메뉴 건너뛰기




Volumn 109, Issue 1, 2011, Pages 34-41

A two-stage regression approach for spectroscopic quantitative analysis

Author keywords

Boosting; Feature selection; Partial least squares regression (PLSR); Radial basis function neural network (RBFN); Residual based correction (RBC); Spectrometry; Support vector machines (SVM)

Indexed keywords

ACCURACY; ANALYTICAL ERROR; ARTICLE; CLUSTER ANALYSIS; CONTROLLED STUDY; KERNEL METHOD; LINEAR SYSTEM; MATHEMATICAL COMPUTING; MATHEMATICAL MODEL; MATHEMATICAL PARAMETERS; NEAR INFRARED SPECTROSCOPY; PARTIAL LEAST SQUARES REGRESSION; PRIORITY JOURNAL; QUANTITATIVE ANALYSIS; RADIAL BASED FUNCTION; SUPPORT VECTOR MACHINE;

EID: 80053622629     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2011.07.007     Document Type: Article
Times cited : (21)

References (38)
  • 1
    • 61349156692 scopus 로고    scopus 로고
    • Support vector machines (SVM) in near infrared (NIR) spectroscopy: focus on parameters optimization and model interpretation
    • Devos O., Ruckebusch C., Durand A., Duponchel L., Huvenne J.P. Support vector machines (SVM) in near infrared (NIR) spectroscopy: focus on parameters optimization and model interpretation. Chemom. Intell. Lab. Syst. 2009, 96:27-33.
    • (2009) Chemom. Intell. Lab. Syst. , vol.96 , pp. 27-33
    • Devos, O.1    Ruckebusch, C.2    Durand, A.3    Duponchel, L.4    Huvenne, J.P.5
  • 2
    • 33847300613 scopus 로고    scopus 로고
    • Kernel PLS regression on wavelet transformed NIR spectra for prediction of sugar content of apple
    • Nicolaï B.M., Theron K.I., Lammertyn J. Kernel PLS regression on wavelet transformed NIR spectra for prediction of sugar content of apple. Chemom. Intell. Lab. Syst. 2007, 85:243-252.
    • (2007) Chemom. Intell. Lab. Syst. , vol.85 , pp. 243-252
    • Nicolaï, B.M.1    Theron, K.I.2    Lammertyn, J.3
  • 4
    • 80053621978 scopus 로고    scopus 로고
    • High-dimensional data analysis: optimal metrics and feature selection, Ph.D. Thesis, Université Catholique de Louvain, Belgium
    • D. Francois, High-dimensional data analysis: optimal metrics and feature selection, Ph.D. Thesis, Université Catholique de Louvain, Belgium, 2007.
    • (2007)
    • Francois, D.1
  • 7
    • 67349239340 scopus 로고    scopus 로고
    • Analysis of cefalexin with NIR spectrometry coupled to artificial neural networks with modified genetic algorithm for wavelength selection
    • Fei Q., Li M., Wang B., Huan Y., Feng G., Ren Y. Analysis of cefalexin with NIR spectrometry coupled to artificial neural networks with modified genetic algorithm for wavelength selection. Chemom. Intell. Lab. Syst. 2009, 97:127-131.
    • (2009) Chemom. Intell. Lab. Syst. , vol.97 , pp. 127-131
    • Fei, Q.1    Li, M.2    Wang, B.3    Huan, Y.4    Feng, G.5    Ren, Y.6
  • 8
    • 0037191112 scopus 로고    scopus 로고
    • QSAR study of the calcium channel antagonist activity of some recently synthesized dihydropyridine derivatives. An application of genetic algorithm for variable selection in MLR and PLS methods
    • Hemmateenejad B., Miri R., Akhond M., Shamsipur M. QSAR study of the calcium channel antagonist activity of some recently synthesized dihydropyridine derivatives. An application of genetic algorithm for variable selection in MLR and PLS methods. Chemom. Intell. Lab. Syst. 2002, 64:91-99.
    • (2002) Chemom. Intell. Lab. Syst. , vol.64 , pp. 91-99
    • Hemmateenejad, B.1    Miri, R.2    Akhond, M.3    Shamsipur, M.4
  • 9
    • 1642475168 scopus 로고    scopus 로고
    • Chemometric calibration of infrared spectrometers: selection and validation of variables by non-linear models
    • Benoudjit N., Cools E., Meurens M., Verleysen M. Chemometric calibration of infrared spectrometers: selection and validation of variables by non-linear models. Chemom. Intell. Lab. Syst. 2004, 70:47-53.
    • (2004) Chemom. Intell. Lab. Syst. , vol.70 , pp. 47-53
    • Benoudjit, N.1    Cools, E.2    Meurens, M.3    Verleysen, M.4
  • 10
    • 0344141207 scopus 로고    scopus 로고
    • Selection of variables for interpreting multivariate gas sensor data
    • Eklöv T., Mårtensson P., Lundström I. Selection of variables for interpreting multivariate gas sensor data. Anal. Chim. Acta. 1999, 381:221-232.
    • (1999) Anal. Chim. Acta. , vol.381 , pp. 221-232
    • Eklöv, T.1    Mårtensson, P.2    Lundström, I.3
  • 11
    • 0037185406 scopus 로고    scopus 로고
    • Some recent trends in the calibration literature
    • Geladi P. Some recent trends in the calibration literature. Chemom. Intell. Lab. Syst. 2002, 60:211-224.
    • (2002) Chemom. Intell. Lab. Syst. , vol.60 , pp. 211-224
    • Geladi, P.1
  • 12
    • 0003522412 scopus 로고    scopus 로고
    • Artificial Neural Networks
    • Prentice-Hall, Upper Saddle River
    • Patterson D. Artificial Neural Networks. Theory and Applications 1996, Prentice-Hall, Upper Saddle River.
    • (1996) Theory and Applications
    • Patterson, D.1
  • 16
    • 43049155941 scopus 로고    scopus 로고
    • A versatile strategy for achieving the second-order advantage when applying different artificial neural networks to non-linear second-order data: unfolded principal component analysis/residual bilinearization
    • Reiriz A.G., Damiani P.C., Culzoni M.J., Goicoechea H.C., Olivieri A.C. A versatile strategy for achieving the second-order advantage when applying different artificial neural networks to non-linear second-order data: unfolded principal component analysis/residual bilinearization. Chemom. Intell. Lab. Syst. 2008, 92:61-70.
    • (2008) Chemom. Intell. Lab. Syst. , vol.92 , pp. 61-70
    • Reiriz, A.G.1    Damiani, P.C.2    Culzoni, M.J.3    Goicoechea, H.C.4    Olivieri, A.C.5
  • 17
    • 0037127460 scopus 로고    scopus 로고
    • Determination of organic matter in soils using radial basis function networks and near infrared spectroscopy
    • Fidêncio P.H., Poppi R.J., de Andrade J.C. Determination of organic matter in soils using radial basis function networks and near infrared spectroscopy. Anal. Chim. Acta. 2002, 453:125-134.
    • (2002) Anal. Chim. Acta. , vol.453 , pp. 125-134
    • Fidêncio, P.H.1    Poppi, R.J.2    de Andrade, J.C.3
  • 18
    • 0003401675 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Royal Holloway College, Univ. London, London, U.K
    • Smola A., Schölkopf B. A tutorial on support vector regression. NeuroCOLT Tech. Rep. NC-TR-98-030 1998, Royal Holloway College, Univ. London, London, U.K.
    • (1998) NeuroCOLT Tech. Rep. NC-TR-98-030
    • Smola, A.1    Schölkopf, B.2
  • 20
    • 0001002401 scopus 로고
    • Approximation and radial basis function networks
    • Park J., Sandberg I. Approximation and radial basis function networks. Neural Comput. 1993, 5:305-316.
    • (1993) Neural Comput. , vol.5 , pp. 305-316
    • Park, J.1    Sandberg, I.2
  • 21
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio T., Girosi F. Networks for approximation and learning. Proc. IEEE 1990, 78(9):1481-1497.
    • (1990) Proc. IEEE , vol.78 , Issue.9 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 22
    • 0003599567 scopus 로고    scopus 로고
    • Introduction to radial basis functions networks
    • April
    • Orr M.J. Introduction to radial basis functions networks. Technical Reports 1996, April. http://www.anc.ed.ac.uk/~mjo/papers/intro.ps.
    • (1996) Technical Reports
    • Orr, M.J.1
  • 23
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund Y., Schapire R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55:119-139.
    • (1997) J. Comput. Syst. Sci. , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 24
    • 0037186544 scopus 로고    scopus 로고
    • Stochastic gradient boosting
    • Friedman J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38:367-378.
    • (2002) Comput. Stat. Data Anal. , vol.38 , pp. 367-378
    • Friedman, J.H.1
  • 25
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman J.H. Multivariate adaptive regression splines. Ann. Stat. 1991, 19:1-141.
    • (1991) Ann. Stat. , vol.19 , pp. 1-141
    • Friedman, J.H.1
  • 27
    • 77952548488 scopus 로고    scopus 로고
    • An improved boosting partial least squares method for near-infrared spectroscopic quantitative analysis
    • Shao X., Bian X., Cai W. An improved boosting partial least squares method for near-infrared spectroscopic quantitative analysis. Anal. Chim. Acta. 2010, 666:32-37.
    • (2010) Anal. Chim. Acta. , vol.666 , pp. 32-37
    • Shao, X.1    Bian, X.2    Cai, W.3
  • 28
    • 33646849614 scopus 로고    scopus 로고
    • Boosting support vector regression in QSAR studies of bioactivities of chemical compounds
    • Zhou Y.P., Jiang J.H., Lin W.Q., Zou H.Y., Wu H.L., Shen G.L., Yu R.Q. Boosting support vector regression in QSAR studies of bioactivities of chemical compounds. Eur. Pharmacol. Sci. 2006, 28:344-353.
    • (2006) Eur. Pharmacol. Sci. , vol.28 , pp. 344-353
    • Zhou, Y.P.1    Jiang, J.H.2    Lin, W.Q.3    Zou, H.Y.4    Wu, H.L.5    Shen, G.L.6    Yu, R.Q.7
  • 29
    • 14744269749 scopus 로고    scopus 로고
    • Boosting partial least squares
    • Zhang M.H., Xu Q.S., Massart D.L. Boosting partial least squares. Anal. Chem. 2005, 77:1423-1431.
    • (2005) Anal. Chem. , vol.77 , pp. 1423-1431
    • Zhang, M.H.1    Xu, Q.S.2    Massart, D.L.3
  • 30
    • 34249307438 scopus 로고    scopus 로고
    • Investigations of bagged kernel partial least squares (KPLS) and boosting KPLS with applications to near-infrared (NIR) spectra
    • Shinzawa H., Jiang J.H., Ritthiruangdej P., Ozaki Y. Investigations of bagged kernel partial least squares (KPLS) and boosting KPLS with applications to near-infrared (NIR) spectra. J. Chemom. 2006, 20:436-444.
    • (2006) J. Chemom. , vol.20 , pp. 436-444
    • Shinzawa, H.1    Jiang, J.H.2    Ritthiruangdej, P.3    Ozaki, Y.4
  • 31
    • 33847276241 scopus 로고    scopus 로고
    • Dry film method with ytterbium as the internal standard for near infrared spectroscopic plasma glucose assay coupled with boosting support vector regression
    • Zhou Y.P., Jiang J.H., Wu H.L., Shen G.L., Yu R.Q., Ozaki Y. Dry film method with ytterbium as the internal standard for near infrared spectroscopic plasma glucose assay coupled with boosting support vector regression. J. Chemom. 2006, 20:13-21.
    • (2006) J. Chemom. , vol.20 , pp. 13-21
    • Zhou, Y.P.1    Jiang, J.H.2    Wu, H.L.3    Shen, G.L.4    Yu, R.Q.5    Ozaki, Y.6
  • 34
    • 32944462016 scopus 로고    scopus 로고
    • Mutual information for the selection of relevant variables in spectrometric nonlinear modelling
    • Rossi F., Lendasse A., Francois D., Wertz V., Verleysen M. Mutual information for the selection of relevant variables in spectrometric nonlinear modelling. Chemom. Intell. Lab. Syst. 2006, 80:215-226.
    • (2006) Chemom. Intell. Lab. Syst. , vol.80 , pp. 215-226
    • Rossi, F.1    Lendasse, A.2    Francois, D.3    Wertz, V.4    Verleysen, M.5
  • 35
    • 39749131593 scopus 로고    scopus 로고
    • A data-driven functional projection approach for the selection of feature ranges in spectra with ICA or cluster analysis
    • Krier C., Rossi F., François D., Verleysen M. A data-driven functional projection approach for the selection of feature ranges in spectra with ICA or cluster analysis. Chemom. Intell. Lab. Syst. 2008, 91:43-53.
    • (2008) Chemom. Intell. Lab. Syst. , vol.91 , pp. 43-53
    • Krier, C.1    Rossi, F.2    François, D.3    Verleysen, M.4
  • 36
    • 84886999063 scopus 로고    scopus 로고
    • Available from
    • Tecator meat sample dataset Available from. http://lib.stat.cmu.edu/datasets/tecator.
    • Tecator meat sample dataset
  • 38
    • 0027943145 scopus 로고
    • Comparing the predictive accuracy of models using a simple randomization test
    • van der Voet H. Comparing the predictive accuracy of models using a simple randomization test. Chemom. Intell. Lab. Syst. 1994, 25:313-323.
    • (1994) Chemom. Intell. Lab. Syst. , vol.25 , pp. 313-323
    • van der Voet, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.