메뉴 건너뛰기




Volumn 34, Issue , 2016, Pages 37-43

Towards synthesis of monoterpenes and derivatives using synthetic biology

Author keywords

[No Author keywords available]

Indexed keywords

LIMONENE; TERPENE DERIVATIVE; TERPENE;

EID: 84973904192     PISSN: 13675931     EISSN: 18790402     Source Type: Journal    
DOI: 10.1016/j.cbpa.2016.06.002     Document Type: Review
Times cited : (89)

References (51)
  • 1
    • 84899051891 scopus 로고    scopus 로고
    • Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development
    • Paddon C.J., Keasling J.D. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol 2014, 12:355-367.
    • (2014) Nat Rev Microbiol , vol.12 , pp. 355-367
    • Paddon, C.J.1    Keasling, J.D.2
  • 3
    • 0000181440 scopus 로고
    • The isoprene rule and the biogenesis of terpenic compounds
    • Ruzicka L. The isoprene rule and the biogenesis of terpenic compounds. Experientia 1953, 9:357-367.
    • (1953) Experientia , vol.9 , pp. 357-367
    • Ruzicka, L.1
  • 5
    • 0038391517 scopus 로고    scopus 로고
    • Engineering a mevalonate pathway in Escherichia coli for production of terpenoids
    • Martin V.J., Pitera D.J., Withers S.T., Newman J.D., Keasling J.D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 2003, 21:796-802.
    • (2003) Nat Biotechnol , vol.21 , pp. 796-802
    • Martin, V.J.1    Pitera, D.J.2    Withers, S.T.3    Newman, J.D.4    Keasling, J.D.5
  • 7
    • 0033859551 scopus 로고    scopus 로고
    • The role of lateral gene transfer in the evolution of isoprenoid biosynthesis pathways
    • Boucher Y., Doolittle W.F. The role of lateral gene transfer in the evolution of isoprenoid biosynthesis pathways. Mol Microbiol 2000, 37:703-716.
    • (2000) Mol Microbiol , vol.37 , pp. 703-716
    • Boucher, Y.1    Doolittle, W.F.2
  • 9
    • 84952682812 scopus 로고    scopus 로고
    • Bacterial terpene cyclases
    • Dickschat J.S. Bacterial terpene cyclases. Nat Prod Rep 2016, 33:87-110.
    • (2016) Nat Prod Rep , vol.33 , pp. 87-110
    • Dickschat, J.S.1
  • 14
    • 84939541097 scopus 로고    scopus 로고
    • Reinvigorating natural product combinatorial biosynthesis with synthetic biology
    • Kim E., Moore B.S., Yoon Y.J. Reinvigorating natural product combinatorial biosynthesis with synthetic biology. Nat Chem Biol 2015, 11:649-659.
    • (2015) Nat Chem Biol , vol.11 , pp. 649-659
    • Kim, E.1    Moore, B.S.2    Yoon, Y.J.3
  • 15
    • 84962138875 scopus 로고    scopus 로고
    • BioPartsBuilder: a synthetic biology tool for combinatorial assembly of biological parts
    • Yang K., Stracquadanio G., Luo J., Boeke J.D., Bader J.S. BioPartsBuilder: a synthetic biology tool for combinatorial assembly of biological parts. Bioinformatics 2016, 32:937-939.
    • (2016) Bioinformatics , vol.32 , pp. 937-939
    • Yang, K.1    Stracquadanio, G.2    Luo, J.3    Boeke, J.D.4    Bader, J.S.5
  • 16
    • 85019294885 scopus 로고    scopus 로고
    • Enhanced limonene production by optimizing the expression of limonene biosynthesis and MEP pathway genes in E. coli
    • Du F-L., Yu H-L., Xu J-H., Li C-X. Enhanced limonene production by optimizing the expression of limonene biosynthesis and MEP pathway genes in E. coli. Bioresourc Bioprocess 2014, 1:10.
    • (2014) Bioresourc Bioprocess , vol.1 , pp. 10
    • Du, F.-L.1    Yu, H.-L.2    Xu, J.-H.3    Li, C.-X.4
  • 17
    • 84905395433 scopus 로고    scopus 로고
    • Engineering the productivity of recombinant Escherichia coli for limonene formation from glycerol in minimal media
    • Willrodt C., David C., Cornelissen S., Bühler B., Julsing M.K., Schmid A. Engineering the productivity of recombinant Escherichia coli for limonene formation from glycerol in minimal media. Biotechnol J 2014, 9:1000-1012.
    • (2014) Biotechnol J , vol.9 , pp. 1000-1012
    • Willrodt, C.1    David, C.2    Cornelissen, S.3    Bühler, B.4    Julsing, M.K.5    Schmid, A.6
  • 18
    • 84952333021 scopus 로고    scopus 로고
    • Decoupling production from growth by magnesium sulfate limitation boosts de novo limonene production
    • Willrodt C., Hoschek A., Bühler B., Schmid A., Julsing M.K. Decoupling production from growth by magnesium sulfate limitation boosts de novo limonene production. Biotechnol Bioeng 2016, 113:1305-1314.
    • (2016) Biotechnol Bioeng , vol.113 , pp. 1305-1314
    • Willrodt, C.1    Hoschek, A.2    Bühler, B.3    Schmid, A.4    Julsing, M.K.5
  • 20
    • 84900869235 scopus 로고    scopus 로고
    • Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase
    • Ignea C., Pontini M., Maffei M.E., Makris A.M., Kampranis S.C. Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase. ACS Synth Biol 2014, 3:298-306.
    • (2014) ACS Synth Biol , vol.3 , pp. 298-306
    • Ignea, C.1    Pontini, M.2    Maffei, M.E.3    Makris, A.M.4    Kampranis, S.C.5
  • 24
    • 84921037626 scopus 로고    scopus 로고
    • Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently
    • Currin A., Swainston N., Day P.J., Kell D.B. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem Soc Rev 2015, 44:1172-1239.
    • (2015) Chem Soc Rev , vol.44 , pp. 1172-1239
    • Currin, A.1    Swainston, N.2    Day, P.J.3    Kell, D.B.4
  • 25
    • 77955668822 scopus 로고    scopus 로고
    • Geraniol and linalool synthases from wild species of perilla
    • Masumoto N., Korin M., Ito M. Geraniol and linalool synthases from wild species of perilla. Phytochemistry 2010, 71:1068-1075.
    • (2010) Phytochemistry , vol.71 , pp. 1068-1075
    • Masumoto, N.1    Korin, M.2    Ito, M.3
  • 26
    • 84899447453 scopus 로고    scopus 로고
    • A domain swapping approach to elucidate differential regiospecific hydroxylation by geraniol and linalool synthases from perilla
    • Sato-Masumoto N., Ito M. A domain swapping approach to elucidate differential regiospecific hydroxylation by geraniol and linalool synthases from perilla. Phytochemistry 2014, 102:46-54.
    • (2014) Phytochemistry , vol.102 , pp. 46-54
    • Sato-Masumoto, N.1    Ito, M.2
  • 27
    • 84939536885 scopus 로고    scopus 로고
    • Computational approaches to natural product discovery
    • Medema M.H., Fischbach M.A. Computational approaches to natural product discovery. Nat Chem Biol 2015, 11:639-648.
    • (2015) Nat Chem Biol , vol.11 , pp. 639-648
    • Medema, M.H.1    Fischbach, M.A.2
  • 30
    • 84906948633 scopus 로고    scopus 로고
    • Biosynthesis of pinene from glucose using metabolically-engineered Corynebacterium glutamicum
    • Kang M.K., Eom J.H., Kim Y., Um Y., Woo H.M. Biosynthesis of pinene from glucose using metabolically-engineered Corynebacterium glutamicum. Biotechnol Lett 2014, 36:2069-2077.
    • (2014) Biotechnol Lett , vol.36 , pp. 2069-2077
    • Kang, M.K.1    Eom, J.H.2    Kim, Y.3    Um, Y.4    Woo, H.M.5
  • 33
    • 85010276890 scopus 로고    scopus 로고
    • Computational tools and algorithms for designing customized synthetic genes
    • Gould N., Hendy O., Papamichail D. Computational tools and algorithms for designing customized synthetic genes. Front Bioeng Biotechnol 2014, 2:41.
    • (2014) Front Bioeng Biotechnol , vol.2 , pp. 41
    • Gould, N.1    Hendy, O.2    Papamichail, D.3
  • 35
    • 84943160849 scopus 로고    scopus 로고
    • CRISPR-Cas immunity in prokaryotes
    • Marraffini L.A. CRISPR-Cas immunity in prokaryotes. Nature 2015, 526:55-61.
    • (2015) Nature , vol.526 , pp. 55-61
    • Marraffini, L.A.1
  • 36
    • 84954214717 scopus 로고    scopus 로고
    • Biology and applications of CRISPR systems: harnessing nature's toolbox for genome engineering
    • Wright A.V., Nunez J.K., Doudna J.A. Biology and applications of CRISPR systems: harnessing nature's toolbox for genome engineering. Cell 2016, 164:29-44.
    • (2016) Cell , vol.164 , pp. 29-44
    • Wright, A.V.1    Nunez, J.K.2    Doudna, J.A.3
  • 37
    • 84925355124 scopus 로고    scopus 로고
    • Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system
    • Jiang Y., Chen B., Duan C., Sun B., Yang J., Yang S. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol 2015, 81:2506-2514.
    • (2015) Appl Environ Microbiol , vol.81 , pp. 2506-2514
    • Jiang, Y.1    Chen, B.2    Duan, C.3    Sun, B.4    Yang, J.5    Yang, S.6
  • 38
    • 84936967101 scopus 로고    scopus 로고
    • Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli
    • Pyne M.E., Moo-Young M., Chung D.A., Chou C.P. Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Appl Environ Microbiol 2015, 81:5103-5114.
    • (2015) Appl Environ Microbiol , vol.81 , pp. 5103-5114
    • Pyne, M.E.1    Moo-Young, M.2    Chung, D.A.3    Chou, C.P.4
  • 39
    • 84952682854 scopus 로고    scopus 로고
    • CRISPR/Cas9 advances engineering of microbial cell factories
    • Jakociunas T., Jensen M.K., Keasling J.D. CRISPR/Cas9 advances engineering of microbial cell factories. Metab Eng 2015, 34:44-59.
    • (2015) Metab Eng , vol.34 , pp. 44-59
    • Jakociunas, T.1    Jensen, M.K.2    Keasling, J.D.3
  • 40
    • 84929572600 scopus 로고    scopus 로고
    • Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae
    • Bao Z., Xiao H., Liang J., Zhang L., Xiong X., Sun N., Si T., Zhao H. Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. ACS Synth Biol 2015, 4:585-594.
    • (2015) ACS Synth Biol , vol.4 , pp. 585-594
    • Bao, Z.1    Xiao, H.2    Liang, J.3    Zhang, L.4    Xiong, X.5    Sun, N.6    Si, T.7    Zhao, H.8
  • 41
    • 84973136613 scopus 로고    scopus 로고
    • Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi)
    • Cleto S., Jensen J.V., Wendisch V.F., Lu T.K. Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi). ACS Synth Biol 2016, 5:375-385.
    • (2016) ACS Synth Biol , vol.5 , pp. 375-385
    • Cleto, S.1    Jensen, J.V.2    Wendisch, V.F.3    Lu, T.K.4
  • 42
    • 84934947770 scopus 로고    scopus 로고
    • High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system
    • Cobb R.E., Wang Y., Zhao H. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 2015, 4:723-728.
    • (2015) ACS Synth Biol , vol.4 , pp. 723-728
    • Cobb, R.E.1    Wang, Y.2    Zhao, H.3
  • 43
    • 84894079582 scopus 로고    scopus 로고
    • Bacterial cellular engineering by genome editing and gene silencing
    • Nakashima N., Miyazaki K. Bacterial cellular engineering by genome editing and gene silencing. Int J Mol Sci 2014, 15:2773-2793.
    • (2014) Int J Mol Sci , vol.15 , pp. 2773-2793
    • Nakashima, N.1    Miyazaki, K.2
  • 44
    • 84937727133 scopus 로고    scopus 로고
    • Building terpene production platforms in yeast
    • Zhuang X., Chappell J. Building terpene production platforms in yeast. Biotechnol Bioeng 2015, 112:1854-1864.
    • (2015) Biotechnol Bioeng , vol.112 , pp. 1854-1864
    • Zhuang, X.1    Chappell, J.2
  • 46
    • 84969164978 scopus 로고    scopus 로고
    • Bacterial microcompartments biomaterials for synthetic biology-based compartmentalization strategies
    • Chessher A., Breitling R., Takano E. Bacterial microcompartments biomaterials for synthetic biology-based compartmentalization strategies. ACS Biomater Sci Eng 2015, 1:345-351.
    • (2015) ACS Biomater Sci Eng , vol.1 , pp. 345-351
    • Chessher, A.1    Breitling, R.2    Takano, E.3
  • 47
    • 84920531816 scopus 로고    scopus 로고
    • Bacterial microcompartments and the modular construction of microbial metabolism
    • Kerfeld C.A., Erbilgin O. Bacterial microcompartments and the modular construction of microbial metabolism. Trends Microbiol 2015, 23:22-34.
    • (2015) Trends Microbiol , vol.23 , pp. 22-34
    • Kerfeld, C.A.1    Erbilgin, O.2
  • 51
    • 84888779074 scopus 로고    scopus 로고
    • Engineering Escherichia coli for selective geraniol production with minimized endogenous dehydrogenation
    • Zhou J., Wang C., Yoon S.H., Jang H.J., Choi E.S., Kim S.W. Engineering Escherichia coli for selective geraniol production with minimized endogenous dehydrogenation. J Biotechnol 2014, 169:42-50.
    • (2014) J Biotechnol , vol.169 , pp. 42-50
    • Zhou, J.1    Wang, C.2    Yoon, S.H.3    Jang, H.J.4    Choi, E.S.5    Kim, S.W.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.