메뉴 건너뛰기




Volumn 13, Issue 7, 2016, Pages 1012-1016

Active Learning Methods for Efficient Hybrid Biophysical Variable Retrieval

Author keywords

Active learning (AL); hybrid retrieval methods; kernel methods; machine learning regression algorithms (MLRAs); PROSAIL; Sentinel 3

Indexed keywords

ALGORITHMS; ALUMINUM; BIOPHYSICS; LEARNING SYSTEMS; MATLAB; RADIATIVE TRANSFER; REMOTE SENSING;

EID: 84971457374     PISSN: 1545598X     EISSN: None     Source Type: Journal    
DOI: 10.1109/LGRS.2016.2560799     Document Type: Article
Times cited : (78)

References (29)
  • 1
    • 67650270441 scopus 로고    scopus 로고
    • Earth system science related imaging spectroscopy-An assessment
    • M. E. Schaepman et al., "Earth system science related imaging spectroscopy-An assessment," Remote Sens. Environ., vol. 113, pp. S123-S137, 2009.
    • (2009) Remote Sens. Environ , vol.113 , pp. S123-S137
    • Schaepman, M.E.1
  • 2
    • 84942831872 scopus 로고    scopus 로고
    • Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties-A review
    • J. Verrelst et al., "Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties-A review," ISPRS J. Photogramm. Remote Sens., vol. 108, pp. 273-290, 2015.
    • (2015) ISPRS J. Photogramm. Remote Sens , vol.108 , pp. 273-290
    • Verrelst, J.1
  • 3
    • 34548034502 scopus 로고    scopus 로고
    • Lai, fapar and fcover cyclopes global products derived from vegetation. Part 1: Principles of the algorithm
    • F. Baret et al., "LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION. Part 1: Principles of the algorithm," Remote Sens. Environ., vol. 110, no. 3, pp. 275-286, 2007.
    • (2007) Remote Sens. Environ , vol.110 , Issue.3 , pp. 275-286
    • Baret, F.1
  • 4
    • 84881219181 scopus 로고    scopus 로고
    • Geov1: Lai and fapar essential climate variables and fcover global time series capitalizing over existing products. Part1: Principles of development and production
    • F. Baret et al., "GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production," Remote Sens. Environ., vol. 137, pp. 299-309, 2013.
    • (2013) Remote Sens. Environ , vol.137 , pp. 299-309
    • Baret, F.1
  • 5
    • 67650232810 scopus 로고    scopus 로고
    • Prospect+sail models: A review of use for vegetation characterization
    • S. Jacquemoud et al., "PROSPECT+SAIL models: A review of use for vegetation characterization," Remote Sens. Environ., vol. 113, pp. S56-S66, 2009.
    • (2009) Remote Sens. Environ , vol.113 , pp. S56-S66
    • Jacquemoud, S.1
  • 6
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • J. Suykens and J. Vandewalle, "Least squares support vector machine classifiers," Neural Process. Lett., vol. 9, no. 3, pp. 293-300, 1999.
    • (1999) Neural Process. Lett , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.1    Vandewalle, J.2
  • 7
    • 83455181750 scopus 로고    scopus 로고
    • Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for sentinel-2 and-3
    • J. Verrelst et al., "Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and-3," Remote Sens. Environ., vol. 118, pp. 127-139, 2012.
    • (2012) Remote Sens. Environ , vol.118 , pp. 127-139
    • Verrelst, J.1
  • 9
    • 84860332507 scopus 로고    scopus 로고
    • Retrieval of vegetation biophysical parameters using Gaussian process techniques
    • May
    • J. Verrelst, L. Alonso, G. Camps-Valls, J. Delegido, and J. Moreno, "Retrieval of vegetation biophysical parameters using Gaussian process techniques," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 5, pp. 1832-1843, May 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , Issue.5 , pp. 1832-1843
    • Verrelst, J.1    Alonso, L.2    Camps-Valls, G.3    Delegido, J.4    Moreno, J.5
  • 10
    • 84942550615 scopus 로고    scopus 로고
    • Experimental sentinel-2 lai estimation using parametric, non-parametric and physical retrieval methods-A comparison
    • Oct
    • J. Verrelst et al., "Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods-A comparison," ISPRS J. Photogramm. Remote Sens., vol. 108, pp. 260-272, Oct. 2015.
    • (2015) ISPRS J. Photogramm. Remote Sens , vol.108 , pp. 260-272
    • Verrelst, J.1
  • 11
    • 85032751590 scopus 로고    scopus 로고
    • Kernel multivariate analysis framework for supervised subspace learning: A tutorial on linear and kernel multivariate methods
    • Jul
    • J. Arenas-Garcia, K. Petersen, G. Camps-Valls, and L. Hansen, "Kernel multivariate analysis framework for supervised subspace learning: A tutorial on linear and kernel multivariate methods," IEEE Signal Process. Mag., vol. 30, no. 4, pp. 16-29, Jul. 2013.
    • (2013) IEEE Signal Process. Mag , vol.30 , Issue.4 , pp. 16-29
    • Arenas-Garcia, J.1    Petersen, K.2    Camps-Valls, G.3    Hansen, L.4
  • 12
    • 0000695404 scopus 로고
    • Information-based objective functions for active data selection
    • D. J. MacKay, "Information-based objective functions for active data selection," Neural Comput., vol. 4, pp. 590-604, 1992.
    • (1992) Neural Comput , vol.4 , pp. 590-604
    • MacKay, D.J.1
  • 13
    • 79957456032 scopus 로고    scopus 로고
    • A survey of active learning algorithms for supervised remote sensing image classification
    • Jun
    • D. Tuia, M. Volpi, L. Copa, M. Kanevski, and J. Muñoz-Marí, "A survey of active learning algorithms for supervised remote sensing image classification," IEEE J. Sel. Topics Signal Process., vol. 5, no. 3, pp. 606-617, Jun. 2011.
    • (2011) IEEE J. Sel. Topics Signal Process , vol.5 , Issue.3 , pp. 606-617
    • Tuia, D.1    Volpi, M.2    Copa, L.3    Kanevski, M.4    Muñoz-Marí, J.5
  • 14
    • 84867060971 scopus 로고    scopus 로고
    • Semisupervised classification of remote sensing images with active queries
    • Oct
    • J. Muñoz Marí, D. Tuia, and G. Camps-Valls, "Semisupervised classification of remote sensing images with active queries," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 10, pp. 3751-3763, Oct. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , Issue.10 , pp. 3751-3763
    • Muñoz Marí, J.1    Tuia, D.2    Camps-Valls, G.3
  • 15
    • 84874518998 scopus 로고    scopus 로고
    • Active learning: Any value for classification of remotely sensed data?
    • Mar
    • M. Crawford, D. Tuia, and H. Yang, "Active learning: Any value for classification of remotely sensed data?" Proc. IEEE, vol. 101, no. 3, pp. 593-608, Mar. 2013.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 593-608
    • Crawford, M.1    Tuia, D.2    Yang, H.3
  • 16
    • 84892437309 scopus 로고    scopus 로고
    • SVM active learning approach for image classification using spatial information
    • Apr
    • E. Pasolli, F. Melgani, D. Tuia, F. Pacifici, and W. Emery, "SVM active learning approach for image classification using spatial information," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 4, pp. 2217-2223, Apr. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , Issue.4 , pp. 2217-2223
    • Pasolli, E.1    Melgani, F.2    Tuia, D.3    Pacifici, F.4    Emery, W.5
  • 17
    • 84867073344 scopus 로고    scopus 로고
    • Active learning methods for biophysical parameter estimation
    • Oct
    • E. Pasolli, F. Melgani, N. Alajlan, and Y. Bazi, "Active learning methods for biophysical parameter estimation," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 10, pp. 4071-4084, Oct. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , Issue.10 , pp. 4071-4084
    • Pasolli, E.1    Melgani, F.2    Alajlan, N.3    Bazi, Y.4
  • 18
    • 34249816831 scopus 로고    scopus 로고
    • Semisupervised pso-SVM regression for biophysical parameter estimation
    • Jun
    • Y. Bazi and F. Melgani, "Semisupervised PSO-SVM regression for biophysical parameter estimation," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 6, pp. 1887-1895, Jun. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens , vol.45 , Issue.6 , pp. 1887-1895
    • Bazi, Y.1    Melgani, F.2
  • 19
    • 84871712040 scopus 로고    scopus 로고
    • Kernel ridge regression with active learning for wind speed prediction
    • Mar
    • Y. Bazi and F. Melgani, "Kernel ridge regression with active learning for wind speed prediction," Appl. Energy, vol. 103, pp. 328-340, Mar. 2013.
    • (2013) Appl. Energy , vol.103 , pp. 328-340
    • Bazi, Y.1    Melgani, F.2
  • 20
    • 84929405653 scopus 로고    scopus 로고
    • Active learning combining uncertainty and diversity for multi-class image classification
    • Y. Gu, Z. Jin, and S. Chiu, "Active learning combining uncertainty and diversity for multi-class image classification," IET Comput. Vis., vol. 9, no. 3, pp. 400-407, 2015.
    • (2015) IET Comput. Vis , vol.9 , Issue.3 , pp. 400-407
    • Gu, Y.1    Jin, Z.2    Chiu, S.3
  • 21
    • 80053622629 scopus 로고    scopus 로고
    • A two-stage regression approach for spectroscopic quantitative analysis
    • F. Douak, N. Benoudjit, and F.Melgani, "A two-stage regression approach for spectroscopic quantitative analysis," Chemometrics Intell. Lab. Syst., vol. 109, no. 1, pp. 34-41, 2011.
    • (2011) Chemometrics Intell. Lab. Syst , vol.109 , Issue.1 , pp. 34-41
    • Douak, F.1    Benoudjit, N.2    Melgani, F.3
  • 22
    • 79952041537 scopus 로고    scopus 로고
    • Batch-mode active-learning methods for the interactive classification of remote sensing images
    • Mar
    • B. Demir, C. Persello, and L. Bruzzone, "Batch-mode active-learning methods for the interactive classification of remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 3, pp. 1014-1031, Mar. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , Issue.3 , pp. 1014-1031
    • Demir, B.1    Persello, C.2    Bruzzone, L.3
  • 23
    • 84859302340 scopus 로고    scopus 로고
    • A cluster-Assumption based batch mode active learning technique
    • S. Patra and L. Bruzzone, "A cluster-Assumption based batch mode active learning technique," Pattern Recognit. Lett., vol. 33, no. 9, pp. 1042-1048, 2012.
    • (2012) Pattern Recognit. Lett , vol.33 , Issue.9 , pp. 1042-1048
    • Patra, S.1    Bruzzone, L.2
  • 24
    • 84870653681 scopus 로고    scopus 로고
    • Mapping vegetation density in a heterogeneous river floodplain ecosystem using pointable chris/proba data
    • J. Verrelst, E. Romijn, and L. Kooistra, "Mapping vegetation density in a heterogeneous river floodplain ecosystem using pointable CHRIS/PROBA data," Remote Sens., vol. 4, no. 9, pp. 2866-2889, 2012.
    • (2012) Remote Sens , vol.4 , Issue.9 , pp. 2866-2889
    • Verrelst, J.1    Romijn, E.2    Kooistra, L.3
  • 27
    • 84881513198 scopus 로고    scopus 로고
    • Multiple cost functions and regularization options for improved retrieval of leaf chlorophyll content and lai through inversion of the prosail model
    • J. Rivera, J. Verrelst, G. Leonenko, and J. Moreno, "Multiple cost functions and regularization options for improved retrieval of leaf chlorophyll content and LAI through inversion of the PROSAIL model," Remote Sens., vol. 5, no. 7, pp. 3280-3304, 2013.
    • (2013) Remote Sens , vol.5 , Issue.7 , pp. 3280-3304
    • Rivera, J.1    Verrelst, J.2    Leonenko, G.3    Moreno, J.4
  • 29
    • 84897108395 scopus 로고    scopus 로고
    • A multiple criteria active learning method for support vector regression
    • Jul
    • B. Demir and L. Bruzzone, "A multiple criteria active learning method for support vector regression," Pattern Recognit., vol. 47, no. 7, pp. 2558-2567, Jul. 2014.
    • (2014) Pattern Recognit , vol.47 , Issue.7 , pp. 2558-2567
    • Demir, B.1    Bruzzone, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.