-
1
-
-
84859778293
-
MTOR signaling in growth control and disease
-
Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012; 149: 274-293.
-
(2012)
Cell
, vol.149
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
2
-
-
32044465506
-
TOR signaling in growth and metabolism
-
Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell 2006; 124: 471-484.
-
(2006)
Cell
, vol.124
, pp. 471-484
-
-
Wullschleger, S.1
Loewith, R.2
Hall, M.N.3
-
3
-
-
67349241955
-
DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival
-
Peterson TR, Laplante M, Thoreen CC et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 2009; 137: 873-886.
-
(2009)
Cell
, vol.137
, pp. 873-886
-
-
Peterson, T.R.1
Laplante, M.2
Thoreen, C.C.3
-
4
-
-
33947264077
-
PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase
-
Sancak Y, Thoreen CC, Peterson TR et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 2007; 25: 903-915.
-
(2007)
Mol Cell
, vol.25
, pp. 903-915
-
-
Sancak, Y.1
Thoreen, C.C.2
Peterson, T.R.3
-
5
-
-
45849105156
-
The rag GTPases bind raptor and mediate amino acid signaling to mTORC1
-
Sancak Y, Peterson TR, Shaul YD et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008; 320: 1496-1501.
-
(2008)
Science
, vol.320
, pp. 1496-1501
-
-
Sancak, Y.1
Peterson, T.R.2
Shaul, Y.D.3
-
6
-
-
0032486268
-
Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism
-
Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem 1998; 273: 14484-14494.
-
(1998)
J Biol Chem
, vol.273
, pp. 14484-14494
-
-
Hara, K.1
Yonezawa, K.2
Weng, Q.P.3
Kozlowski, M.T.4
Belham, C.5
Avruch, J.6
-
7
-
-
0032528917
-
Amino acid availability regulates p70 S6 kinase and multiple translation factors
-
Wang X, Campbell LE, Miller CM, Proud CG. Amino acid availability regulates p70 S6 kinase and multiple translation factors. Biochem J 1998; 334: 261-267.
-
(1998)
Biochem J
, vol.334
, pp. 261-267
-
-
Wang, X.1
Campbell, L.E.2
Miller, C.M.3
Proud, C.G.4
-
8
-
-
0037076314
-
The TORcontrolled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine
-
Crespo JL, Powers T, Fowler B, Hall MN. The TORcontrolled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine. Proc Natl Acad Sci 2002; 99: 6784-6789.
-
(2002)
Proc Natl Acad Sci
, vol.99
, pp. 6784-6789
-
-
Crespo, J.L.1
Powers, T.2
Fowler, B.3
Hall, M.N.4
-
9
-
-
42449130835
-
Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs
-
Yao K, Yin YL, Chu W et al. Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs. J Nutr 2008; 138: 867-872.
-
(2008)
J Nutr
, vol.138
, pp. 867-872
-
-
Yao, K.1
Yin, Y.L.2
Chu, W.3
-
10
-
-
84865100829
-
L-arginine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells
-
Kong X, Tan B, Yin Y et al. L-Arginine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells. J Nutr Biochem 2012; 23: 1178-1183.
-
(2012)
J Nutr Biochem
, vol.23
, pp. 1178-1183
-
-
Kong, X.1
Tan, B.2
Yin, Y.3
-
11
-
-
84881154184
-
Control of cell growth: Rag GTPases in activation of TORC1
-
Yang H, Gong R, Xu Y. Control of cell growth: Rag GTPases in activation of TORC1. Cell Mol Life Sci 2013; 70: 2873-2885.
-
(2013)
Cell Mol Life Sci
, vol.70
, pp. 2873-2885
-
-
Yang, H.1
Gong, R.2
Xu, Y.3
-
12
-
-
80051873144
-
Crystal structure of the gtr1p-gtr2p complex reveals new insights into the amino acidinduced TORC1 activation
-
Gong R, Li L, Liu Y et al. Crystal structure of the Gtr1p-Gtr2p complex reveals new insights into the amino acidinduced TORC1 activation. Genes Dev 2011; 25: 1668-1673.
-
(2011)
Genes Dev
, vol.25
, pp. 1668-1673
-
-
Gong, R.1
Li, L.2
Liu, Y.3
-
13
-
-
0035831451
-
Novel G proteins, rag C and rag D, interact with GTPbinding proteins, rag A and rag B
-
Sekiguchi T, Hirose E, Nakashima N, Ii M, Nishimoto T. Novel G proteins, Rag C and Rag D, interact with GTPbinding proteins, Rag A and Rag B. J Biol Chem 2001; 276: 7246-7257.
-
(2001)
J Biol Chem
, vol.276
, pp. 7246-7257
-
-
Sekiguchi, T.1
Hirose, E.2
Nakashima, N.3
Ii, M.4
Nishimoto, T.5
-
14
-
-
0032771639
-
Saccharomyces cerevisiae putative G protein, gtr1p, which forms complexes with itself and a novel protein designated as gtr2p, negatively regulates the Ran/Gsp1p G protein cycle through gtr2p
-
Nakashima N, Noguchi E, Nishimoto T. Saccharomyces cerevisiae putative G protein, Gtr1p, which forms complexes with itself and a novel protein designated as Gtr2p, negatively regulates the Ran/Gsp1p G protein cycle through Gtr2p. Genetics 1999; 152: 853-867.
-
(1999)
Genetics
, vol.152
, pp. 853-867
-
-
Nakashima, N.1
Noguchi, E.2
Nishimoto, T.3
-
15
-
-
69749113579
-
The vam6 GEF controls TORC1 by activating the EGO complex
-
Binda M, Péli-Gulli MP, Bonfils G et al. The Vam6 GEF controls TORC1 by activating the EGO complex. Mol Cell 2009; 35: 563-573.
-
(2009)
Mol Cell
, vol.35
, pp. 563-573
-
-
Binda, M.1
Péli-Gulli, M.P.2
Bonfils, G.3
-
16
-
-
33745745910
-
A conserved GTPase-containing complex is required for intracellular sorting of the general amino-acid permease in yeast
-
Gao M, Kaiser CA. A conserved GTPase-containing complex is required for intracellular sorting of the general amino-acid permease in yeast. Nat Cell Biol 2006; 8: 657-667.
-
(2006)
Nat Cell Biol
, vol.8
, pp. 657-667
-
-
Gao, M.1
Kaiser, C.A.2
-
17
-
-
48649085816
-
Regulation of TORC1 by rag GTPases in nutrient response
-
Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL. Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 2008; 10: 935-945.
-
(2008)
Nat Cell Biol
, vol.10
, pp. 935-945
-
-
Kim, E.1
Goraksha-Hicks, P.2
Li, L.3
Neufeld, T.P.4
Guan, K.L.5
-
18
-
-
84926418992
-
MCRS1 binds and couples rheb to amino acid-dependent mTORC1 activation
-
Fawal MA, Brandt M, Djouder N. MCRS1 binds and couples Rheb to amino acid-dependent mTORC1 activation. Dev Cell 2015; 33: 67-81.
-
(2015)
Dev Cell
, vol.33
, pp. 67-81
-
-
Fawal, M.A.1
Brandt, M.2
Djouder, N.3
-
19
-
-
84894212463
-
Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2
-
Demetriades C, Doumpas N, Teleman AA. Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell 2014; 156: 786-799.
-
(2014)
Cell
, vol.156
, pp. 786-799
-
-
Demetriades, C.1
Doumpas, N.2
Teleman, A.A.3
-
20
-
-
84901828078
-
Requirement for lysosomal localization of mTOR for its activation differs between leucine and other amino acids
-
Averous J, Lambert-Langlais S, Carraro V et al. Requirement for lysosomal localization of mTOR for its activation differs between leucine and other amino acids. Cell Signal 2014; 26: 1918-1927.
-
(2014)
Cell Signal
, vol.26
, pp. 1918-1927
-
-
Averous, J.1
Lambert-Langlais, S.2
Carraro, V.3
-
21
-
-
84865371057
-
TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1
-
Dibble CC, Elis W, Menon S et al. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol Cell 2012; 47: 535-546.
-
(2012)
Mol Cell
, vol.47
, pp. 535-546
-
-
Dibble, C.C.1
Elis, W.2
Menon, S.3
-
22
-
-
0043127125
-
Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling
-
Inoki K, Li Y, Xu T, Guan KL. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 2003; 17: 1829-1834.
-
(2003)
Genes Dev
, vol.17
, pp. 1829-1834
-
-
Inoki, K.1
Li, Y.2
Xu, T.3
Guan, K.L.4
-
23
-
-
0042701991
-
Tuberous sclerosis complex gene products, tuberin and hamartin, control mTOR signaling by acting as a GTPaseactivating protein complex toward rheb
-
Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPaseactivating protein complex toward Rheb. Curr Biol 2003; 13: 1259-1268.
-
(2003)
Curr Biol
, vol.13
, pp. 1259-1268
-
-
Tee, A.R.1
Manning, B.D.2
Roux, P.P.3
Cantley, L.C.4
Blenis, J.5
-
24
-
-
84894114029
-
Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome
-
Menon S, Dibble CC, Talbott G et al. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 2014; 156: 771-785.
-
(2014)
Cell
, vol.156
, pp. 771-785
-
-
Menon, S.1
Dibble, C.C.2
Talbott, G.3
-
25
-
-
84907178314
-
Reciprocal conversion of gtr1 and gtr2 nucleotide-binding states by npr2-npr3 inactivates TORC1 and induces autophagy
-
Kira S, Tabata K, Shirahama-Noda K, Nozoe A, Yoshimori T, Noda T. Reciprocal conversion of Gtr1 and Gtr2 nucleotide-binding states by Npr2-Npr3 inactivates TORC1 and induces autophagy. Autophagy 2014; 10: 1565-1578.
-
(2014)
Autophagy
, vol.10
, pp. 1565-1578
-
-
Kira, S.1
Tabata, K.2
Shirahama-Noda, K.3
Nozoe, A.4
Yoshimori, T.5
Noda, T.6
-
27
-
-
84888200442
-
The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1
-
Tsun ZY, Bar-Peled L, Chantranupong L et al. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol Cell 2013; 52: 495-505.
-
(2013)
Mol Cell
, vol.52
, pp. 495-505
-
-
Tsun, Z.Y.1
Bar-Peled, L.2
Chantranupong, L.3
-
28
-
-
21244448694
-
The TOR and EGO protein complexes orchestrate microautophagy in yeast
-
Dubouloz F, Deloche O, Wanke V, Cameroni E, De Virgilio C. The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol Cell 2005; 19: 15-26.
-
(2005)
Mol Cell
, vol.19
, pp. 15-26
-
-
Dubouloz, F.1
Deloche, O.2
Wanke, V.3
Cameroni, E.4
De Virgilio, C.5
-
29
-
-
84870530032
-
Ego3 functions as a homodimer to mediate the interaction between gtr1-gtr2 and ego1 in the EGO complex to activate TORC1
-
Zhang T, Péli-Gulli MP, Yang H, De Virgilio C, Ding J. Ego3 functions as a homodimer to mediate the interaction between Gtr1-Gtr2 and Ego1 in the EGO complex to activate TORC1. Structure 2012; 20: 2151-2160.
-
(2012)
Structure
, vol.20
, pp. 2151-2160
-
-
Zhang, T.1
Péli-Gulli, M.P.2
Yang, H.3
De Virgilio, C.4
Ding, J.5
-
30
-
-
84940891788
-
Crystal structure of the ego1-ego2-ego3 complex and its role in promoting rag GTPase-dependent TORC1 signaling
-
Powis K, Zhang T, Panchaud N, Wang R, De Virgilio C, Ding J. Crystal structure of the Ego1-Ego2-Ego3 complex and its role in promoting Rag GTPase-dependent TORC1 signaling. Cell Res 2015; 25: 1043-1059.
-
(2015)
Cell Res
, vol.25
, pp. 1043-1059
-
-
Powis, K.1
Zhang, T.2
Panchaud, N.3
Wang, R.4
De Virgilio, C.5
Ding, J.6
-
31
-
-
0032476052
-
A role for saccharomyces cerevisiae fatty acid activation protein 4 in regulating protein N-myristoylation during entry into stationary phase
-
Ashrafi K, Farazi TA, Gordon JI. A role for Saccharomyces cerevisiae fatty acid activation protein 4 in regulating protein N-myristoylation during entry into stationary phase. J Biol Chem 1998; 273: 25864-25874.
-
(1998)
J Biol Chem
, vol.273
, pp. 25864-25874
-
-
Ashrafi, K.1
Farazi, T.A.2
Gordon, J.I.3
-
32
-
-
67650540764
-
Molecular recognition of the palmitoylation substrate vac8 by its palmitoyltransferase pfa3
-
Nadolski MJ, Linder ME. Molecular recognition of the palmitoylation substrate Vac8 by its palmitoyltransferase Pfa3. J Biol Chem 2009; 284: 17720-17730.
-
(2009)
J Biol Chem
, vol.284
, pp. 17720-17730
-
-
Nadolski, M.J.1
Linder, M.E.2
-
33
-
-
33646899047
-
Global analysis of protein palmitoylation in yeast
-
Roth AF, Wan J, Bailey AO et al. Global analysis of protein palmitoylation in yeast. Cell 2006; 125: 1003-1013.
-
(2006)
Cell
, vol.125
, pp. 1003-1013
-
-
Roth, A.F.1
Wan, J.2
Bailey, A.O.3
-
34
-
-
77956740779
-
Structural conservation of components in the amino acid sensing branch of the TOR pathway in yeast and mammals
-
Kogan K, Spear ED, Kaiser CA, Fass D. Structural conservation of components in the amino acid sensing branch of the TOR pathway in yeast and mammals. J Mol Biol 2010; 402: 388-398.
-
(2010)
J Mol Biol
, vol.402
, pp. 388-398
-
-
Kogan, K.1
Spear, E.D.2
Kaiser, C.A.3
Fass, D.4
-
35
-
-
84876431000
-
Discovery of new longin and roadblock domains that form platforms for small GTPases in ragulator and TRAPP-II
-
Levine TP, Daniels RD, Wong LH, Gatta AT, Gerondopoulos A, Barr FA. Discovery of new Longin and Roadblock domains that form platforms for small GTPases in Ragulator and TRAPP-II. Small GTPases 2013; 4: 62-69.
-
(2013)
Small GTPases
, vol.4
, pp. 62-69
-
-
Levine, T.P.1
Daniels, R.D.2
Wong, L.H.3
Gatta, A.T.4
Gerondopoulos, A.5
Barr, F.A.6
-
36
-
-
84866431363
-
Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1
-
Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 2012; 150: 1196-1208.
-
(2012)
Cell
, vol.150
, pp. 1196-1208
-
-
Bar-Peled, L.1
Schweitzer, L.D.2
Zoncu, R.3
Sabatini, D.M.4
-
37
-
-
77951768486
-
Ragulator-rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010; 141: 290-303.
-
(2010)
Cell
, vol.141
, pp. 290-303
-
-
Sancak, Y.1
Bar-Peled, L.2
Zoncu, R.3
Markhard, A.L.4
Nada, S.5
Sabatini, D.M.6
-
38
-
-
62049084764
-
The novel lipid raft adaptor p18 controls endosome dynamics by anchoring the MEK-ERK pathway to late endosomes
-
Nada S, Hondo A, Kasai A et al. The novel lipid raft adaptor p18 controls endosome dynamics by anchoring the MEK-ERK pathway to late endosomes. EMBO J 2009; 28: 477-489.
-
(2009)
EMBO J
, vol.28
, pp. 477-489
-
-
Nada, S.1
Hondo, A.2
Kasai, A.3
-
41
-
-
84907519033
-
The lysosomal v-ATPase-ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism
-
Zhang CS, Jiang B, Li M et al. The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab 2014; 20: 526-540.
-
(2014)
Cell Metab
, vol.20
, pp. 526-540
-
-
Zhang, C.S.1
Jiang, B.2
Li, M.3
-
42
-
-
33645453254
-
Global landscape of protein complexes in the yeast saccharomyces cerevisiae
-
Krogan NJ, Cagney G, Yu H et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 2006; 440: 637-643.
-
(2006)
Nature
, vol.440
, pp. 637-643
-
-
Krogan, N.J.1
Cagney, G.2
Yu, H.3
-
43
-
-
45849110261
-
An in vivo map of the yeast protein interactome
-
Tarassov K, Messier V, Landry CR et al. An in vivo map of the yeast protein interactome. Science 2008; 320: 1465-1470.
-
(2008)
Science
, vol.320
, pp. 1465-1470
-
-
Tarassov, K.1
Messier, V.2
Landry, C.R.3
-
44
-
-
84906101389
-
Cytosolic pH regulates cell growth through distinct GTPases, arf1 and gtr1, to promote ras/PKA and TORC1 activity
-
Dechant R, Saad S, Ibanez AJ, Peter M. Cytosolic pH regulates cell growth through distinct GTPases, Arf1 and Gtr1, to promote Ras/PKA and TORC1 activity. Mol Cell 2014; 55: 409-421.
-
(2014)
Mol Cell
, vol.55
, pp. 409-421
-
-
Dechant, R.1
Saad, S.2
Ibanez, A.J.3
Peter, M.4
-
45
-
-
77955405903
-
Cytosolic pH is a second messenger for glucose and regulates the PKA pathway through V-ATPase
-
Dechant R, Binda M, Lee SS, Pelet S, Winderickx J, Peter M. Cytosolic pH is a second messenger for glucose and regulates the PKA pathway through V-ATPase. EMBO J 2010; 29: 2515-2526.
-
(2010)
EMBO J
, vol.29
, pp. 2515-2526
-
-
Dechant, R.1
Binda, M.2
Lee, S.S.3
Pelet, S.4
Winderickx, J.5
Peter, M.6
-
46
-
-
48749099702
-
HOPS proofreads the trans-SNARE complex for yeast vacuole fusion
-
Starai VJ, Hickey CM, Wickner W. HOPS proofreads the trans-SNARE complex for yeast vacuole fusion. Mol Biol Cell 2008; 19: 2500-2508.
-
(2008)
Mol Biol Cell
, vol.19
, pp. 2500-2508
-
-
Starai, V.J.1
Hickey, C.M.2
Wickner, W.3
-
47
-
-
0034689021
-
Proteins needed for vesicle budding from the golgi complex are also required for the docking step of homotypic vacuole fusion
-
Price A, Wickner W, Ungermann C. Proteins needed for vesicle budding from the golgi complex are also required for the docking step of homotypic vacuole fusion. J Cell Biol 2000; 148: 1223-1229.
-
(2000)
J Cell Biol
, vol.148
, pp. 1223-1229
-
-
Price, A.1
Wickner, W.2
Ungermann, C.3
-
48
-
-
84900012487
-
Principles of membrane tethering and fusion in endosome and lysosome biogenesis
-
Kümmel D, Ungermann C. Principles of membrane tethering and fusion in endosome and lysosome biogenesis. Curr Opin Cell Biol 2014; 29: 61-66.
-
(2014)
Curr Opin Cell Biol
, vol.29
, pp. 61-66
-
-
Kümmel, D.1
Ungermann, C.2
-
49
-
-
84863110536
-
The vam6 and gtr1-gtr2 pathway activates TORC1 in response to amino acids in fission yeast
-
Valbuena N, Guan KL, Moreno S. The Vam6 and Gtr1-Gtr2 pathway activates TORC1 in response to amino acids in fission yeast. J Cell Sci 2012; 125: 1920-1928.
-
(2012)
J Cell Sci
, vol.125
, pp. 1920-1928
-
-
Valbuena, N.1
Guan, K.L.2
Moreno, S.3
-
50
-
-
34548421080
-
Efficient tor signaling requires a functional class C vps protein complex in saccharomyces cerevisiae
-
Zurita-Martinez SA, Puria R, Pan X, Boeke JD, Cardenas ME. Efficient Tor signaling requires a functional class C Vps protein complex in Saccharomyces cerevisiae. Genetics 2007; 176: 2139-2150.
-
(2007)
Genetics
, vol.176
, pp. 2139-2150
-
-
Zurita-Martinez, S.A.1
Puria, R.2
Pan, X.3
Boeke, J.D.4
Cardenas, M.E.5
-
51
-
-
84901319212
-
Endolysosomal membrane trafficking complexes drive nutrient-dependent TORC1 signaling to control cell growth in saccharomyces cerevisiae
-
Kingsbury JM, Sen ND, Maeda T, Heitman J, Cardenas ME. Endolysosomal membrane trafficking complexes drive nutrient-dependent TORC1 signaling to control cell growth in Saccharomyces cerevisiae. Genetics 2014; 196: 1077-1089.
-
(2014)
Genetics
, vol.196
, pp. 1077-1089
-
-
Kingsbury, J.M.1
Sen, N.D.2
Maeda, T.3
Heitman, J.4
Cardenas, M.E.5
-
52
-
-
84904270185
-
A dynamic interface between vacuoles and mitochondria in yeast
-
Elbaz-Alon Y, Rosenfeld-Gur E, Shinder V, Futerman AH, Geiger T, Schuldiner M. A dynamic interface between vacuoles and mitochondria in yeast. Dev Cell 2014; 30: 95-102.
-
(2014)
Dev Cell
, vol.30
, pp. 95-102
-
-
Elbaz-Alon, Y.1
Rosenfeld-Gur, E.2
Shinder, V.3
Futerman, A.H.4
Geiger, T.5
Schuldiner, M.6
-
53
-
-
84904255813
-
Cellular metabolism regulates contact sites between vacuoles and mitochondria
-
Hönscher C, Mari M, Auffarth K et al. Cellular metabolism regulates contact sites between vacuoles and mitochondria. Dev Cell 2014; 30: 86-94.
-
(2014)
Dev Cell
, vol.30
, pp. 86-94
-
-
Hönscher, C.1
Mari, M.2
Auffarth, K.3
-
54
-
-
77649140362
-
The late endosome is essential for mTORC1 signaling
-
Flinn RJ, Yan Y, Goswami S, Parker PJ, Backer JM. The late endosome is essential for mTORC1 signaling. Mol Biol Cell 2010; 21: 833-841.
-
(2010)
Mol Biol Cell
, vol.21
, pp. 833-841
-
-
Flinn, R.J.1
Yan, Y.2
Goswami, S.3
Parker, P.J.4
Backer, J.M.5
-
55
-
-
84930374068
-
The vps39-like TRAP1 is an effector of rab5 and likely the missing vps3 subunit of human CORVET
-
Lachmann J, Glaubke E, Moore P, Ungermann C. The Vps39-like TRAP1 is an effector of Rab5 and likely the missing Vps3 subunit of human CORVET. Cell Logist 2014; 4: e970840.
-
(2014)
Cell Logist
, vol.4
, pp. e970840
-
-
Lachmann, J.1
Glaubke, E.2
Moore, P.3
Ungermann, C.4
-
56
-
-
65649128580
-
Amino acid regulation of TOR complex 1
-
Avruch J, Long X, Ortiz-Vega S, Rapley J, Papageorgiou A, Dai N. Amino acid regulation of TOR complex 1. Am J Physiol Endocrinol Metab 2009; 296: E592-E602.
-
(2009)
Am J Physiol Endocrinol Metab
, vol.296
, pp. E592-E602
-
-
Avruch, J.1
Long, X.2
Ortiz-Vega, S.3
Rapley, J.4
Papageorgiou, A.5
Dai, N.6
-
57
-
-
84859704385
-
Leucyl-tRNA synthetase controls TORC1 via the EGO complex
-
Bonfils G, Jaquenoud M, Bontron S, Ostrowicz C, Ungermann C, De Virgilio C. Leucyl-tRNA synthetase controls TORC1 via the EGO complex. Mol Cell 2012; 46: 105-110.
-
(2012)
Mol Cell
, vol.46
, pp. 105-110
-
-
Bonfils, G.1
Jaquenoud, M.2
Bontron, S.3
Ostrowicz, C.4
Ungermann, C.5
De Virgilio, C.6
-
58
-
-
84862777407
-
Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway
-
Han JM, Jeong SJ, Park MC et al. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 2012; 149: 410-424.
-
(2012)
Cell
, vol.149
, pp. 410-424
-
-
Han, J.M.1
Jeong, S.J.2
Park, M.C.3
-
60
-
-
84886871016
-
Recruitment of folliculin to lysosomes supports the amino aciddependent activation of rag GTPases
-
Petit CS, Roczniak-Ferguson A, Ferguson SM. Recruitment of folliculin to lysosomes supports the amino aciddependent activation of Rag GTPases. J Cell Biol 2013; 202: 1107-1122.
-
(2013)
J Cell Biol
, vol.202
, pp. 1107-1122
-
-
Petit, C.S.1
Roczniak-Ferguson, A.2
Ferguson, S.M.3
-
61
-
-
84893055506
-
The nutrientresponsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris
-
Martina JA, Diab HI, Lishu L et al. The nutrientresponsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci Signal 2014; 7: ra9.
-
(2014)
Sci Signal
, vol.7
, pp. ra9
-
-
Martina, J.A.1
Diab, H.I.2
Lishu, L.3
-
62
-
-
84943358458
-
Amino acids stimulate TORC1 through lst4-lst7, a GTPase-activating protein complex for the rag family GTPase gtr2
-
Péli-Gulli MP, Sardu A, Panchaud N, Raucci S, De Virgilio C. Amino acids stimulate TORC1 through Lst4-Lst7, a GTPase-activating protein complex for the Rag family GTPase Gtr2. Cell Rep 2015; 13: 1-7.
-
(2015)
Cell Rep
, vol.13
, pp. 1-7
-
-
Péli-Gulli, M.P.1
Sardu, A.2
Panchaud, N.3
Raucci, S.4
De Virgilio, C.5
-
63
-
-
0000939691
-
Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the birt-hogg-dubé syndrome
-
Nickerson ML, Warren MB, Toro JR et al. Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dubé syndrome. Cancer Cell 2002; 2: 157-164.
-
(2002)
Cancer Cell
, vol.2
, pp. 157-164
-
-
Nickerson, M.L.1
Warren, M.B.2
Toro, J.R.3
-
64
-
-
38449122032
-
Kidney-targeted birt-hogg-dubé gene inactivation in a mouse model: Erk1/2 and akt-mTOR activation, cell hyperproliferation, and polycystic kidneys
-
Baba M, Furihata M, Hong SB et al. Kidney-targeted Birt-Hogg-Dubé gene inactivation in a mouse model: Erk1/2 and Akt-mTOR activation, cell hyperproliferation, and polycystic kidneys. J Natl Cancer Inst 2008; 100: 140-154.
-
(2008)
J Natl Cancer Inst
, vol.100
, pp. 140-154
-
-
Baba, M.1
Furihata, M.2
Hong, S.B.3
-
65
-
-
0017760671
-
Hereditary multiple fibrofolliculomas with trichodiscomas and acrochordons
-
Birt AR, Hogg GR, Dubé WJ. Hereditary multiple fibrofolliculomas with trichodiscomas and acrochordons. Arch Dermatol 1977; 113: 1674-1677.
-
(1977)
Arch Dermatol
, vol.113
, pp. 1674-1677
-
-
Birt, A.R.1
Hogg, G.R.2
Dubé, W.J.3
-
66
-
-
73249138930
-
Homozygous loss of BHD causes early embryonic lethality and kidney tumor development with activation of mTORC1 and mTORC2
-
Hasumi Y, Baba M, Ajima R et al. Homozygous loss of BHD causes early embryonic lethality and kidney tumor development with activation of mTORC1 and mTORC2. Proc Natl Acad Sci 2009; 106: 18722-18727.
-
(2009)
Proc Natl Acad Sci
, vol.106
, pp. 18722-18727
-
-
Hasumi, Y.1
Baba, M.2
Ajima, R.3
-
67
-
-
67651235863
-
A genome-wide screen for regulators of TORC1 in response to amino acid starvation reveals a conserved npr2/3 complex
-
Neklesa TK, Davis RW. A genome-wide screen for regulators of TORC1 in response to amino acid starvation reveals a conserved Npr2/3 complex. PLoS Genet 2009; 5: e1000515.
-
(2009)
PLoS Genet
, vol.5
, pp. e1000515
-
-
Neklesa, T.K.1
Davis, R.W.2
-
68
-
-
84878357685
-
A tumor suppressor complex with GAP activity for the rag GTPases that signal amino acid sufficiency to mTORC1
-
Bar-Peled L, Chantranupong L, Cherniack AD et al. A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 2013; 340: 1100-1106.
-
(2013)
Science
, vol.340
, pp. 1100-1106
-
-
Bar-Peled, L.1
Chantranupong, L.2
Cherniack, A.D.3
-
69
-
-
84878353147
-
Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the rag family GTPase gtr1
-
Panchaud N, Péli-Gulli MP, De Virgilio C. Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1. Sci Signal 2013; 6: ra42.
-
(2013)
Sci Signal
, vol.6
, pp. ra42
-
-
Panchaud, N.1
Péli-Gulli, M.P.2
De Virgilio, C.3
-
70
-
-
84884889883
-
SEACing the GAP that nEGOCiates TORC1 activation: Evolutionary conservation of rag GTPase regulation
-
Panchaud N, Péli-Gulli MP, De Virgilio C. SEACing the GAP that nEGOCiates TORC1 activation: evolutionary conservation of Rag GTPase regulation. Cell Cycle 2013; 12: 2948-2952.
-
(2013)
Cell Cycle
, vol.12
, pp. 2948-2952
-
-
Panchaud, N.1
Péli-Gulli, M.P.2
De Virgilio, C.3
-
71
-
-
84880535847
-
Methionine inhibits autophagy and promotes growth by inducing the SAM-responsive methylation of PP2A
-
Sutter BM, Wu X, Laxman S, Tu BP. Methionine inhibits autophagy and promotes growth by inducing the SAM-responsive methylation of PP2A. Cell 2013; 154: 403-415.
-
(2013)
Cell
, vol.154
, pp. 403-415
-
-
Sutter, B.M.1
Wu, X.2
Laxman, S.3
Tu, B.P.4
-
72
-
-
84932183545
-
SEA you later alli-GATOR - A dynamic regulator of the TORC1 stress response pathway
-
Dokudovskaya S, Rout MP. SEA you later alli-GATOR - a dynamic regulator of the TORC1 stress response pathway. J Cell Sci 2015; 128: 2219-2228.
-
(2015)
J Cell Sci
, vol.128
, pp. 2219-2228
-
-
Dokudovskaya, S.1
Rout, M.P.2
-
73
-
-
84939429895
-
The ubiquitination of RagA GTPase by RNF152 negatively regulates mTORC1 activation
-
Deng L, Jiang C, Chen L et al. The ubiquitination of RagA GTPase by RNF152 negatively regulates mTORC1 activation. Mol Cell 2015; 58: 804-818.
-
(2015)
Mol Cell
, vol.58
, pp. 804-818
-
-
Deng, L.1
Jiang, C.2
Chen, L.3
-
74
-
-
84937637420
-
Skp2-mediated RagA ubiquitination elicits a negative feedback to prevent aminoacid-dependent mTORC1 hyperactivation by recruiting GATOR1
-
Jin G, Lee SW, Zhang X et al. Skp2-mediated RagA ubiquitination elicits a negative feedback to prevent aminoacid-dependent mTORC1 hyperactivation by recruiting GATOR1. Mol Cell 2015; 58: 989-1000.
-
(2015)
Mol Cell
, vol.58
, pp. 989-1000
-
-
Jin, G.1
Lee, S.W.2
Zhang, X.3
-
75
-
-
84906971940
-
Nitrogen source activates TOR (target of rapamycin) complex 1 via glutamine and independently of Gtr/Rag proteins
-
Stracka D, Jozefczuk S, Rudroff F, Sauer U, Hall MN. Nitrogen source activates TOR (target of rapamycin) complex 1 via glutamine and independently of Gtr/Rag proteins. J Biol Chem 2014; 289: 25010-25020.
-
(2014)
J Biol Chem
, vol.289
, pp. 25010-25020
-
-
Stracka, D.1
Jozefczuk, S.2
Rudroff, F.3
Sauer, U.4
Hall, M.N.5
-
76
-
-
84907525131
-
Sestrins function as guanine nucleotide dissociation inhibitors for rag GTPases to control mTORC1 signaling
-
Peng M, Yin N, Li MO. Sestrins function as guanine nucleotide dissociation inhibitors for Rag GTPases to control mTORC1 signaling. Cell 2014; 159: 122-133.
-
(2014)
Cell
, vol.159
, pp. 122-133
-
-
Peng, M.1
Yin, N.2
Li, M.O.3
-
77
-
-
84912128530
-
Sestrins inhibit mTORC1 kinase activation through the GATOR complex
-
Parmigiani A, Nourbakhsh A, Ding B et al. Sestrins inhibit mTORC1 kinase activation through the GATOR complex. Cell Rep 2014; 9: 1281-1291.
-
(2014)
Cell Rep
, vol.9
, pp. 1281-1291
-
-
Parmigiani, A.1
Nourbakhsh, A.2
Ding, B.3
-
78
-
-
84907991157
-
The sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1
-
Chantranupong L, Wolfson RL, Orozco JM et al. The Sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1. Cell Rep 2014; 9: 1-8.
-
(2014)
Cell Rep
, vol.9
, pp. 1-8
-
-
Chantranupong, L.1
Wolfson, R.L.2
Orozco, J.M.3
-
79
-
-
84961291783
-
Sestrin2 inhibits mTORC1 through modulation of GATOR complexes
-
Kim JS, Ro SH, Kim M et al. Sestrin2 inhibits mTORC1 through modulation of GATOR complexes. Sci Rep 2015; 5: 9502.
-
(2015)
Sci Rep
, vol.5
, pp. 9502
-
-
Kim, J.S.1
Ro, S.H.2
Kim, M.3
-
80
-
-
77749264562
-
Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies
-
Lee JH, Budanov AV, Park EJ et al. Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies. Science 2010; 327: 1223-1228.
-
(2010)
Science
, vol.327
, pp. 1223-1228
-
-
Lee, J.H.1
Budanov, A.V.2
Park, E.J.3
-
81
-
-
48449101433
-
P53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling
-
Budanov AV, Karin M. p53 target genes Sestrin1 and Sestrin2 connect genotoxic stress and mTOR signaling. Cell 2008; 134: 451-460.
-
(2008)
Cell
, vol.134
, pp. 451-460
-
-
Budanov, A.V.1
Karin, M.2
-
82
-
-
84952915479
-
Sestrin2 is a leucine sensor for the mTOR pathway
-
pii:aab2674 (e-pub ahead of print 8 October)
-
Wolfson RL, Chantranupong L, Saxton RA et al. Sestrin2 is a leucine sensor for the mTOR pathway. Science pii:aab2674 (e-pub ahead of print 8 October 2015; doi: 10.1126/science.aab2674).
-
(2015)
Science
-
-
Wolfson, R.L.1
Chantranupong, L.2
Saxton, R.A.3
-
83
-
-
84952898511
-
Structural basis for leucine sensing by the sestrin2-mTORC1 pathway
-
pii:aab2087 (e-pub ahead of print 19 November)
-
Saxton RA, Knockenhauer KE, Wolfson RL et al. Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway. Science pii:aab2087 (e-pub ahead of print 19 November 2015; doi: 10.1126/science.aab2087).
-
(2015)
Science
-
-
Saxton, R.A.1
Knockenhauer, K.E.2
Wolfson, R.L.3
-
84
-
-
84889681863
-
Sestrins orchestrate cellular metabolism to attenuate aging
-
Lee JH, Budanov AV, Karin M. Sestrins orchestrate cellular metabolism to attenuate aging. Cell Metab 2013; 18: 792-801.
-
(2013)
Cell Metab
, vol.18
, pp. 792-801
-
-
Lee, J.H.1
Budanov, A.V.2
Karin, M.3
-
85
-
-
84922743269
-
Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1
-
Wang S, Tsun ZY, Wolfson RL et al. Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 2015; 347: 188-194.
-
(2015)
Science
, vol.347
, pp. 188-194
-
-
Wang, S.1
Tsun, Z.Y.2
Wolfson, R.L.3
-
86
-
-
84925777835
-
SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1
-
Rebsamen M, Pochini L, Stasyk T et al. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 2015; 519: 477-481.
-
(2015)
Nature
, vol.519
, pp. 477-481
-
-
Rebsamen, M.1
Pochini, L.2
Stasyk, T.3
-
87
-
-
84932638310
-
Amino acid-dependent mTORC1 regulation by the lysosomal membrane protein SLC38A9
-
Jung J, Genau HM, Behrends C. Amino acid-dependent mTORC1 regulation by the lysosomal membrane protein SLC38A9. Mol Cell Biol 2015; 35: 2479-2494.
-
(2015)
Mol Cell Biol
, vol.35
, pp. 2479-2494
-
-
Jung, J.1
Genau, H.M.2
Behrends, C.3
-
88
-
-
81355124777
-
The SLC36 family of protoncoupled amino acid transporters and their potential role in drug transport
-
Thwaites DT, Anderson CM. The SLC36 family of protoncoupled amino acid transporters and their potential role in drug transport. Br J Pharmacol 2011; 164: 1802-1816.
-
(2011)
Br J Pharmacol
, vol.164
, pp. 1802-1816
-
-
Thwaites, D.T.1
Anderson, C.M.2
-
89
-
-
84871260456
-
Protonassisted amino acid transporter PAT1 complexes with rag GTPases and activates TORC1 on late endosomal and lysosomal membranes
-
Ögmundsdóttir MH, Heublein S, Kazi S et al. Protonassisted amino acid transporter PAT1 complexes with Rag GTPases and activates TORC1 on late endosomal and lysosomal membranes. PLoS ONE 2012; 7: e36616.
-
(2012)
PLoS ONE
, vol.7
, pp. e36616
-
-
Ögmundsdóttir, M.H.1
Heublein, S.2
Kazi, S.3
-
90
-
-
84907962139
-
The histidine transporter SLC15A4 coordinates mTOR-dependent inflammatory responses and pathogenic antibody production
-
Kobayashi T, Shimabukuro-Demoto S, Yoshida-Sugitani R et al. The histidine transporter SLC15A4 coordinates mTOR-dependent inflammatory responses and pathogenic antibody production. Immunity 2014; 41: 375-388.
-
(2014)
Immunity
, vol.41
, pp. 375-388
-
-
Kobayashi, T.1
Shimabukuro-Demoto, S.2
Yoshida-Sugitani, R.3
-
91
-
-
84858183302
-
Regulation of amino acid, nucleotide, and phosphate metabolism in saccharomyces cerevisiae
-
Ljungdahl PO, Daignan-Fornier B. Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics 2012; 190: 885-929.
-
(2012)
Genetics
, vol.190
, pp. 885-929
-
-
Ljungdahl, P.O.1
Daignan-Fornier, B.2
-
92
-
-
33845407202
-
Atg22 recycles amino acids to link the degradative and recycling functions of autophagy
-
Yang Z, Huang J, Geng J, Nair U, Klionsky DJ. Atg22 recycles amino acids to link the degradative and recycling functions of autophagy. Mol Biol Cell 2006; 17: 5094-5104.
-
(2006)
Mol Biol Cell
, vol.17
, pp. 5094-5104
-
-
Yang, Z.1
Huang, J.2
Geng, J.3
Nair, U.4
Klionsky, D.J.5
-
93
-
-
0035968245
-
A family of yeast proteins mediating bidirectional vacuolar amino acid transport
-
Russnak R, Konczal D, McIntire SL. A family of yeast proteins mediating bidirectional vacuolar amino acid transport. J Biol Chem 2001; 276: 23849-23857.
-
(2001)
J Biol Chem
, vol.276
, pp. 23849-23857
-
-
Russnak, R.1
Konczal, D.2
McIntire, S.L.3
-
94
-
-
77955055166
-
MAP4K3 regulates body size and metabolism in drosophila
-
Bryk B, Hahn K, Cohen SM, Teleman AA. MAP4K3 regulates body size and metabolism in Drosophila. Dev Biol 2010; 344: 150-157.
-
(2010)
Dev Biol
, vol.344
, pp. 150-157
-
-
Bryk, B.1
Hahn, K.2
Cohen, S.M.3
Teleman, A.A.4
-
95
-
-
34147141941
-
A MAP4 kinase related to ste20 is a nutrient-sensitive regulator of mTOR signalling
-
Findlay GM, Yan L, Procter J, Mieulet V, Lamb RF. A MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of mTOR signalling. Biochem J 2007; 403: 13-20.
-
(2007)
Biochem J
, vol.403
, pp. 13-20
-
-
Findlay, G.M.1
Yan, L.2
Procter, J.3
Mieulet, V.4
Lamb, R.F.5
-
96
-
-
77649269312
-
T61∈ is an inhibitor of MAP4K3 in nutrient signaling to mTOR
-
T61∈ is an inhibitor of MAP4K3 in nutrient signaling to mTOR. Mol Cell 2010; 37: 633-642.
-
(2010)
Mol Cell
, vol.37
, pp. 633-642
-
-
Yan, L.1
Mieulet, V.2
Burgess, D.3
-
97
-
-
80053586265
-
P62 is a key regulator of nutrient sensing in the mTORC1 pathway
-
Duran A, Amanchy R, Linares JF et al. p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Mol Cell 2011; 44: 134-146.
-
(2011)
Mol Cell
, vol.44
, pp. 134-146
-
-
Duran, A.1
Amanchy, R.2
Linares, J.F.3
-
98
-
-
84863009605
-
SH3BP4 is a negative regulator of amino acid-rag GTPase-mTORC1 signaling
-
Kim YM, Stone M, Hwang TH et al. SH3BP4 is a negative regulator of amino acid-Rag GTPase-mTORC1 signaling. Mol Cell 2012; 46: 833-846.
-
(2012)
Mol Cell
, vol.46
, pp. 833-846
-
-
Kim, Y.M.1
Stone, M.2
Hwang, T.H.3
-
99
-
-
84940789032
-
Disruption of the rag-ragulator complex by c17orf59 inhibits mTORC1
-
Schweitzer LD, Comb WC, Bar-Peled L, Sabatini DM. Disruption of the Rag-Ragulator complex by c17orf59 inhibits mTORC1. Cell Rep 2015; 12: 1445-1455.
-
(2015)
Cell Rep
, vol.12
, pp. 1445-1455
-
-
Schweitzer, L.D.1
Comb, W.C.2
Bar-Peled, L.3
Sabatini, D.M.4
-
100
-
-
84864931233
-
Glutaminolysis activates rag-mTORC1 signaling
-
Durán RV, Oppliger W, Robitaille AM et al. Glutaminolysis activates Rag-mTORC1 signaling. Mol Cell 2012; 47: 349-358.
-
(2012)
Mol Cell
, vol.47
, pp. 349-358
-
-
Durán, R.V.1
Oppliger, W.2
Robitaille, A.M.3
-
101
-
-
84922727084
-
Differential regulation of mTORC1 by leucine and glutamine
-
Jewell JL, Kim YC, Russell RC et al. Differential regulation of mTORC1 by leucine and glutamine. Science 2015; 347: 194-198.
-
(2015)
Science
, vol.347
, pp. 194-198
-
-
Jewell, J.L.1
Kim, Y.C.2
Russell, R.C.3
-
102
-
-
84912068759
-
Rab1A is an mTORC1 activator and a colorectal oncogene
-
Thomas JD, Zhang YJ, Wei YH et al. Rab1A is an mTORC1 activator and a colorectal oncogene. Cancer Cell 2014; 26: 754-769.
-
(2014)
Cancer Cell
, vol.26
, pp. 754-769
-
-
Thomas, J.D.1
Zhang, Y.J.2
Wei, Y.H.3
-
103
-
-
84893477830
-
Amino acids activate mammalian target of rapamycin (mTOR) complex 1 without changing rag GTPase guanyl nucleotide charging
-
Oshiro N, Rapley J, Avruch J. Amino acids activate mammalian target of rapamycin (mTOR) complex 1 without changing Rag GTPase guanyl nucleotide charging. J Biol Chem 2014; 289: 2658-2674.
-
(2014)
J Biol Chem
, vol.289
, pp. 2658-2674
-
-
Oshiro, N.1
Rapley, J.2
Avruch, J.3
-
104
-
-
33846109356
-
A novel human primary immunodeficiency syndrome caused by deficiency of the endosomal adaptor protein p14
-
Bohn G, Allroth A, Brandes G et al. A novel human primary immunodeficiency syndrome caused by deficiency of the endosomal adaptor protein p14. Nat Med 2007; 13: 38-45.
-
(2007)
Nat Med
, vol.13
, pp. 38-45
-
-
Bohn, G.1
Allroth, A.2
Brandes, G.3
-
105
-
-
84936074487
-
Decreased expression of NPRL2 in renal cancer cells is associated with unfavourable pathological, proliferation and apoptotic features
-
Tang Y, Jiang L, Tang W. Decreased expression of NPRL2 in renal cancer cells is associated with unfavourable pathological, proliferation and apoptotic features. Pathol Oncol Res 2014; 20: 829-837.
-
(2014)
Pathol Oncol Res
, vol.20
, pp. 829-837
-
-
Tang, Y.1
Jiang, L.2
Tang, W.3
-
106
-
-
33750330930
-
The 3p21.3 tumor suppressor NPRL2 plays an important role in cisplatininduced resistance in human non-small-cell lung cancer cells
-
Ueda K, Kawashima H, Ohtani S et al. The 3p21.3 tumor suppressor NPRL2 plays an important role in cisplatininduced resistance in human non-small-cell lung cancer cells. Cancer Res 2006; 66: 9682-9690.
-
(2006)
Cancer Res
, vol.66
, pp. 9682-9690
-
-
Ueda, K.1
Kawashima, H.2
Ohtani, S.3
-
107
-
-
0036569946
-
Expression of several genes in the human chromosome 3p21.3 homozygous deletion region by an adenovirus vector results in tumor suppressor activities in vitro and in vivo
-
Ji L, Nishizaki M, Gao BN et al. Expression of several genes in the human chromosome 3p21.3 homozygous deletion region by an adenovirus vector results in tumor suppressor activities in vitro and in vivo. Cancer Res 2002; 62: 2715-2720.
-
(2002)
Cancer Res
, vol.62
, pp. 2715-2720
-
-
Ji, L.1
Nishizaki, M.2
Gao, B.N.3
-
108
-
-
4644279735
-
Functional characterization of the candidate tumor suppressor gene NPRL2/G21 located in 3p21.3C
-
Li J, Wang F, Haraldson K et al. Functional characterization of the candidate tumor suppressor gene NPRL2/G21 located in 3p21.3C. Cancer Res 2004; 64: 6438-6443.
-
(2004)
Cancer Res
, vol.64
, pp. 6438-6443
-
-
Li, J.1
Wang, F.2
Haraldson, K.3
-
109
-
-
57749173112
-
Downregulation of RBSP3/CTDSPL, NPRL2/G21, RASSF1A, ITGA9, HYAL1, and HYAL2 in non-small cell lung cancer
-
Anedchenko EA, Dmitriev AA, Krasnov GS et al. Downregulation of RBSP3/CTDSPL, NPRL2/G21, RASSF1A, ITGA9, HYAL1, and HYAL2 in non-small cell lung cancer. Mol Biol 2008; 42: 859-869.
-
(2008)
Mol Biol
, vol.42
, pp. 859-869
-
-
Anedchenko, E.A.1
Dmitriev, A.A.2
Krasnov, G.S.3
-
110
-
-
70349260217
-
The tumor suppressor NPRL2 in hepatocellular carcinoma plays an important role in progression and can be served as an independent prognostic factor
-
Otani S, Takeda S, Yamada S et al. The tumor suppressor NPRL2 in hepatocellular carcinoma plays an important role in progression and can be served as an independent prognostic factor. J Surg Oncol 2009; 100: 358-363.
-
(2009)
J Surg Oncol
, vol.100
, pp. 358-363
-
-
Otani, S.1
Takeda, S.2
Yamada, S.3
-
111
-
-
84878352545
-
Mutations in DEPDC5 cause familial focal epilepsy862 with variable foci
-
Dibbens LM, de Vries B, Donatello S et al. Mutations in DEPDC5 cause familial focal epilepsy862 with variable foci. Nat Genet 2013; 45: 546-551.
-
(2013)
Nat Genet
, vol.45
, pp. 546-551
-
-
Dibbens, L.M.1
De Vries, B.2
Donatello, S.3
-
112
-
-
84878366242
-
Mutations of DEPDC5 cause autosomal dominant focal epilepsies
-
Ishida S, Picard F, Rudolf G et al. Mutations of DEPDC5 cause autosomal dominant focal epilepsies. Nat Genet 2013; 45: 552-555.
-
(2013)
Nat Genet
, vol.45
, pp. 552-555
-
-
Ishida, S.1
Picard, F.2
Rudolf, G.3
-
113
-
-
84903974365
-
DEPDC5 mutations in families presenting as autosomal dominant nocturnal frontal lobe epilepsy
-
Picard F, Makrythanasis P, Navarro V et al. DEPDC5 mutations in families presenting as autosomal dominant nocturnal frontal lobe epilepsy. Neurology 2014; 82: 2101-2106.
-
(2014)
Neurology
, vol.82
, pp. 2101-2106
-
-
Picard, F.1
Makrythanasis, P.2
Navarro, V.3
-
114
-
-
84902281810
-
Mutations in mammalian target of rapamycin regulator DEPDC5 cause focal epilepsy with brain malformations
-
Scheffer IE, Heron SE, Regan BM et al. Mutations in mammalian target of rapamycin regulator DEPDC5 cause focal epilepsy with brain malformations. Ann Neurol 2014; 75: 782-787.
-
(2014)
Ann Neurol
, vol.75
, pp. 782-787
-
-
Scheffer, I.E.1
Heron, S.E.2
Regan, B.M.3
-
115
-
-
84902273128
-
DEPDC5 mutations in genetic focal epilepsies of childhood
-
Lal D, Reinthaler EM, Schubert J et al. DEPDC5 mutations in genetic focal epilepsies of childhood. Ann Neurol 2014; 75: 788-792.
-
(2014)
Ann Neurol
, vol.75
, pp. 788-792
-
-
Lal, D.1
Reinthaler, E.M.2
Schubert, J.3
-
116
-
-
84937511052
-
A recurrent mutation in DEPDC5 predisposes to focal epilepsies in the French-canadian population
-
Martin C, Meloche C, Rioux MF et al. A recurrent mutation in DEPDC5 predisposes to focal epilepsies in the French-Canadian population. Clin Genet 2014; 86: 570-574.
-
(2014)
Clin Genet
, vol.86
, pp. 570-574
-
-
Martin, C.1
Meloche, C.2
Rioux, M.F.3
-
117
-
-
84873665112
-
Regulation of mTORC1 by the rag GTPases is necessary for neonatal autophagy and survival
-
Efeyan A, Zoncu R, Chang S et al. Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival. Nature 2013; 493: 679-683.
-
(2013)
Nature
, vol.493
, pp. 679-683
-
-
Efeyan, A.1
Zoncu, R.2
Chang, S.3
|