메뉴 건너뛰기




Volumn 47, Issue 7, 2014, Pages 2558-2567

A multiple criteria active learning method for support vector regression

Author keywords

Active learning; Parameters estimation; Regression; Support vector regression

Indexed keywords

ARTIFICIAL INTELLIGENCE; LEARNING SYSTEMS; REGRESSION ANALYSIS; VECTORS;

EID: 84897108395     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2014.02.001     Document Type: Article
Times cited : (72)

References (29)
  • 1
    • 0036779091 scopus 로고    scopus 로고
    • Image processing with neural networks - A review
    • M.E. Petersen, D. de Ridder, and H. Handels Image processing with neural networks - a review Pattern Recognit. 35 2002 2279 2301
    • (2002) Pattern Recognit. , vol.35 , pp. 2279-2301
    • Petersen, M.E.1    De Ridder, D.2    Handels, H.3
  • 2
    • 0031146959 scopus 로고    scopus 로고
    • Constructive algorithms for structure learning in feedforward neural networks for regression problems
    • T.Y. Kwok, and D.Y. Yeung Constructive algorithms for structure learning in feedforward neural networks for regression problems IEEE Trans. Neural Networks 8 1997 630 645
    • (1997) IEEE Trans. Neural Networks , vol.8 , pp. 630-645
    • Kwok, T.Y.1    Yeung, D.Y.2
  • 3
    • 0036565303 scopus 로고    scopus 로고
    • Extraction of rules from artificial neural networks for nonlinear regression
    • R. Setiono, W.K. Leow, and J. Zurada Extraction of rules from artificial neural networks for nonlinear regression IEEE Trans. Neural Networks 13 2002 564 577
    • (2002) IEEE Trans. Neural Networks , vol.13 , pp. 564-577
    • Setiono, R.1    Leow, W.K.2    Zurada, J.3
  • 5
    • 79551561512 scopus 로고    scopus 로고
    • K-nn regression to improve statistical feature extraction for texture retrieval
    • F. Khelifi, and J. Jiang K-nn regression to improve statistical feature extraction for texture retrieval IEEE Trans. Image Process. 20 2011 293 298
    • (2011) IEEE Trans. Image Process. , vol.20 , pp. 293-298
    • Khelifi, F.1    Jiang, J.2
  • 7
    • 0000913324 scopus 로고    scopus 로고
    • Svmtorch: Support vector machines for large-scale regression problems
    • R. Collobert, and S. Bengio Svmtorch: Support vector machines for large-scale regression problems J. Mach. Learn. Res. 1 2001 143 160
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 143-160
    • Collobert, R.1    Bengio, S.2
  • 8
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • A.J. Smola, and B. Scholkopf A tutorial on support vector regression Statist. Comput. 14 2004 199 222
    • (2004) Statist. Comput. , vol.14 , pp. 199-222
    • Smola, A.J.1    Scholkopf, B.2
  • 11
    • 68949137209 scopus 로고    scopus 로고
    • University of Wisconsin-Madison, Madison, WI, Computer Sciences Technical Report 1648
    • B. Settles, Active Learning Literature Survey. University of Wisconsin-Madison, Madison, WI, Computer Sciences Technical Report 1648, 2009.
    • (2009) Active Learning Literature Survey
    • Settles, B.1
  • 13
    • 84888291217 scopus 로고    scopus 로고
    • Active learning methods in classification of remote sensing images
    • C.H. Chen, 2nd edition CRC Press, Taylor & Francis Boca Raton, FL, USA (Chapter 15)
    • L. Bruzzone, C. Persello, and B. Demir Active learning methods in classification of remote sensing images C.H. Chen, Signal and Image Processing for Remote Sensing 2nd edition 2012 CRC Press, Taylor & Francis Boca Raton, FL, USA 303 323 (Chapter 15)
    • (2012) Signal and Image Processing for Remote Sensing , pp. 303-323
    • Bruzzone, L.1    Persello, C.2    Demir, B.3
  • 15
    • 0033640737 scopus 로고    scopus 로고
    • Statistical active learning in multilayer perceptrons
    • K. Fukumizu Statistical active learning in multilayer perceptrons IEEE Trans. Neural Networks 11 2000 17 26
    • (2000) IEEE Trans. Neural Networks , vol.11 , pp. 17-26
    • Fukumizu, K.1
  • 16
    • 77951218308 scopus 로고    scopus 로고
    • Active learning and basis selection for kernel-based linear models: A Bayesian perspective
    • J. Paisley, X. Liao, and L. Carin Active learning and basis selection for kernel-based linear models: a Bayesian perspective IEEE Trans. Signal Process. 58 2012 2686 2700
    • (2012) IEEE Trans. Signal Process. , vol.58 , pp. 2686-2700
    • Paisley, J.1    Liao, X.2    Carin, L.3
  • 18
  • 19
    • 12844286965 scopus 로고    scopus 로고
    • Robust multiple estimator systems for the analysis of biophysical parameters from remotely sensed data
    • L. Bruzzone, and F. Melgani Robust multiple estimator systems for the analysis of biophysical parameters from remotely sensed data IEEE Trans. Geosci. Remote Sens. 43 2005 159 174
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , pp. 159-174
    • Bruzzone, L.1    Melgani, F.2
  • 20
  • 22
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • S. Tong, and D. Koller Support vector machine active learning with applications to text classification J. Mach. Learn. Res. 2001 45 66
    • (2001) J. Mach. Learn. Res. , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 24
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Scholkopf, A. Smola, and K.R. Muller Nonlinear component analysis as a kernel eigenvalue problem Neural Comput. 10 1998 1299 1319
    • (1998) Neural Comput. , vol.10 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.2    Muller, K.R.3
  • 26
    • 79959696101 scopus 로고    scopus 로고
    • A system for the estimation of single tree stem diameters and volume using multireturn LIDAR data
    • M. Dalponte, L. Bruzzone, and D. Gianelle A system for the estimation of single tree stem diameters and volume using multireturn LIDAR data IEEE Trans. Geosci. Remote Sens. 49 2011 2479 2490
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , pp. 2479-2490
    • Dalponte, M.1    Bruzzone, L.2    Gianelle, D.3
  • 27
    • 84886567160 scopus 로고    scopus 로고
    • University of California, School of Information and Computer Science, Irvine, CA
    • K. Bache, M. Lichman, UCI Machine Learning Repository, University of California, School of Information and Computer Science, Irvine, CA, 2013 (〈http://archive.ics.uci.edu/ml〉).
    • (2013) UCI Machine Learning Repository
    • Bache, K.1    Lichman, M.2
  • 28
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes, and V. Vapnik Support vector networks Mach. Learn. 20 1995 273 297
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.