-
1
-
-
2642558848
-
What attributes guide the deployment of visual attention and how do they do it?
-
1
-
J. M.Wolfe and T. S. Horowitz. What attributes guide the deployment of visual attention and how do they do it? Nat. Rev. Neurosci., 5:1-7, 2004. 1
-
(2004)
Nat. Rev. Neurosci.
, vol.5
, pp. 1-7
-
-
Wolfe, J.M.1
Horowitz, T.S.2
-
2
-
-
84864044921
-
A nonparametric approach to bottom-up visual saliency
-
2
-
W., Kienzle, A. F., Wichmann, B., Scholkopf, and M. O. Franz. A nonparametric approach to bottom-up visual saliency. NIPS, 2007. 2
-
(2007)
NIPS
-
-
Kienzle, A.F.1
Scholkopf, W.B.2
Franz, M.O.3
-
3
-
-
77953205576
-
Learning to predict where humans look
-
2, 3, 5, 6, 7
-
T. Judd, K. Ehinger, F. Durand and, A. Torralba. Learning to predict where humans look, ICCV, 2009. 2, 3, 5, 6, 7
-
(2009)
ICCV
-
-
Judd, T.1
Ehinger, K.2
Durand, F.3
Torralba, A.4
-
4
-
-
77955992008
-
A model of saliency-based visual attention for rapid scene analysis
-
1, 2, 3, 4, 5, 6, 7
-
L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. IEEE PAMI, 1998. 1, 2, 3, 4, 5, 6, 7
-
(1998)
IEEE PAMI
-
-
Itti, L.1
Koch, C.2
Niebur, E.3
-
6
-
-
80054108659
-
An eye fixation database for saliency detection in images
-
6, 7
-
R. Subramanian, H. Katti, N. Sebe, M. Kankanhalli, and T.S. Chua. An eye fixation database for saliency detection in images. ECCV, 2010. 6, 7
-
(2010)
ECCV
-
-
Subramanian, R.1
Katti, H.2
Sebe, N.3
Kankanhalli, M.4
Chua, T.S.5
-
7
-
-
85156217966
-
Graph-based visual saliency
-
2, 5, 6
-
J. Harel, C. Koch, P. Perona. Graph-based visual saliency. NIPS, 2006. 2, 5, 6
-
(2006)
NIPS
-
-
Harel, J.1
Koch, C.2
Perona, P.3
-
8
-
-
35148814949
-
Saliency detection: A spectral residual approach
-
2, 6
-
X. Hou and L. Zhang. Saliency detection: A spectral residual approach. CVPR, 2007. 2, 6
-
(2007)
CVPR
-
-
Hou, X.1
Zhang, L.2
-
9
-
-
70449568029
-
Dynamic visual attention: Searching for coding length increments
-
2, 3, 6
-
X. Hou and L. Zhang. Dynamic visual attention: Searching for coding length increments. NIPS, 2008. 2, 3, 6
-
(2008)
NIPS
-
-
Hou, X.1
Zhang, L.2
-
10
-
-
33750734547
-
Bayesian surprise attracts human visual attention
-
2, 5, 6, 7
-
L. Itti and P. Baldi. Bayesian surprise attracts human visual attention. NIPS, 2005. 2, 5, 6, 7
-
(2005)
NIPS
-
-
Itti, L.1
Baldi, P.2
-
11
-
-
77950364024
-
Static and space-time visual saliency detection by self-resemblance
-
2, 6, 7
-
H.J. Seo and P. Milanfar. Static and space-time visual saliency detection by self-resemblance. Journal of Vision, 9, 2009. 2, 6, 7
-
(2009)
Journal of Vision
, vol.9
-
-
Seo, H.J.1
Milanfar, P.2
-
12
-
-
58149506125
-
SUN: A Bayesian framework for saliency using natural statistics
-
2, 3, 5, 6, 7
-
L. Zhang, M. H. Tong, T. K. Marks, H. Shan, and G. W. Cottrell, SUN: A Bayesian framework for saliency using natural statistics. J. of Vision, 8(32):1-20, 2008. 2, 3, 5, 6, 7
-
(2008)
J. of Vision
, vol.8-32
, pp. 1-20
-
-
Zhang, L.1
Tong, M.H.2
Marks, T.K.3
Shan, H.4
Cottrell, G.W.5
-
13
-
-
84864063426
-
-
5, 6
-
B.W. Tatler. J. Vision, 14(7):1-17, 2007. 5, 6
-
(2007)
J. Vision
, vol.14
, Issue.7
, pp. 1-17
-
-
Tatler, B.W.1
-
14
-
-
84864039864
-
Saliency based on information maximization
-
1, 2, 3, 4, 5, 6, 7
-
N.D.B. Bruce and J.K. Tsotsos. Saliency based on information maximization. NIPS, 2005. 1, 2, 3, 4, 5, 6, 7
-
(2005)
NIPS
-
-
Bruce, N.D.B.1
Tsotsos, J.K.2
-
15
-
-
0018878142
-
A feature integration theory of attention
-
1, 3
-
A.M. Treisman and G. Gelade. A feature integration theory of attention. Cognitive Psych., 12:97-136, 1980. 1, 3
-
(1980)
Cognitive Psych.
, vol.12
, pp. 97-136
-
-
Treisman, A.M.1
Gelade, G.2
-
16
-
-
78751660047
-
What is the chance of happening: A new way to predict where people look
-
5
-
Y. Yang, M. Song, N. Li, J. Bu, and C. Chen. What is the chance of happening:A new way to predict where people look. ECCV,2010. 5
-
(2010)
ECCV
-
-
Yang, Y.1
Song, M.2
Li, N.3
Bu, J.4
Chen, C.5
-
17
-
-
80052903094
-
Visual saliency detection by spatially weighted dissimilarity
-
2, 4
-
L. Duan, C. Wu, J. Miao, L. Qing, and Y. Fu. Visual saliency detection by spatially weighted dissimilarity. CVPR 2011. 2, 4
-
(2011)
CVPR
-
-
Duan, L.1
Wu, C.2
Miao, J.3
Qing, L.4
Fu, Y.5
-
18
-
-
33645236179
-
A coherent computational approach to model bottom-up visual attention
-
2
-
O. Le Meur, P. Le Callet, D. Barba, and D. Thoreau. A coherent computational approach to model bottom-up visual attention. PAMI, 2006. 2
-
(2006)
PAMI
-
-
Le Meur, O.1
Le Callet, P.2
Barba, D.3
Thoreau, D.4
-
19
-
-
0022388528
-
Shifts in selective visual attention: Towards the underlying neural circuitry
-
1, 3, 4
-
C. Koch and S. Ullman. Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiology, 1985. 1, 3, 4
-
(1985)
Human Neurobiology
-
-
Koch, C.1
Ullman, S.2
-
20
-
-
84898481169
-
Paying attention to symmetry
-
2, 5, 6
-
G. Kootstra, A. Nederveen, and B. de Boer. Paying attention to symmetry. BMVC, 2008. 2, 5, 6
-
(2008)
BMVC
-
-
Kootstra, G.1
Nederveen, A.2
De Boer, B.3
-
21
-
-
85020604545
-
Image saliency by isocentric curvedness and color
-
2
-
R. Valenti, N. Sebe, and T. Gevers. Image saliency by isocentric curvedness and color. . ICCV, 2009. 2
-
(2009)
ICCV
-
-
Valenti, R.1
Sebe, N.2
Gevers, T.3
-
22
-
-
79957836414
-
Learning a saliency map using fixated locations in natural scenes
-
2
-
Q. Zhao and C. Koch. Learning a saliency map using fixated locations in natural scenes. Journal of Vision, 11(3), 2011. 2
-
(2011)
Journal of Vision
, vol.11
, Issue.3
-
-
Zhao, Q.1
Koch, C.2
-
23
-
-
79956010071
-
The discriminant center-surround hypothesis for bottom-up saliency
-
2, 4
-
D. Gao, V. Mahadevan, and N. Vasconcelos. The discriminant center-surround hypothesis for bottom-up saliency. NIPS, 2007. 2, 4
-
(2007)
NIPS
-
-
Gao, D.1
Mahadevan, V.2
Vasconcelos, N.3
-
24
-
-
72949100573
-
A novel multiresolution spatiotemporal saliency detection model and Its applications in image and video compression
-
2, 6
-
C. Guo and L. Zhang. A novel multiresolution spatiotemporal saliency detection model and Its applications in image and video compression. IEEE Trans. on Image Processing, 2010. 2, 6
-
(2010)
IEEE Trans. on Image Processing
-
-
Guo, C.1
Zhang, L.2
-
26
-
-
33750341577
-
Contextual guidance of attention in natural scenes: The role of Global features on object search
-
2
-
A. Torralba, A. Oliva,M. Castelhano and J.M. Henderson. Contextual guidance of attention in natural scenes: The role of Global features on object search. Psychological Review, 2006. 2
-
(2006)
Psychological Review
-
-
Torralba, A.1
Oliva, A.2
Castelhano, M.3
Henderson, J.M.4
-
27
-
-
0029938380
-
Emergence of simple-cell receptive field properties by learning a sparse code for natural images
-
3
-
B. Olshausen and D. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 1996. 3
-
(1996)
Nature
-
-
Olshausen, B.1
Field, D.2
-
29
-
-
33845566741
-
An integrated model of top-down and bottom-up attention for optimizing detection speed
-
2
-
V. Navalpakkam and L. Itti. An integrated model of top-down and bottom-up attention for optimizing detection speed. CVPR, 2006. 2
-
(2006)
CVPR
-
-
Navalpakkam, V.1
Itti, L.2
-
31
-
-
77956006319
-
Robust classification of objects, faces, and flowers using national image
-
3
-
C. Kanan and G. Cottrell. Robust classification of objects, faces, and flowers using national image. CVPR, 2010. 3
-
(2010)
CVPR
-
-
Kanan, C.1
Cottrell, G.2
-
32
-
-
84866713364
-
Sparse coding and dictionary learning for image analysis
-
3
-
F. Bach, J. Mairal, J. Ponce, and G. Spario. Sparse coding and dictionary learning for image analysis. CVPR, 2010. 3
-
(2010)
CVPR
-
-
Bach, F.1
Mairal, J.2
Ponce, J.3
Spario, G.4
-
33
-
-
79961211870
-
-
3
-
A. Yang, A. Ganesh, Z. Zhou, S. Sastry, and Y. Ma. A review of fast l1-minimization algorithms for robust face recognition. http://arxiv.org, 2010. 3
-
(2010)
A Review of Fast l1-minimization Algorithms for Robust Face Recognition
-
-
Yang, A.1
Ganesh, A.2
Zhou, Z.3
Sastry, S.4
Ma, Y.5
-
34
-
-
33751379736
-
Image denoising via sparse and redundant representations over learned dictionaries
-
3
-
M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 15(12):3336-3745, 2006. 3
-
(2006)
IEEE Transactions on Image Processing
, vol.15
, Issue.12
, pp. 3336-3745
-
-
Elad, M.1
Aharon, M.2
-
35
-
-
20544446875
-
Components of bottom-up gaze allocation in natural images
-
5
-
R. Peters, A. Iyer, L. Itti, and C. Koch. Components of bottom-up gaze allocation in natural images. Vision Res., 45, 2005. 5
-
(2005)
Vision Res.
, vol.45
-
-
Peters, R.1
Iyer, A.2
Itti, L.3
Koch, C.4
-
36
-
-
0036160528
-
Modeling the role of salience in the allocation of overt visual attention
-
2
-
D. Parkhurst, K. Law, and E. Niebur. Modeling the role of salience in the allocation of overt visual attention. Vision Res., 2002. 2
-
(2002)
Vision Res.
-
-
Parkhurst, D.1
Law, K.2
Niebur, E.3
-
37
-
-
77649273553
-
Esaliency (extended saliency): Meaningful attention using stochastic image modeling
-
5
-
T. Avraham, M. Lindenbaum. Esaliency (Extended Saliency): Meaningful attention using stochastic image modeling. PAMI, 2010. 5
-
(2010)
PAMI
-
-
Avraham, T.1
Lindenbaum, M.2
-
38
-
-
84856633724
-
Center-surround divergence of feature statistics for salient object detection
-
4
-
D.A. Klein and S. Frintrop. Center-surround divergence of feature statistics for salient object detection. ICCV, 2011. 4
-
(2011)
ICCV
-
-
Klein, D.A.1
Frintrop, S.2
-
40
-
-
84973921947
-
Image Signature: Highlighting sparse salient regions
-
In press. 5, 6
-
X. Hou, J. Harel, and Christof Koch. Image Signature: Highlighting sparse salient regions. IEEE PAMI, In press. 5, 6
-
IEEE PAMI
-
-
Hou, X.1
Harel, J.2
Koch, C.3
-
41
-
-
1842583039
-
Realistic avatar eye and head animation using a neurobiological model of visual attention
-
2
-
L. Itti, N. Dhavale, and F. Pighin. Realistic avatar eye and head animation using a neurobiological model of visual attention. SPIE, 2003. 2
-
(2003)
SPIE
-
-
Itti, L.1
Dhavale, N.2
Pighin, F.3
-
42
-
-
70549106590
-
Decorrelation and distinctiveness provide with human-like saliency
-
2
-
A. Garcia-Diaz, X. R. Fdez-Vidal, X. M. Pardo, and R. Dosil. Decorrelation and distinctiveness provide with human-like saliency. ACIVS, 5807, 2009. 2
-
(2009)
ACIVS
, vol.5807
-
-
Garcia-Diaz, A.1
Fdez-Vidal, X.R.2
Pardo, X.M.3
Dosil, R.4
-
43
-
-
40549138099
-
Interesting objects are visually salient
-
3
-
L. Elazary and L. Itti. Interesting objects are visually salient. J. Vision, 2008. 3
-
(2008)
J. Vision
-
-
Elazary, L.1
Itti, L.2
-
44
-
-
80052948224
-
Global Contrast based Salient Region Detection
-
2
-
M.M Cheng, G.X Zhang, N.J. Mitra, and X. Huang, and S.M. Hu. Global Contrast based Salient Region Detection. CVPR, 2011. 2
-
(2011)
CVPR
-
-
Cheng, M.M.1
Zhang, G.X.2
Mitra, N.J.3
Huang, X.4
Hu, S.M.5
-
45
-
-
50649089739
-
Predicting gaze using low-level saliency combined with face detection
-
3, 7
-
M. Cerf, J. Harel, W. Einhäuser, and C. Koch. Predicting gaze using low-level saliency combined with face detection. NIPS, 2007. 3, 7
-
(2007)
NIPS
-
-
Cerf, M.1
Harel, J.2
Einhäuser, W.3
Koch, C.4
-
47
-
-
80053106764
-
Computational versus psychophysical image saliency: A comparative evaluation study
-
1
-
A. Toet. Computational versus psychophysical image saliency: A comparative evaluation study. IEEE trans. PAMI, 2011. 1
-
(2011)
IEEE Trans. PAMI
-
-
Toet, A.1
-
48
-
-
76649105429
-
Saliency-based image processing for retinal prostheses
-
1
-
N. Parikh, L. Itti, and J. Weiland. Saliency-based image processing for retinal prostheses. J. Neural Eng. 7, 2010. 1
-
(2010)
J. Neural Eng.
, vol.7
-
-
Parikh, N.1
Itti, L.2
Weiland, J.3
-
49
-
-
4544260101
-
Automatic foveation for video compression using a neurobiological model of visual attention
-
1
-
L. Itti. Automatic foveation for video compression using a neurobiological model of visual attention. IEEE Trans. Image Process., 2004. 1
-
(2004)
IEEE Trans. Image Process
-
-
Itti, L.1
-
50
-
-
33845573249
-
Picture collage
-
1
-
J. Wang, J. Sun, L. Quan, X. Tang, and H.Y Shum. Picture collage. CVPR, 1:347-354, 2006. 1
-
(2006)
CVPR
, vol.1
, pp. 347-354
-
-
Wang, J.1
Sun, J.2
Quan, L.3
Tang, X.4
Shum, H.Y.5
-
52
-
-
33750684017
-
Modeling attention to salient proto-objects
-
1, 7
-
D. Walther and C. Koch. Modeling attention to salient proto-objects. Neural Networks, 2006. 1, 7
-
(2006)
Neural Networks
-
-
Walther, D.1
Koch, C.2
|