메뉴 건너뛰기




Volumn , Issue , 2012, Pages 478-485

Exploiting local and global patch rarities for saliency detection

Author keywords

[No Author keywords available]

Indexed keywords

COLOR CHANNELS; COLOR SPACE; COLOR SYSTEMS; DATA SETS; EYE-TRACKING; IMAGE PATCHES; INPUT IMAGE; LAB COLOR SPACE; MODEL-BASED OPC; NATURAL SCENES; SALIENCY DETECTION; SALIENCY MAP;

EID: 84866687480     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2012.6247711     Document Type: Conference Paper
Times cited : (390)

References (53)
  • 1
    • 2642558848 scopus 로고    scopus 로고
    • What attributes guide the deployment of visual attention and how do they do it?
    • 1
    • J. M.Wolfe and T. S. Horowitz. What attributes guide the deployment of visual attention and how do they do it? Nat. Rev. Neurosci., 5:1-7, 2004. 1
    • (2004) Nat. Rev. Neurosci. , vol.5 , pp. 1-7
    • Wolfe, J.M.1    Horowitz, T.S.2
  • 2
    • 84864044921 scopus 로고    scopus 로고
    • A nonparametric approach to bottom-up visual saliency
    • 2
    • W., Kienzle, A. F., Wichmann, B., Scholkopf, and M. O. Franz. A nonparametric approach to bottom-up visual saliency. NIPS, 2007. 2
    • (2007) NIPS
    • Kienzle, A.F.1    Scholkopf, W.B.2    Franz, M.O.3
  • 3
    • 77953205576 scopus 로고    scopus 로고
    • Learning to predict where humans look
    • 2, 3, 5, 6, 7
    • T. Judd, K. Ehinger, F. Durand and, A. Torralba. Learning to predict where humans look, ICCV, 2009. 2, 3, 5, 6, 7
    • (2009) ICCV
    • Judd, T.1    Ehinger, K.2    Durand, F.3    Torralba, A.4
  • 4
    • 77955992008 scopus 로고    scopus 로고
    • A model of saliency-based visual attention for rapid scene analysis
    • 1, 2, 3, 4, 5, 6, 7
    • L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. IEEE PAMI, 1998. 1, 2, 3, 4, 5, 6, 7
    • (1998) IEEE PAMI
    • Itti, L.1    Koch, C.2    Niebur, E.3
  • 7
    • 85156217966 scopus 로고    scopus 로고
    • Graph-based visual saliency
    • 2, 5, 6
    • J. Harel, C. Koch, P. Perona. Graph-based visual saliency. NIPS, 2006. 2, 5, 6
    • (2006) NIPS
    • Harel, J.1    Koch, C.2    Perona, P.3
  • 8
    • 35148814949 scopus 로고    scopus 로고
    • Saliency detection: A spectral residual approach
    • 2, 6
    • X. Hou and L. Zhang. Saliency detection: A spectral residual approach. CVPR, 2007. 2, 6
    • (2007) CVPR
    • Hou, X.1    Zhang, L.2
  • 9
    • 70449568029 scopus 로고    scopus 로고
    • Dynamic visual attention: Searching for coding length increments
    • 2, 3, 6
    • X. Hou and L. Zhang. Dynamic visual attention: Searching for coding length increments. NIPS, 2008. 2, 3, 6
    • (2008) NIPS
    • Hou, X.1    Zhang, L.2
  • 10
    • 33750734547 scopus 로고    scopus 로고
    • Bayesian surprise attracts human visual attention
    • 2, 5, 6, 7
    • L. Itti and P. Baldi. Bayesian surprise attracts human visual attention. NIPS, 2005. 2, 5, 6, 7
    • (2005) NIPS
    • Itti, L.1    Baldi, P.2
  • 11
    • 77950364024 scopus 로고    scopus 로고
    • Static and space-time visual saliency detection by self-resemblance
    • 2, 6, 7
    • H.J. Seo and P. Milanfar. Static and space-time visual saliency detection by self-resemblance. Journal of Vision, 9, 2009. 2, 6, 7
    • (2009) Journal of Vision , vol.9
    • Seo, H.J.1    Milanfar, P.2
  • 12
    • 58149506125 scopus 로고    scopus 로고
    • SUN: A Bayesian framework for saliency using natural statistics
    • 2, 3, 5, 6, 7
    • L. Zhang, M. H. Tong, T. K. Marks, H. Shan, and G. W. Cottrell, SUN: A Bayesian framework for saliency using natural statistics. J. of Vision, 8(32):1-20, 2008. 2, 3, 5, 6, 7
    • (2008) J. of Vision , vol.8-32 , pp. 1-20
    • Zhang, L.1    Tong, M.H.2    Marks, T.K.3    Shan, H.4    Cottrell, G.W.5
  • 13
    • 84864063426 scopus 로고    scopus 로고
    • 5, 6
    • B.W. Tatler. J. Vision, 14(7):1-17, 2007. 5, 6
    • (2007) J. Vision , vol.14 , Issue.7 , pp. 1-17
    • Tatler, B.W.1
  • 14
    • 84864039864 scopus 로고    scopus 로고
    • Saliency based on information maximization
    • 1, 2, 3, 4, 5, 6, 7
    • N.D.B. Bruce and J.K. Tsotsos. Saliency based on information maximization. NIPS, 2005. 1, 2, 3, 4, 5, 6, 7
    • (2005) NIPS
    • Bruce, N.D.B.1    Tsotsos, J.K.2
  • 15
    • 0018878142 scopus 로고
    • A feature integration theory of attention
    • 1, 3
    • A.M. Treisman and G. Gelade. A feature integration theory of attention. Cognitive Psych., 12:97-136, 1980. 1, 3
    • (1980) Cognitive Psych. , vol.12 , pp. 97-136
    • Treisman, A.M.1    Gelade, G.2
  • 16
    • 78751660047 scopus 로고    scopus 로고
    • What is the chance of happening: A new way to predict where people look
    • 5
    • Y. Yang, M. Song, N. Li, J. Bu, and C. Chen. What is the chance of happening:A new way to predict where people look. ECCV,2010. 5
    • (2010) ECCV
    • Yang, Y.1    Song, M.2    Li, N.3    Bu, J.4    Chen, C.5
  • 17
    • 80052903094 scopus 로고    scopus 로고
    • Visual saliency detection by spatially weighted dissimilarity
    • 2, 4
    • L. Duan, C. Wu, J. Miao, L. Qing, and Y. Fu. Visual saliency detection by spatially weighted dissimilarity. CVPR 2011. 2, 4
    • (2011) CVPR
    • Duan, L.1    Wu, C.2    Miao, J.3    Qing, L.4    Fu, Y.5
  • 18
    • 33645236179 scopus 로고    scopus 로고
    • A coherent computational approach to model bottom-up visual attention
    • 2
    • O. Le Meur, P. Le Callet, D. Barba, and D. Thoreau. A coherent computational approach to model bottom-up visual attention. PAMI, 2006. 2
    • (2006) PAMI
    • Le Meur, O.1    Le Callet, P.2    Barba, D.3    Thoreau, D.4
  • 19
    • 0022388528 scopus 로고
    • Shifts in selective visual attention: Towards the underlying neural circuitry
    • 1, 3, 4
    • C. Koch and S. Ullman. Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiology, 1985. 1, 3, 4
    • (1985) Human Neurobiology
    • Koch, C.1    Ullman, S.2
  • 21
    • 85020604545 scopus 로고    scopus 로고
    • Image saliency by isocentric curvedness and color
    • 2
    • R. Valenti, N. Sebe, and T. Gevers. Image saliency by isocentric curvedness and color. . ICCV, 2009. 2
    • (2009) ICCV
    • Valenti, R.1    Sebe, N.2    Gevers, T.3
  • 22
    • 79957836414 scopus 로고    scopus 로고
    • Learning a saliency map using fixated locations in natural scenes
    • 2
    • Q. Zhao and C. Koch. Learning a saliency map using fixated locations in natural scenes. Journal of Vision, 11(3), 2011. 2
    • (2011) Journal of Vision , vol.11 , Issue.3
    • Zhao, Q.1    Koch, C.2
  • 23
    • 79956010071 scopus 로고    scopus 로고
    • The discriminant center-surround hypothesis for bottom-up saliency
    • 2, 4
    • D. Gao, V. Mahadevan, and N. Vasconcelos. The discriminant center-surround hypothesis for bottom-up saliency. NIPS, 2007. 2, 4
    • (2007) NIPS
    • Gao, D.1    Mahadevan, V.2    Vasconcelos, N.3
  • 24
    • 72949100573 scopus 로고    scopus 로고
    • A novel multiresolution spatiotemporal saliency detection model and Its applications in image and video compression
    • 2, 6
    • C. Guo and L. Zhang. A novel multiresolution spatiotemporal saliency detection model and Its applications in image and video compression. IEEE Trans. on Image Processing, 2010. 2, 6
    • (2010) IEEE Trans. on Image Processing
    • Guo, C.1    Zhang, L.2
  • 26
    • 33750341577 scopus 로고    scopus 로고
    • Contextual guidance of attention in natural scenes: The role of Global features on object search
    • 2
    • A. Torralba, A. Oliva,M. Castelhano and J.M. Henderson. Contextual guidance of attention in natural scenes: The role of Global features on object search. Psychological Review, 2006. 2
    • (2006) Psychological Review
    • Torralba, A.1    Oliva, A.2    Castelhano, M.3    Henderson, J.M.4
  • 27
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • 3
    • B. Olshausen and D. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 1996. 3
    • (1996) Nature
    • Olshausen, B.1    Field, D.2
  • 29
    • 33845566741 scopus 로고    scopus 로고
    • An integrated model of top-down and bottom-up attention for optimizing detection speed
    • 2
    • V. Navalpakkam and L. Itti. An integrated model of top-down and bottom-up attention for optimizing detection speed. CVPR, 2006. 2
    • (2006) CVPR
    • Navalpakkam, V.1    Itti, L.2
  • 31
    • 77956006319 scopus 로고    scopus 로고
    • Robust classification of objects, faces, and flowers using national image
    • 3
    • C. Kanan and G. Cottrell. Robust classification of objects, faces, and flowers using national image. CVPR, 2010. 3
    • (2010) CVPR
    • Kanan, C.1    Cottrell, G.2
  • 32
    • 84866713364 scopus 로고    scopus 로고
    • Sparse coding and dictionary learning for image analysis
    • 3
    • F. Bach, J. Mairal, J. Ponce, and G. Spario. Sparse coding and dictionary learning for image analysis. CVPR, 2010. 3
    • (2010) CVPR
    • Bach, F.1    Mairal, J.2    Ponce, J.3    Spario, G.4
  • 34
    • 33751379736 scopus 로고    scopus 로고
    • Image denoising via sparse and redundant representations over learned dictionaries
    • 3
    • M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 15(12):3336-3745, 2006. 3
    • (2006) IEEE Transactions on Image Processing , vol.15 , Issue.12 , pp. 3336-3745
    • Elad, M.1    Aharon, M.2
  • 35
    • 20544446875 scopus 로고    scopus 로고
    • Components of bottom-up gaze allocation in natural images
    • 5
    • R. Peters, A. Iyer, L. Itti, and C. Koch. Components of bottom-up gaze allocation in natural images. Vision Res., 45, 2005. 5
    • (2005) Vision Res. , vol.45
    • Peters, R.1    Iyer, A.2    Itti, L.3    Koch, C.4
  • 36
    • 0036160528 scopus 로고    scopus 로고
    • Modeling the role of salience in the allocation of overt visual attention
    • 2
    • D. Parkhurst, K. Law, and E. Niebur. Modeling the role of salience in the allocation of overt visual attention. Vision Res., 2002. 2
    • (2002) Vision Res.
    • Parkhurst, D.1    Law, K.2    Niebur, E.3
  • 37
    • 77649273553 scopus 로고    scopus 로고
    • Esaliency (extended saliency): Meaningful attention using stochastic image modeling
    • 5
    • T. Avraham, M. Lindenbaum. Esaliency (Extended Saliency): Meaningful attention using stochastic image modeling. PAMI, 2010. 5
    • (2010) PAMI
    • Avraham, T.1    Lindenbaum, M.2
  • 38
    • 84856633724 scopus 로고    scopus 로고
    • Center-surround divergence of feature statistics for salient object detection
    • 4
    • D.A. Klein and S. Frintrop. Center-surround divergence of feature statistics for salient object detection. ICCV, 2011. 4
    • (2011) ICCV
    • Klein, D.A.1    Frintrop, S.2
  • 39
    • 80051645571 scopus 로고    scopus 로고
    • Segmenting salient object from images and videos
    • 2
    • E. Rahtu, J. Kannala, M. Salo, and J. Heikkilá. Segmenting salient object from images and videos. ECCV, 2010. 2
    • (2010) ECCV
    • Rahtu, E.1    Kannala, J.2    Salo, M.3    Heikkilá, J.4
  • 40
    • 84973921947 scopus 로고    scopus 로고
    • Image Signature: Highlighting sparse salient regions
    • In press. 5, 6
    • X. Hou, J. Harel, and Christof Koch. Image Signature: Highlighting sparse salient regions. IEEE PAMI, In press. 5, 6
    • IEEE PAMI
    • Hou, X.1    Harel, J.2    Koch, C.3
  • 41
    • 1842583039 scopus 로고    scopus 로고
    • Realistic avatar eye and head animation using a neurobiological model of visual attention
    • 2
    • L. Itti, N. Dhavale, and F. Pighin. Realistic avatar eye and head animation using a neurobiological model of visual attention. SPIE, 2003. 2
    • (2003) SPIE
    • Itti, L.1    Dhavale, N.2    Pighin, F.3
  • 42
    • 70549106590 scopus 로고    scopus 로고
    • Decorrelation and distinctiveness provide with human-like saliency
    • 2
    • A. Garcia-Diaz, X. R. Fdez-Vidal, X. M. Pardo, and R. Dosil. Decorrelation and distinctiveness provide with human-like saliency. ACIVS, 5807, 2009. 2
    • (2009) ACIVS , vol.5807
    • Garcia-Diaz, A.1    Fdez-Vidal, X.R.2    Pardo, X.M.3    Dosil, R.4
  • 43
    • 40549138099 scopus 로고    scopus 로고
    • Interesting objects are visually salient
    • 3
    • L. Elazary and L. Itti. Interesting objects are visually salient. J. Vision, 2008. 3
    • (2008) J. Vision
    • Elazary, L.1    Itti, L.2
  • 45
    • 50649089739 scopus 로고    scopus 로고
    • Predicting gaze using low-level saliency combined with face detection
    • 3, 7
    • M. Cerf, J. Harel, W. Einhäuser, and C. Koch. Predicting gaze using low-level saliency combined with face detection. NIPS, 2007. 3, 7
    • (2007) NIPS
    • Cerf, M.1    Harel, J.2    Einhäuser, W.3    Koch, C.4
  • 47
    • 80053106764 scopus 로고    scopus 로고
    • Computational versus psychophysical image saliency: A comparative evaluation study
    • 1
    • A. Toet. Computational versus psychophysical image saliency: A comparative evaluation study. IEEE trans. PAMI, 2011. 1
    • (2011) IEEE Trans. PAMI
    • Toet, A.1
  • 48
    • 76649105429 scopus 로고    scopus 로고
    • Saliency-based image processing for retinal prostheses
    • 1
    • N. Parikh, L. Itti, and J. Weiland. Saliency-based image processing for retinal prostheses. J. Neural Eng. 7, 2010. 1
    • (2010) J. Neural Eng. , vol.7
    • Parikh, N.1    Itti, L.2    Weiland, J.3
  • 49
    • 4544260101 scopus 로고    scopus 로고
    • Automatic foveation for video compression using a neurobiological model of visual attention
    • 1
    • L. Itti. Automatic foveation for video compression using a neurobiological model of visual attention. IEEE Trans. Image Process., 2004. 1
    • (2004) IEEE Trans. Image Process
    • Itti, L.1
  • 52
    • 33750684017 scopus 로고    scopus 로고
    • Modeling attention to salient proto-objects
    • 1, 7
    • D. Walther and C. Koch. Modeling attention to salient proto-objects. Neural Networks, 2006. 1, 7
    • (2006) Neural Networks
    • Walther, D.1    Koch, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.