메뉴 건너뛰기




Volumn , Issue , 2014, Pages 556-561

Efficient interactive brain tumor segmentation as within-brain kNN classification

Author keywords

[No Author keywords available]

Indexed keywords

BRAIN; BRAIN MAPPING; MACHINE LEARNING; MAGNETIC RESONANCE; NEAREST NEIGHBOR SEARCH; PATTERN RECOGNITION; STATISTICAL TESTS; TUMORS;

EID: 84919933279     PISSN: 10514651     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICPR.2014.106     Document Type: Conference Paper
Times cited : (77)

References (21)
  • 1
    • 84879513272 scopus 로고    scopus 로고
    • A survey of mri-based medical image analysis for brain tumor studies
    • S. Bauer, R. Wiest, L. Nolte, and M. Reyes, "A survey of mri-based medical image analysis for brain tumor studies," Physics in medicine and biology, vol. 58, no. 13, p. R97, 2013.
    • (2013) Physics in Medicine and Biology , vol.58 , Issue.13 , pp. R97
    • Bauer, S.1    Wiest, R.2    Nolte, L.3    Reyes, M.4
  • 4
    • 84919943375 scopus 로고    scopus 로고
    • Virtual skeleton database
    • "Virtual skeleton database," http://www.virtualskeleton.ch/.
  • 6
    • 65349098028 scopus 로고    scopus 로고
    • Fluid vector flow and applications in brain tumor segmentation
    • T. Wang, I. Cheng, and A. Basu, "Fluid vector flow and applications in brain tumor segmentation," IEEE Trans. Biomedical Eng., vol. 56, no. 3, pp. 781-789, 2009.
    • (2009) IEEE Trans. Biomedical Eng , vol.56 , Issue.3 , pp. 781-789
    • Wang, T.1    Cheng, I.2    Basu, A.3
  • 7
    • 33751563521 scopus 로고    scopus 로고
    • Level-set evolution with region competition: Automatic 3-d segmentation of brain tumors
    • S. Ho, E. Bullitt, and G. Gerig, "Level-set evolution with region competition: automatic 3-d segmentation of brain tumors," in Proc. Int. Conf. Pattern Recognition, vol. 1, 2002, pp. 532-535.
    • (2002) Proc. Int. Conf. Pattern Recognition , vol.1 , pp. 532-535
    • Ho, S.1    Bullitt, E.2    Gerig, G.3
  • 8
    • 35248824713 scopus 로고    scopus 로고
    • Multispectral brain tumor segmentation based on histogram model adaptation
    • J. Rexilius, H. K. Hahn, J. Klein, M. G. Lentschig, and H.-O. Peitgen, "Multispectral brain tumor segmentation based on histogram model adaptation," in Medical Imaging, 2007, pp. 65 140V-65 140V.
    • (2007) Medical Imaging , pp. 65140V-65140V
    • Rexilius, J.1    Hahn, H.K.2    Klein, J.3    Lentschig, M.G.4    Peitgen, H.-O.5
  • 9
    • 69449091474 scopus 로고    scopus 로고
    • Computer-aided detection of brain tumor invasion using multiparametric mri
    • T. R. Jensen and K. M. Schmainda, "Computer-aided detection of brain tumor invasion using multiparametric mri," Journal of Magnetic Resonance Imaging, vol. 30, no. 3, pp. 481-489, 2009.
    • (2009) Journal of Magnetic Resonance Imaging , vol.30 , Issue.3 , pp. 481-489
    • Jensen, T.R.1    Schmainda, K.M.2
  • 14
    • 82255181699 scopus 로고    scopus 로고
    • Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization
    • S. Bauer, L. Nolte, and M. Reyes, "Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization," in Medical Image Computing and Computer-Assisted Intervention. Springer, 2011, pp. 354-361.
    • (2011) Medical Image Computing and Computer-Assisted Intervention. Springer , pp. 354-361
    • Bauer, S.1    Nolte, L.2    Reyes, M.3
  • 19
    • 4344598245 scopus 로고    scopus 로고
    • An experimental comparison of mincut/ max-flow algorithms for energy minimization in vision
    • Y. Boykov and V. Kolmogorov, "An experimental comparison of mincut/ max-flow algorithms for energy minimization in vision," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 26, no. 9, pp. 1124-1137, 2004.
    • (2004) Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.26 , Issue.9 , pp. 1124-1137
    • Boykov, Y.1    Kolmogorov, V.2
  • 20
    • 84929299697 scopus 로고    scopus 로고
    • Fully automatic brain tumor segmentation from multiple mr sequences using hidden markov fields and variational em
    • S. Doyle, F. Vasseur, and F. Forbes, "Fully automatic brain tumor segmentation from multiple mr sequences using hidden markov fields and variational em," Proc. Workshop on Brain Tumor Segmentation MICCAI., pp. 18-22, 2013.
    • (2013) Proc. Workshop on Brain Tumor Segmentation MICCAI , pp. 18-22
    • Doyle, S.1    Vasseur, F.2    Forbes, F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.