoting rag GTPase-dependent TORC1 signaling
    • Powis K, Zhang T, Panchaud N, Wang R, De Virgilio C, Ding J. Crystal structure of the Ego1-Ego2-Ego3 complex and its role in promoting Rag GTPase-dependent TORC1 signaling. Cell Res 2015; 25: 1043-1059.
    • (2015) Cell Res , vol.25 , pp. 1043-1059
    • Powis, K.1    Zhang, T.2    Panchaud, N.3    Wang, R.4    De Virgilio, C.5    Ding, J.6
  • 31
    • 0032476052 scopus 로고    scopus 로고
    • A role for saccharomyces cerevisiae fatty acid activation protein 4 in regulating protein N-myristoylation during entry into stationary phase
    • Ashrafi K, Farazi TA, Gordon JI. A role for Saccharomyces cerevisiae fatty acid activation protein 4 in regulating protein N-myristoylation during entry into stationary phase. J Biol Chem 1998; 273: 25864-25874.
    • (1998) J Biol Chem , vol.273 , pp. 25864-25874
    • Ashrafi, K.1    Farazi, T.A.2    Gordon, J.I.3
  • 32
    • 67650540764 scopus 로고    scopus 로고
    • Molecular recognition of the palmitoylation substrate vac8 by its palmitoyltransferase pfa3
    • Nadolski MJ, Linder ME. Molecular recognition of the palmitoylation substrate Vac8 by its palmitoyltransferase Pfa3. J Biol Chem 2009; 284: 17720-17730.
    • (2009) J Biol Chem , vol.284 , pp. 17720-17730
    • Nadolski, M.J.1    Linder, M.E.2
  • 33
    • 33646899047 scopus 로고    scopus 로고
    • Global analysis of protein palmitoylation in yeast
    • Roth AF, Wan J, Bailey AO et al. Global analysis of protein palmitoylation in yeast. Cell 2006; 125: 1003-1013.
    • (2006) Cell , vol.125 , pp. 1003-1013
    • Roth, A.F.1    Wan, J.2    Bailey, A.O.3
  • 34
    • 77956740779 scopus 로고    scopus 로고
    • Structural conservation of components in the amino acid sensing branch of the TOR pathway in yeast and mammals
    • Kogan K, Spear ED, Kaiser CA, Fass D. Structural conservation of components in the amino acid sensing branch of the TOR pathway in yeast and mammals. J Mol Biol 2010; 402: 388-398.
    • (2010) J Mol Biol , vol.402 , pp. 388-398
    • Kogan, K.1    Spear, E.D.2    Kaiser, C.A.3    Fass, D.4
  • 35
    • 84876431000 scopus 로고    scopus 로고
    • Discovery of new longin and roadblock domains that form platforms for small GTPases in ragulator and TRAPP-II
    • Levine TP, Daniels RD, Wong LH, Gatta AT, Gerondopoulos A, Barr FA. Discovery of new Longin and Roadblock domains that form platforms for small GTPases in Ragulator and TRAPP-II. Small GTPases 2013; 4: 62-69.
    • (2013) Small GTPases , vol.4 , pp. 62-69
    • Levine, T.P.1    Daniels, R.D.2    Wong, L.H.3    Gatta, A.T.4    Gerondopoulos, A.5    Barr, F.A.6
  • 36
    • 84866431363 scopus 로고    scopus 로고
    • Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1
    • Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 2012; 150: 1196-1208.
    • (2012) Cell , vol.150 , pp. 1196-1208
    • Bar-Peled, L.1    Schweitzer, L.D.2    Zoncu, R.3    Sabatini, D.M.4
  • 37
    • 77951768486 scopus 로고    scopus 로고
    • Ragulator-rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
    • Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010; 141: 290-303.
    • (2010) Cell , vol.141 , pp. 290-303
    • Sancak, Y.1    Bar-Peled, L.2    Zoncu, R.3    Markhard, A.L.4    Nada, S.5    Sabatini, D.M.6
  • 38
    • 62049084764 scopus 로고    scopus 로고
    • The novel lipid raft adaptor p18 controls endosome dynamics by anchoring the MEK-ERK pathway to late endosomes
    • Nada S, Hondo A, Kasai A et al. The novel lipid raft adaptor p18 controls endosome dynamics by anchoring the MEK-ERK pathway to late endosomes. EMBO J 2009; 28: 477-489.
    • (2009) EMBO J , vol.28 , pp. 477-489
    • Nada, S.1    Hondo, A.2    Kasai, A.3
  • 41
    • 84907519033 scopus 로고    scopus 로고
    • The lysosomal v-ATPase-ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism
    • Zhang CS, Jiang B, Li M et al. The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab 2014; 20: 526-540.
    • (2014) Cell Metab , vol.20 , pp. 526-540
    • Zhang, C.S.1    Jiang, B.2    Li, M.3
  • 42
    • 33645453254 scopus 로고    scopus 로고
    • Global landscape of protein complexes in the yeast saccharomyces cerevisiae
    • Krogan NJ, Cagney G, Yu H et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 2006; 440: 637-643.
    • (2006) Nature , vol.440 , pp. 637-643
    • Krogan, N.J.1    Cagney, G.2    Yu, H.3
  • 43
    • 45849110261 scopus 로고    scopus 로고
    • An in vivo map of the yeast protein interactome
    • Tarassov K, Messier V, Landry CR et al. An in vivo map of the yeast protein interactome. Science 2008; 320: 1465-1470.
    • (2008) Science , vol.320 , pp. 1465-1470
    • Tarassov, K.1    Messier, V.2    Landry, C.R.3
  • 44
    • 84906101389 scopus 로고    scopus 로고
    • Cytosolic pH regulates cell growth through distinct GTPases, arf1 and gtr1, to promote ras/PKA and TORC1 activity
    • Dechant R, Saad S, Ibanez AJ, Peter M. Cytosolic pH regulates cell growth through distinct GTPases, Arf1 and Gtr1, to promote Ras/PKA and TORC1 activity. Mol Cell 2014; 55: 409-421.
    • (2014) Mol Cell , vol.55 , pp. 409-421
    • Dechant, R.1    Saad, S.2    Ibanez, A.J.3    Peter, M.4
  • 45
    • 77955405903 scopus 로고    scopus 로고
    • Cytosolic pH is a second messenger for glucose and regulates the PKA pathway through V-ATPase
    • Dechant R, Binda M, Lee SS, Pelet S, Winderickx J, Peter M. Cytosolic pH is a second messenger for glucose and regulates the PKA pathway through V-ATPase. EMBO J 2010; 29: 2515-2526.
    • (2010) EMBO J , vol.29 , pp. 2515-2526
    • Dechant, R.1    Binda, M.2    Lee, S.S.3    Pelet, S.4    Winderickx, J.5    Peter, M.6
  • 46
    • 48749099702 scopus 로고    scopus 로고
    • HOPS proofreads the trans-SNARE complex for yeast vacuole fusion
    • Starai VJ, Hickey CM, Wickner W. HOPS proofreads the trans-SNARE complex for yeast vacuole fusion. Mol Biol Cell 2008; 19: 2500-2508.
    • (2008) Mol Biol Cell , vol.19 , pp. 2500-2508
    • Starai, V.J.1    Hickey, C.M.2    Wickner, W.3
  • 47
    • 0034689021 scopus 로고    scopus 로고
    • Proteins needed for vesicle budding from the golgi complex are also required for the docking step of homotypic vacuole fusion
    • Price A, Wickner W, Ungermann C. Proteins needed for vesicle budding from the golgi complex are also required for the docking step of homotypic vacuole fusion. J Cell Biol 2000; 148: 1223-1229.
    • (2000) J Cell Biol , vol.148 , pp. 1223-1229
    • Price, A.1    Wickner, W.2    Ungermann, C.3
  • 48
    • 84900012487 scopus 로고    scopus 로고
    • Principles of membrane tethering and fusion in endosome and lysosome biogenesis
    • Kümmel D, Ungermann C. Principles of membrane tethering and fusion in endosome and lysosome biogenesis. Curr Opin Cell Biol 2014; 29: 61-66.
    • (2014) Curr Opin Cell Biol , vol.29 , pp. 61-66
    • Kümmel, D.1    Ungermann, C.2
  • 49
    • 84863110536 scopus 로고    scopus 로고
    • The vam6 and gtr1-gtr2 pathway activates TORC1 in response to amino acids in fission yeast
    • Valbuena N, Guan KL, Moreno S. The Vam6 and Gtr1-Gtr2 pathway activates TORC1 in response to amino acids in fission yeast. J Cell Sci 2012; 125: 1920-1928.
    • (2012) J Cell Sci , vol.125 , pp. 1920-1928
    • Valbuena, N.1    Guan, K.L.2    Moreno, S.3
  • 50
    • 34548421080 scopus 로고    scopus 로고
    • Efficient tor signaling requires a functional class C vps protein complex in saccharomyces cerevisiae
    • Zurita-Martinez SA, Puria R, Pan X, Boeke JD, Cardenas ME. Efficient Tor signaling requires a functional class C Vps protein complex in Saccharomyces cerevisiae. Genetics 2007; 176: 2139-2150.
    • (2007) Genetics , vol.176 , pp. 2139-2150
    • Zurita-Martinez, S.A.1    Puria, R.2    Pan, X.3    Boeke, J.D.4    Cardenas, M.E.5
  • 51
    • 84901319212 scopus 로고    scopus 로고
    • Endolysosomal membrane trafficking complexes drive nutrient-dependent TORC1 signaling to control cell growth in saccharomyces cerevisiae
    • Kingsbury JM, Sen ND, Maeda T, Heitman J, Cardenas ME. Endolysosomal membrane trafficking complexes drive nutrient-dependent TORC1 signaling to control cell growth in Saccharomyces cerevisiae. Genetics 2014; 196: 1077-1089.
    • (2014) Genetics , vol.196 , pp. 1077-1089
    • Kingsbury, J.M.1    Sen, N.D.2    Maeda, T.3    Heitman, J.4    Cardenas, M.E.5
  • 53
    • 84904255813 scopus 로고    scopus 로고
    • Cellular metabolism regulates contact sites between vacuoles and mitochondria
    • Hönscher C, Mari M, Auffarth K et al. Cellular metabolism regulates contact sites between vacuoles and mitochondria. Dev Cell 2014; 30: 86-94.
    • (2014) Dev Cell , vol.30 , pp. 86-94
    • Hönscher, C.1    Mari, M.2    Auffarth, K.3
  • 55
    • 84930374068 scopus 로고    scopus 로고
    • The vps39-like TRAP1 is an effector of rab5 and likely the missing vps3 subunit of human CORVET
    • Lachmann J, Glaubke E, Moore P, Ungermann C. The Vps39-like TRAP1 is an effector of Rab5 and likely the missing Vps3 subunit of human CORVET. Cell Logist 2014; 4: e970840.
    • (2014) Cell Logist , vol.4 , pp. e970840
    • Lachmann, J.1    Glaubke, E.2    Moore, P.3    Ungermann, C.4
  • 58
    • 84862777407 scopus 로고    scopus 로고
    • Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway
    • Han JM, Jeong SJ, Park MC et al. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 2012; 149: 410-424.
    • (2012) Cell , vol.149 , pp. 410-424
    • Han, J.M.1    Jeong, S.J.2    Park, M.C.3
  • 60
    • 84886871016 scopus 로고    scopus 로고
    • Recruitment of folliculin to lysosomes supports the amino aciddependent activation of rag GTPases
    • Petit CS, Roczniak-Ferguson A, Ferguson SM. Recruitment of folliculin to lysosomes supports the amino aciddependent activation of Rag GTPases. J Cell Biol 2013; 202: 1107-1122.
    • (2013) J Cell Biol , vol.202 , pp. 1107-1122
    • Petit, C.S.1    Roczniak-Ferguson, A.2    Ferguson, S.M.3
  • 61
    • 84893055506 scopus 로고    scopus 로고
    • The nutrientresponsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris
    • Martina JA, Diab HI, Lishu L et al. The nutrientresponsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci Signal 2014; 7: ra9.
    • (2014) Sci Signal , vol.7 , pp. ra9
    • Martina, J.A.1    Diab, H.I.2    Lishu, L.3
  • 62
    • 84943358458 scopus 로고    scopus 로고
    • Amino acids stimulate TORC1 through lst4-lst7, a GTPase-activating protein complex for the rag family GTPase gtr2
    • Péli-Gulli MP, Sardu A, Panchaud N, Raucci S, De Virgilio C. Amino acids stimulate TORC1 through Lst4-Lst7, a GTPase-activating protein complex for the Rag family GTPase Gtr2. Cell Rep 2015; 13: 1-7.
    • (2015) Cell Rep , vol.13 , pp. 1-7
    • Péli-Gulli, M.P.1    Sardu, A.2    Panchaud, N.3    Raucci, S.4    De Virgilio, C.5
  • 63
    • 0000939691 scopus 로고    scopus 로고
    • Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the birt-hogg-dubé syndrome
    • Nickerson ML, Warren MB, Toro JR et al. Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dubé syndrome. Cancer Cell 2002; 2: 157-164.
    • (2002) Cancer Cell , vol.2 , pp. 157-164
    • Nickerson, M.L.1    Warren, M.B.2    Toro, J.R.3
  • 64
    • 38449122032 scopus 로고    scopus 로고
    • Kidney-targeted birt-hogg-dubé gene inactivation in a mouse model: Erk1/2 and akt-mTOR activation, cell hyperproliferation, and polycystic kidneys
    • Baba M, Furihata M, Hong SB et al. Kidney-targeted Birt-Hogg-Dubé gene inactivation in a mouse model: Erk1/2 and Akt-mTOR activation, cell hyperproliferation, and polycystic kidneys. J Natl Cancer Inst 2008; 100: 140-154.
    • (2008) J Natl Cancer Inst , vol.100 , pp. 140-154
    • Baba, M.1    Furihata, M.2    Hong, S.B.3
  • 65
    • 0017760671 scopus 로고
    • Hereditary multiple fibrofolliculomas with trichodiscomas and acrochordons
    • Birt AR, Hogg GR, Dubé WJ. Hereditary multiple fibrofolliculomas with trichodiscomas and acrochordons. Arch Dermatol 1977; 113: 1674-1677.
    • (1977) Arch Dermatol , vol.113 , pp. 1674-1677
    • Birt, A.R.1    Hogg, G.R.2    Dubé, W.J.3
  • 66
    • 73249138930 scopus 로고    scopus 로고
    • Homozygous loss of BHD causes early embryonic lethality and kidney tumor development with activation of mTORC1 and mTORC2
    • Hasumi Y, Baba M, Ajima R et al. Homozygous loss of BHD causes early embryonic lethality and kidney tumor development with activation of mTORC1 and mTORC2. Proc Natl Acad Sci 2009; 106: 18722-18727.
    • (2009) Proc Natl Acad Sci , vol.106 , pp. 18722-18727
    • Hasumi, Y.1    Baba, M.2    Ajima, R.3
  • 67
    • 67651235863 scopus 로고    scopus 로고
    • A genome-wide screen for regulators of TORC1 in response to amino acid starvation reveals a conserved npr2/3 complex
    • Neklesa TK, Davis RW. A genome-wide screen for regulators of TORC1 in response to amino acid starvation reveals a conserved Npr2/3 complex. PLoS Genet 2009; 5: e1000515.
    • (2009) PLoS Genet , vol.5 , pp. e1000515
    • Neklesa, T.K.1    Davis, R.W.2
  • 68
    • 84878357685 scopus 로고    scopus 로고
    • A tumor suppressor complex with GAP activity for the rag GTPases that signal amino acid sufficiency to mTORC1
    • Bar-Peled L, Chantranupong L, Cherniack AD et al. A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 2013; 340: 1100-1106.
    • (2013) Science , vol.340 , pp. 1100-1106
    • Bar-Peled, L.1    Chantranupong, L.2    Cherniack, A.D.3
  • 69
    • 84878353147 scopus 로고    scopus 로고
    • Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the rag family GTPase gtr1
    • Panchaud N, Péli-Gulli MP, De Virgilio C. Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1. Sci Signal 2013; 6: ra42.
    • (2013) Sci Signal , vol.6 , pp. ra42
    • Panchaud, N.1    Péli-Gulli, M.P.2    De Virgilio, C.3
  • 70
    • 84884889883 scopus 로고    scopus 로고
    • SEACing the GAP that nEGOCiates TORC1 activation: Evolutionary conservation of rag GTPase regulation
    • Panchaud N, Péli-Gulli MP, De Virgilio C. SEACing the GAP that nEGOCiates TORC1 activation: evolutionary conservation of Rag GTPase regulation. Cell Cycle 2013; 12: 2948-2952.
    • (2013) Cell Cycle , vol.12 , pp. 2948-2952
    • Panchaud, N.1    Péli-Gulli, M.P.2    De Virgilio, C.3
  • 71
    • 84880535847 scopus 로고    scopus 로고
    • Methionine inhibits autophagy and promotes growth by inducing the SAM-responsive methylation of PP2A
    • Sutter BM, Wu X, Laxman S, Tu BP. Methionine inhibits autophagy and promotes growth by inducing the SAM-responsive methylation of PP2A. Cell 2013; 154: 403-415.
    • (2013) Cell , vol.154 , pp. 403-415
    • Sutter, B.M.1    Wu, X.2    Laxman, S.3    Tu, B.P.4
  • 72
    • 84932183545 scopus 로고    scopus 로고
    • SEA you later alli-GATOR - A dynamic regulator of the TORC1 stress response pathway
    • Dokudovskaya S, Rout MP. SEA you later alli-GATOR - a dynamic regulator of the TORC1 stress response pathway. J Cell Sci 2015; 128: 2219-2228.
    • (2015) J Cell Sci , vol.128 , pp. 2219-2228
    • Dokudovskaya, S.1    Rout, M.P.2
  • 73
    • 84939429895 scopus 로고    scopus 로고
    • The ubiquitination of RagA GTPase by RNF152 negatively regulates mTORC1 activation
    • Deng L, Jiang C, Chen L et al. The ubiquitination of RagA GTPase by RNF152 negatively regulates mTORC1 activation. Mol Cell 2015; 58: 804-818.
    • (2015) Mol Cell , vol.58 , pp. 804-818
    • Deng, L.1    Jiang, C.2    Chen, L.3
  • 74
    • 84937637420 scopus 로고    scopus 로고
    • Skp2-mediated RagA ubiquitination elicits a negative feedback to prevent aminoacid-dependent mTORC1 hyperactivation by recruiting GATOR1
    • Jin G, Lee SW, Zhang X et al. Skp2-mediated RagA ubiquitination elicits a negative feedback to prevent aminoacid-dependent mTORC1 hyperactivation by recruiting GATOR1. Mol Cell 2015; 58: 989-1000.
    • (2015) Mol Cell , vol.58 , pp. 989-1000
    • Jin, G.1    Lee, S.W.2    Zhang, X.3
  • 75
    • 84906971940 scopus 로고    scopus 로고
    • Nitrogen source activates TOR (target of rapamycin) complex 1 via glutamine and independently of Gtr/Rag proteins
    • Stracka D, Jozefczuk S, Rudroff F, Sauer U, Hall MN. Nitrogen source activates TOR (target of rapamycin) complex 1 via glutamine and independently of Gtr/Rag proteins. J Biol Chem 2014; 289: 25010-25020.
    • (2014) J Biol Chem , vol.289 , pp. 25010-25020
    • Stracka, D.1    Jozefczuk, S.2    Rudroff, F.3    Sauer, U.4    Hall, M.N.5
  • 76
    • 84907525131 scopus 로고    scopus 로고
    • Sestrins function as guanine nucleotide dissociation inhibitors for rag GTPases to control mTORC1 signaling
    • Peng M, Yin N, Li MO. Sestrins function as guanine nucleotide dissociation inhibitors for Rag GTPases to control mTORC1 signaling. Cell 2014; 159: 122-133.
    • (2014) Cell , vol.159 , pp. 122-133
    • Peng, M.1    Yin, N.2    Li, M.O.3
  • 77
    • 84912128530 scopus 로고    scopus 로고
    • Sestrins inhibit mTORC1 kinase activation through the GATOR complex
    • Parmigiani A, Nourbakhsh A, Ding B et al. Sestrins inhibit mTORC1 kinase activation through the GATOR complex. Cell Rep 2014; 9: 1281-1291.
    • (2014) Cell Rep , vol.9 , pp. 1281-1291
    • Parmigiani, A.1    Nourbakhsh, A.2    Ding, B.3
  • 78
    • 84907991157 scopus 로고    scopus 로고
    • The sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1
    • Chantranupong L, Wolfson RL, Orozco JM et al. The Sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1. Cell Rep 2014; 9: 1-8.
    • (2014) Cell Rep , vol.9 , pp. 1-8
    • Chantranupong, L.1    Wolfson, R.L.2    Orozco, J.M.3
  • 79
    • 84961291783 scopus 로고    scopus 로고
    • Sestrin2 inhibits mTORC1 through modulation of GATOR complexes
    • Kim JS, Ro SH, Kim M et al. Sestrin2 inhibits mTORC1 through modulation of GATOR complexes. Sci Rep 2015; 5: 9502.
    • (2015) Sci Rep , vol.5 , pp. 9502
    • Kim, J.S.1    Ro, S.H.2    Kim, M.3
  • 80
    • 77749264562 scopus 로고    scopus 로고
    • Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies
    • Lee JH, Budanov AV, Park EJ et al. Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies. Science 2010; 327: 1223-1228.
    • (2010) Science , vol.327 , pp. 1223-1228
    • Lee, J.H.1    Budanov, A.V.2    Park, E.J.3
  • 81
    • 48449101433 scopus 로고    scopus 로고
    • P53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling
    • Budanov AV, Karin M. p53 target genes Sestrin1 and Sestrin2 connect genotoxic stress and mTOR signaling. Cell 2008; 134: 451-460.
    • (2008) Cell , vol.134 , pp. 451-460
    • Budanov, A.V.1    Karin, M.2
  • 82
    • 84952915479 scopus 로고    scopus 로고
    • Sestrin2 is a leucine sensor for the mTOR pathway
    • pii:aab2674 (e-pub ahead of print 8 October)
    • Wolfson RL, Chantranupong L, Saxton RA et al. Sestrin2 is a leucine sensor for the mTOR pathway. Science pii:aab2674 (e-pub ahead of print 8 October 2015; doi: 10.1126/science.aab2674).
    • (2015) Science
    • Wolfson, R.L.1    Chantranupong, L.2    Saxton, R.A.3
  • 83
    • 84952898511 scopus 로고    scopus 로고
    • Structural basis for leucine sensing by the sestrin2-mTORC1 pathway
    • pii:aab2087 (e-pub ahead of print 19 November)
    • Saxton RA, Knockenhauer KE, Wolfson RL et al. Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway. Science pii:aab2087 (e-pub ahead of print 19 November 2015; doi: 10.1126/science.aab2087).
    • (2015) Science
    • Saxton, R.A.1    Knockenhauer, K.E.2    Wolfson, R.L.3
  • 84
    • 84889681863 scopus 로고    scopus 로고
    • Sestrins orchestrate cellular metabolism to attenuate aging
    • Lee JH, Budanov AV, Karin M. Sestrins orchestrate cellular metabolism to attenuate aging. Cell Metab 2013; 18: 792-801.
    • (2013) Cell Metab , vol.18 , pp. 792-801
    • Lee, J.H.1    Budanov, A.V.2    Karin, M.3
  • 85
    • 84922743269 scopus 로고    scopus 로고
    • Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1
    • Wang S, Tsun ZY, Wolfson RL et al. Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 2015; 347: 188-194.
    • (2015) Science , vol.347 , pp. 188-194
    • Wang, S.1    Tsun, Z.Y.2    Wolfson, R.L.3
  • 86
    • 84925777835 scopus 로고    scopus 로고
    • SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1
    • Rebsamen M, Pochini L, Stasyk T et al. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 2015; 519: 477-481.
    • (2015) Nature , vol.519 , pp. 477-481
    • Rebsamen, M.1    Pochini, L.2    Stasyk, T.3
  • 87
    • 84932638310 scopus 로고    scopus 로고
    • Amino acid-dependent mTORC1 regulation by the lysosomal membrane protein SLC38A9
    • Jung J, Genau HM, Behrends C. Amino acid-dependent mTORC1 regulation by the lysosomal membrane protein SLC38A9. Mol Cell Biol 2015; 35: 2479-2494.
    • (2015) Mol Cell Biol , vol.35 , pp. 2479-2494
    • Jung, J.1    Genau, H.M.2    Behrends, C.3
  • 88
    • 81355124777 scopus 로고    scopus 로고
    • The SLC36 family of protoncoupled amino acid transporters and their potential role in drug transport
    • Thwaites DT, Anderson CM. The SLC36 family of protoncoupled amino acid transporters and their potential role in drug transport. Br J Pharmacol 2011; 164: 1802-1816.
    • (2011) Br J Pharmacol , vol.164 , pp. 1802-1816
    • Thwaites, D.T.1    Anderson, C.M.2
  • 89
    • 84871260456 scopus 로고    scopus 로고
    • Protonassisted amino acid transporter PAT1 complexes with rag GTPases and activates TORC1 on late endosomal and lysosomal membranes
    • Ögmundsdóttir MH, Heublein S, Kazi S et al. Protonassisted amino acid transporter PAT1 complexes with Rag GTPases and activates TORC1 on late endosomal and lysosomal membranes. PLoS ONE 2012; 7: e36616.
    • (2012) PLoS ONE , vol.7 , pp. e36616
    • Ögmundsdóttir, M.H.1    Heublein, S.2    Kazi, S.3
  • 90
    • 84907962139 scopus 로고    scopus 로고
    • The histidine transporter SLC15A4 coordinates mTOR-dependent inflammatory responses and pathogenic antibody production
    • Kobayashi T, Shimabukuro-Demoto S, Yoshida-Sugitani R et al. The histidine transporter SLC15A4 coordinates mTOR-dependent inflammatory responses and pathogenic antibody production. Immunity 2014; 41: 375-388.
    • (2014) Immunity , vol.41 , pp. 375-388
    • Kobayashi, T.1    Shimabukuro-Demoto, S.2    Yoshida-Sugitani, R.3
  • 91
    • 84858183302 scopus 로고    scopus 로고
    • Regulation of amino acid, nucleotide, and phosphate metabolism in saccharomyces cerevisiae
    • Ljungdahl PO, Daignan-Fornier B. Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics 2012; 190: 885-929.
    • (2012) Genetics , vol.190 , pp. 885-929
    • Ljungdahl, P.O.1    Daignan-Fornier, B.2
  • 92
    • 33845407202 scopus 로고    scopus 로고
    • Atg22 recycles amino acids to link the degradative and recycling functions of autophagy
    • Yang Z, Huang J, Geng J, Nair U, Klionsky DJ. Atg22 recycles amino acids to link the degradative and recycling functions of autophagy. Mol Biol Cell 2006; 17: 5094-5104.
    • (2006) Mol Biol Cell , vol.17 , pp. 5094-5104
    • Yang, Z.1    Huang, J.2    Geng, J.3    Nair, U.4    Klionsky, D.J.5
  • 93
    • 0035968245 scopus 로고    scopus 로고
    • A family of yeast proteins mediating bidirectional vacuolar amino acid transport
    • Russnak R, Konczal D, McIntire SL. A family of yeast proteins mediating bidirectional vacuolar amino acid transport. J Biol Chem 2001; 276: 23849-23857.
    • (2001) J Biol Chem , vol.276 , pp. 23849-23857
    • Russnak, R.1    Konczal, D.2    McIntire, S.L.3
  • 94
    • 77955055166 scopus 로고    scopus 로고
    • MAP4K3 regulates body size and metabolism in drosophila
    • Bryk B, Hahn K, Cohen SM, Teleman AA. MAP4K3 regulates body size and metabolism in Drosophila. Dev Biol 2010; 344: 150-157.
    • (2010) Dev Biol , vol.344 , pp. 150-157
    • Bryk, B.1    Hahn, K.2    Cohen, S.M.3    Teleman, A.A.4
  • 95
    • 34147141941 scopus 로고    scopus 로고
    • A MAP4 kinase related to ste20 is a nutrient-sensitive regulator of mTOR signalling
    • Findlay GM, Yan L, Procter J, Mieulet V, Lamb RF. A MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of mTOR signalling. Biochem J 2007; 403: 13-20.
    • (2007) Biochem J , vol.403 , pp. 13-20
    • Findlay, G.M.1    Yan, L.2    Procter, J.3    Mieulet, V.4    Lamb, R.F.5
  • 96
    • 77649269312 scopus 로고    scopus 로고
    • T61∈ is an inhibitor of MAP4K3 in nutrient signaling to mTOR
    • T61∈ is an inhibitor of MAP4K3 in nutrient signaling to mTOR. Mol Cell 2010; 37: 633-642.
    • (2010) Mol Cell , vol.37 , pp. 633-642
    • Yan, L.1    Mieulet, V.2    Burgess, D.3
  • 97
    • 80053586265 scopus 로고    scopus 로고
    • P62 is a key regulator of nutrient sensing in the mTORC1 pathway
    • Duran A, Amanchy R, Linares JF et al. p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Mol Cell 2011; 44: 134-146.
    • (2011) Mol Cell , vol.44 , pp. 134-146
    • Duran, A.1    Amanchy, R.2    Linares, J.F.3
  • 98
    • 84863009605 scopus 로고    scopus 로고
    • SH3BP4 is a negative regulator of amino acid-rag GTPase-mTORC1 signaling
    • Kim YM, Stone M, Hwang TH et al. SH3BP4 is a negative regulator of amino acid-Rag GTPase-mTORC1 signaling. Mol Cell 2012; 46: 833-846.
    • (2012) Mol Cell , vol.46 , pp. 833-846
    • Kim, Y.M.1    Stone, M.2    Hwang, T.H.3
  • 99
    • 84940789032 scopus 로고    scopus 로고
    • Disruption of the rag-ragulator complex by c17orf59 inhibits mTORC1
    • Schweitzer LD, Comb WC, Bar-Peled L, Sabatini DM. Disruption of the Rag-Ragulator complex by c17orf59 inhibits mTORC1. Cell Rep 2015; 12: 1445-1455.
    • (2015) Cell Rep , vol.12 , pp. 1445-1455
    • Schweitzer, L.D.1    Comb, W.C.2    Bar-Peled, L.3    Sabatini, D.M.4
  • 100
    • 84864931233 scopus 로고    scopus 로고
    • Glutaminolysis activates rag-mTORC1 signaling
    • Durán RV, Oppliger W, Robitaille AM et al. Glutaminolysis activates Rag-mTORC1 signaling. Mol Cell 2012; 47: 349-358.
    • (2012) Mol Cell , vol.47 , pp. 349-358
    • Durán, R.V.1    Oppliger, W.2    Robitaille, A.M.3
  • 101
    • 84922727084 scopus 로고    scopus 로고
    • Differential regulation of mTORC1 by leucine and glutamine
    • Jewell JL, Kim YC, Russell RC et al. Differential regulation of mTORC1 by leucine and glutamine. Science 2015; 347: 194-198.
    • (2015) Science , vol.347 , pp. 194-198
    • Jewell, J.L.1    Kim, Y.C.2    Russell, R.C.3
  • 102
    • 84912068759 scopus 로고    scopus 로고
    • Rab1A is an mTORC1 activator and a colorectal oncogene
    • Thomas JD, Zhang YJ, Wei YH et al. Rab1A is an mTORC1 activator and a colorectal oncogene. Cancer Cell 2014; 26: 754-769.
    • (2014) Cancer Cell , vol.26 , pp. 754-769
    • Thomas, J.D.1    Zhang, Y.J.2    Wei, Y.H.3
  • 103
    • 84893477830 scopus 로고    scopus 로고
    • Amino acids activate mammalian target of rapamycin (mTOR) complex 1 without changing rag GTPase guanyl nucleotide charging
    • Oshiro N, Rapley J, Avruch J. Amino acids activate mammalian target of rapamycin (mTOR) complex 1 without changing Rag GTPase guanyl nucleotide charging. J Biol Chem 2014; 289: 2658-2674.
    • (2014) J Biol Chem , vol.289 , pp. 2658-2674
    • Oshiro, N.1    Rapley, J.2    Avruch, J.3
  • 104
    • 33846109356 scopus 로고    scopus 로고
    • A novel human primary immunodeficiency syndrome caused by deficiency of the endosomal adaptor protein p14
    • Bohn G, Allroth A, Brandes G et al. A novel human primary immunodeficiency syndrome caused by deficiency of the endosomal adaptor protein p14. Nat Med 2007; 13: 38-45.
    • (2007) Nat Med , vol.13 , pp. 38-45
    • Bohn, G.1    Allroth, A.2    Brandes, G.3
  • 105
    • 84936074487 scopus 로고    scopus 로고
    • Decreased expression of NPRL2 in renal cancer cells is associated with unfavourable pathological, proliferation and apoptotic features
    • Tang Y, Jiang L, Tang W. Decreased expression of NPRL2 in renal cancer cells is associated with unfavourable pathological, proliferation and apoptotic features. Pathol Oncol Res 2014; 20: 829-837.
    • (2014) Pathol Oncol Res , vol.20 , pp. 829-837
    • Tang, Y.1    Jiang, L.2    Tang, W.3
  • 106
    • 33750330930 scopus 로고    scopus 로고
    • The 3p21.3 tumor suppressor NPRL2 plays an important role in cisplatininduced resistance in human non-small-cell lung cancer cells
    • Ueda K, Kawashima H, Ohtani S et al. The 3p21.3 tumor suppressor NPRL2 plays an important role in cisplatininduced resistance in human non-small-cell lung cancer cells. Cancer Res 2006; 66: 9682-9690.
    • (2006) Cancer Res , vol.66 , pp. 9682-9690
    • Ueda, K.1    Kawashima, H.2    Ohtani, S.3
  • 107
    • 0036569946 scopus 로고    scopus 로고
    • Expression of several genes in the human chromosome 3p21.3 homozygous deletion region by an adenovirus vector results in tumor suppressor activities in vitro and in vivo
    • Ji L, Nishizaki M, Gao BN et al. Expression of several genes in the human chromosome 3p21.3 homozygous deletion region by an adenovirus vector results in tumor suppressor activities in vitro and in vivo. Cancer Res 2002; 62: 2715-2720.
    • (2002) Cancer Res , vol.62 , pp. 2715-2720
    • Ji, L.1    Nishizaki, M.2    Gao, B.N.3
  • 108
    • 4644279735 scopus 로고    scopus 로고
    • Functional characterization of the candidate tumor suppressor gene NPRL2/G21 located in 3p21.3C
    • Li J, Wang F, Haraldson K et al. Functional characterization of the candidate tumor suppressor gene NPRL2/G21 located in 3p21.3C. Cancer Res 2004; 64: 6438-6443.
    • (2004) Cancer Res , vol.64 , pp. 6438-6443
    • Li, J.1    Wang, F.2    Haraldson, K.3
  • 109
    • 57749173112 scopus 로고    scopus 로고
    • Downregulation of RBSP3/CTDSPL, NPRL2/G21, RASSF1A, ITGA9, HYAL1, and HYAL2 in non-small cell lung cancer
    • Anedchenko EA, Dmitriev AA, Krasnov GS et al. Downregulation of RBSP3/CTDSPL, NPRL2/G21, RASSF1A, ITGA9, HYAL1, and HYAL2 in non-small cell lung cancer. Mol Biol 2008; 42: 859-869.
    • (2008) Mol Biol , vol.42 , pp. 859-869
    • Anedchenko, E.A.1    Dmitriev, A.A.2    Krasnov, G.S.3
  • 110
    • 70349260217 scopus 로고    scopus 로고
    • The tumor suppressor NPRL2 in hepatocellular carcinoma plays an important role in progression and can be served as an independent prognostic factor
    • Otani S, Takeda S, Yamada S et al. The tumor suppressor NPRL2 in hepatocellular carcinoma plays an important role in progression and can be served as an independent prognostic factor. J Surg Oncol 2009; 100: 358-363.
    • (2009) J Surg Oncol , vol.100 , pp. 358-363
    • Otani, S.1    Takeda, S.2    Yamada, S.3
  • 111
    • 84878352545 scopus 로고    scopus 로고
    • Mutations in DEPDC5 cause familial focal epilepsy862 with variable foci
    • Dibbens LM, de Vries B, Donatello S et al. Mutations in DEPDC5 cause familial focal epilepsy862 with variable foci. Nat Genet 2013; 45: 546-551.
    • (2013) Nat Genet , vol.45 , pp. 546-551
    • Dibbens, L.M.1    De Vries, B.2    Donatello, S.3
  • 112
    • 84878366242 scopus 로고    scopus 로고
    • Mutations of DEPDC5 cause autosomal dominant focal epilepsies
    • Ishida S, Picard F, Rudolf G et al. Mutations of DEPDC5 cause autosomal dominant focal epilepsies. Nat Genet 2013; 45: 552-555.
    • (2013) Nat Genet , vol.45 , pp. 552-555
    • Ishida, S.1    Picard, F.2    Rudolf, G.3
  • 113
    • 84903974365 scopus 로고    scopus 로고
    • DEPDC5 mutations in families presenting as autosomal dominant nocturnal frontal lobe epilepsy
    • Picard F, Makrythanasis P, Navarro V et al. DEPDC5 mutations in families presenting as autosomal dominant nocturnal frontal lobe epilepsy. Neurology 2014; 82: 2101-2106.
    • (2014) Neurology , vol.82 , pp. 2101-2106
    • Picard, F.1    Makrythanasis, P.2    Navarro, V.3
  • 114
    • 84902281810 scopus 로고    scopus 로고
    • Mutations in mammalian target of rapamycin regulator DEPDC5 cause focal epilepsy with brain malformations
    • Scheffer IE, Heron SE, Regan BM et al. Mutations in mammalian target of rapamycin regulator DEPDC5 cause focal epilepsy with brain malformations. Ann Neurol 2014; 75: 782-787.
    • (2014) Ann Neurol , vol.75 , pp. 782-787
    • Scheffer, I.E.1    Heron, S.E.2    Regan, B.M.3
  • 115
    • 84902273128 scopus 로고    scopus 로고
    • DEPDC5 mutations in genetic focal epilepsies of childhood
    • Lal D, Reinthaler EM, Schubert J et al. DEPDC5 mutations in genetic focal epilepsies of childhood. Ann Neurol 2014; 75: 788-792.
    • (2014) Ann Neurol , vol.75 , pp. 788-792
    • Lal, D.1    Reinthaler, E.M.2    Schubert, J.3
  • 116
    • 84937511052 scopus 로고    scopus 로고
    • A recurrent mutation in DEPDC5 predisposes to focal epilepsies in the French-canadian population
    • Martin C, Meloche C, Rioux MF et al. A recurrent mutation in DEPDC5 predisposes to focal epilepsies in the French-Canadian population. Clin Genet 2014; 86: 570-574.
    • (2014) Clin Genet , vol.86 , pp. 570-574
    • Martin, C.1    Meloche, C.2    Rioux, M.F.3
  • 117
    • 84873665112 scopus 로고    scopus 로고
    • Regulation of mTORC1 by the rag GTPases is necessary for neonatal autophagy and survival
    • Efeyan A, Zoncu R, Chang S et al. Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival. Nature 2013; 493: 679-683.
    • (2013) Nature , vol.493 , pp. 679-683
    • Efeyan, A.1    Zoncu, R.2    Chang, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.