메뉴 건너뛰기




Volumn 33, Issue 9, 2012, Pages 1042-1048

A cluster-assumption based batch mode active learning technique

Author keywords

Active learning; Cluster assumption; Entropy; Query function; Support vector machine

Indexed keywords

ACTIVE LEARNING; BATCH MODES; CLASSIFICATION ACCURACY; CLUSTER ASSUMPTION; HISTOGRAM THRESHOLDING; KERNEL K-MEANS; LOW DENSITY; MULTI-CLASS PROBLEMS; REAL DATA SETS; SUPPORT VECTOR MACHINE (SVM); SVM CLASSIFIERS; TOY DATA; TRAINING SAMPLE;

EID: 84859302340     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2012.01.015     Document Type: Article
Times cited : (52)

References (22)
  • 1
    • 1942517333 scopus 로고    scopus 로고
    • Incorporating diversity in active learning with support vector machines
    • Brinker, K., 2003. Incorporating diversity in active learning with support vector machines. In: Proc. 20th ICML, pp. 59-66.
    • (2003) Proc. 20th ICML , pp. 59-66
    • Brinker, K.1
  • 2
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C.J.C. Burges A tutorial on support vector machines for pattern recognition Data Mining Knowl. Discovery 2 2 1998 121 167 (Pubitemid 128695475)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 3
    • 0038399423 scopus 로고    scopus 로고
    • Query learning with large margin classifiers
    • Campbell, C., Cristianini, N., Smola, A., 2000. Query learning with large margin classifiers. In: Proc. 17th ICML, pp. 111-118.
    • (2000) Proc. 17th ICML , pp. 111-118
    • Campbell, C.1    Cristianini, N.2    Smola, A.3
  • 5
    • 85152628923 scopus 로고
    • Committee-based sampling for training probabilistic classifiers
    • Dagan, I., Engelson, S.P., 1995. Committee-based sampling for training probabilistic classifiers. In: Proc. 12th ICML, pp. 150-157.
    • (1995) Proc. 12th ICML , pp. 150-157
    • Dagan, I.1    Engelson, S.P.2
  • 6
    • 79952041537 scopus 로고    scopus 로고
    • Batch-mode active-learning methods for the interactive classification of remote sensing images
    • B. Demir, C. Persello, and L. Bruzzone Batch-mode active-learning methods for the interactive classification of remote sensing images IEEE Trans. Geosci. Remote Sens. 49 3 2011 1014 1031
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.3 , pp. 1014-1031
    • Demir, B.1    Persello, C.2    Bruzzone, L.3
  • 7
    • 78649934709 scopus 로고    scopus 로고
    • University of California, School of Information and Computer Sciences
    • Frank, A., Asuncion, A., 2010. UCI Machine Learning Repository, University of California, School of Information and Computer Sciences. .
    • (2010) UCI Machine Learning Repository
    • Frank, A.1    Asuncion, A.2
  • 8
    • 0031209604 scopus 로고    scopus 로고
    • Selective Sampling Using the Query by Committee Algorithm
    • Y. Freund, H.S. Seung, E. Shamir, and N. Tishby Selective sampling using the query by committee algorithm Machine Learn. 28 1997 133 168 (Pubitemid 127506338)
    • (1997) Machine Learning , vol.28 , Issue.2-3 , pp. 133-168
    • Freund, Y.1    Seung, H.S.2    Shamir, E.3    Tishby, N.4
  • 9
    • 0033640737 scopus 로고    scopus 로고
    • Statistical active learning in multilayer perceptrons
    • DOI 10.1109/72.822506
    • K. Fukumizu Statistical active learning in multilayer perceptrons IEEE Trans. Neural Networks 11 1 2000 17 26 (Pubitemid 32132884)
    • (2000) IEEE Transactions on Neural Networks , vol.11 , Issue.1 , pp. 17-26
    • Fukumizu, K.1
  • 10
    • 0022266928 scopus 로고
    • New method for gray-level picture thresholding using the entropy of the histogram
    • J.N. Kapur, P.K. Sahoo, and A.K.C. Wong A new method for gray-level picture thresholding using the entropy of the histogram Comput. Vision Graph. Image Process. 29 3 1985 273 285 (Pubitemid 15510905)
    • (1985) Computer Vision, Graphics, and Image Processing , vol.29 , Issue.3 , pp. 273-285
    • Kapur, J.N.1    Sahoo, P.K.2    Wong, A.K.C.3
  • 12
    • 42749095524 scopus 로고    scopus 로고
    • SVM-based active feedback in image retrieval using clustering and unlabeled data
    • R. Liu, Y. Wang, T. Baba, D. Masumoto, and S. Nagata SVM-based active feedback in image retrieval using clustering and unlabeled data Pattern Recognition 41 2008 2645 2655
    • (2008) Pattern Recognition , vol.41 , pp. 2645-2655
    • Liu, R.1    Wang, Y.2    Baba, T.3    Masumoto, D.4    Nagata, S.5
  • 13
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • F. Melgani, and L. Bruzzone Classification of hyperspectral remote sensing images with support vector machines IEEE Trans. Geosci. Remote Sens. 42 8 2004 1778 1790
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 15
    • 0026927426 scopus 로고
    • Multilayer perceptron, fuzzy sets, and classification
    • DOI 10.1109/72.159058
    • S.K. Pal, and S. Mitra Multilayer perceptron, fuzzy sets, and classification IEEE Trans. Neural Networks 3 5 1992 683 697 (Pubitemid 23555783)
    • (1992) IEEE Transactions on Neural Networks , vol.3 , Issue.5 , pp. 683-697
    • Pal Sankar, K.1    Mitra Sushmita2
  • 16
    • 79955632976 scopus 로고    scopus 로고
    • A fast cluster-assumption based active learning technique for classification of remote sensing images
    • S. Patra, and L. Bruzzone A fast cluster-assumption based active learning technique for classification of remote sensing images IEEE Trans. Geosci. Remote Sens. 49 5 2011 1617 1626
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.5 , pp. 1617-1626
    • Patra, S.1    Bruzzone, L.2
  • 17
    • 34547675831 scopus 로고    scopus 로고
    • Generalization error bounds in semi-supervised classification under the cluster assumption
    • P. Rigollet Generalization error bounds in semi-supervised classification under the cluster assumption J. Machine Learn. Res. 8 2007 1369 1392 (Pubitemid 47210278)
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 1369-1392
    • Rigollet, P.1
  • 18
    • 0442319140 scopus 로고    scopus 로고
    • Toward optimal active learning through sampling estimation of error reduction
    • Roy, N., McCallum, A., 2001. Toward optimal active learning through sampling estimation of error reduction. In: Proc. 18th ICML, pp. 441-448.
    • (2001) Proc. 18th ICML , pp. 441-448
    • Roy, N.1    McCallum, A.2
  • 19
    • 1842422015 scopus 로고    scopus 로고
    • Survey over image thresholding techniques and quantitative performance evaluation
    • M. Sezgin, and B. Sankur Survey over image thresholding techniques and quantitative performance evaluation J. Electron. Imag. 13 1 2004 146 165
    • (2004) J. Electron. Imag. , vol.13 , Issue.1 , pp. 146-165
    • Sezgin, M.1    Sankur, B.2
  • 20
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • S. Tong, and D. Koller Support vector machine active learning with applications to text classification J. Machine Learn. Res. 2 1 2002 45 66
    • (2002) J. Machine Learn. Res. , vol.2 , Issue.1 , pp. 45-66
    • Tong, S.1    Koller, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.