-
1
-
-
61349156692
-
Support vector machines (SVM) in near infrared (NIR) spectroscopy: focus on parameters optimization and model interpretation
-
Devos O., Ruckebusch C., Durand A., Duponchel L., Huvenne J.P. Support vector machines (SVM) in near infrared (NIR) spectroscopy: focus on parameters optimization and model interpretation. Chemom. Intell. Lab. Syst. 2009, 96:27-33.
-
(2009)
Chemom. Intell. Lab. Syst.
, vol.96
, pp. 27-33
-
-
Devos, O.1
Ruckebusch, C.2
Durand, A.3
Duponchel, L.4
Huvenne, J.P.5
-
2
-
-
33847300613
-
Kernel PLS regression on wavelet transformed NIR spectra for prediction of sugar content of apple
-
Nicolaï B.M., Theron K.I., Lammertyn J. Kernel PLS regression on wavelet transformed NIR spectra for prediction of sugar content of apple. Chemom. Intell. Lab. Syst. 2007, 85:243-252.
-
(2007)
Chemom. Intell. Lab. Syst.
, vol.85
, pp. 243-252
-
-
Nicolaï, B.M.1
Theron, K.I.2
Lammertyn, J.3
-
3
-
-
0003715355
-
-
Elsevier, Amsterdam
-
Massart D.L., Vandeginste B.G.M., Buydens L., De Jong S., Lewi P., Smeyers-Verbeke J. Handbook of Chemometrics and Qualimetrics: Part A 1997, Elsevier, Amsterdam.
-
(1997)
Handbook of Chemometrics and Qualimetrics: Part A
-
-
Massart, D.L.1
Vandeginste, B.G.M.2
Buydens, L.3
De Jong, S.4
Lewi, P.5
Smeyers-Verbeke, J.6
-
4
-
-
80053621978
-
-
High-dimensional data analysis: optimal metrics and feature selection, Ph.D. Thesis, Université Catholique de Louvain, Belgium
-
D. Francois, High-dimensional data analysis: optimal metrics and feature selection, Ph.D. Thesis, Université Catholique de Louvain, Belgium, 2007.
-
(2007)
-
-
Francois, D.1
-
5
-
-
34147105536
-
Fast selection of spectral variables with B-spline compression
-
Rossi F., Francois D., Wertz V., Meurens M., Verleysen M. Fast selection of spectral variables with B-spline compression. Chemom. Intell. Lab. Syst. 2007, 86:208-218.
-
(2007)
Chemom. Intell. Lab. Syst.
, vol.86
, pp. 208-218
-
-
Rossi, F.1
Francois, D.2
Wertz, V.3
Meurens, M.4
Verleysen, M.5
-
6
-
-
8444222417
-
Spectrophotometric variable selection by mutual information
-
Benoudjit N., François D., Meurens M., Verleysen M. Spectrophotometric variable selection by mutual information. Chemom. Intell. Lab. Syst. 2004, 74:243-251.
-
(2004)
Chemom. Intell. Lab. Syst.
, vol.74
, pp. 243-251
-
-
Benoudjit, N.1
François, D.2
Meurens, M.3
Verleysen, M.4
-
7
-
-
67349239340
-
Analysis of cefalexin with NIR spectrometry coupled to artificial neural networks with modified genetic algorithm for wavelength selection
-
Fei Q., Li M., Wang B., Huan Y., Feng G., Ren Y. Analysis of cefalexin with NIR spectrometry coupled to artificial neural networks with modified genetic algorithm for wavelength selection. Chemom. Intell. Lab. Syst. 2009, 97:127-131.
-
(2009)
Chemom. Intell. Lab. Syst.
, vol.97
, pp. 127-131
-
-
Fei, Q.1
Li, M.2
Wang, B.3
Huan, Y.4
Feng, G.5
Ren, Y.6
-
8
-
-
0037191112
-
QSAR study of the calcium channel antagonist activity of some recently synthesized dihydropyridine derivatives. An application of genetic algorithm for variable selection in MLR and PLS methods
-
Hemmateenejad B., Miri R., Akhond M., Shamsipur M. QSAR study of the calcium channel antagonist activity of some recently synthesized dihydropyridine derivatives. An application of genetic algorithm for variable selection in MLR and PLS methods. Chemom. Intell. Lab. Syst. 2002, 64:91-99.
-
(2002)
Chemom. Intell. Lab. Syst.
, vol.64
, pp. 91-99
-
-
Hemmateenejad, B.1
Miri, R.2
Akhond, M.3
Shamsipur, M.4
-
9
-
-
1642475168
-
Chemometric calibration of infrared spectrometers: selection and validation of variables by non-linear models
-
Benoudjit N., Cools E., Meurens M., Verleysen M. Chemometric calibration of infrared spectrometers: selection and validation of variables by non-linear models. Chemom. Intell. Lab. Syst. 2004, 70:47-53.
-
(2004)
Chemom. Intell. Lab. Syst.
, vol.70
, pp. 47-53
-
-
Benoudjit, N.1
Cools, E.2
Meurens, M.3
Verleysen, M.4
-
10
-
-
0344141207
-
Selection of variables for interpreting multivariate gas sensor data
-
Eklöv T., Mårtensson P., Lundström I. Selection of variables for interpreting multivariate gas sensor data. Anal. Chim. Acta. 1999, 381:221-232.
-
(1999)
Anal. Chim. Acta.
, vol.381
, pp. 221-232
-
-
Eklöv, T.1
Mårtensson, P.2
Lundström, I.3
-
11
-
-
0037185406
-
Some recent trends in the calibration literature
-
Geladi P. Some recent trends in the calibration literature. Chemom. Intell. Lab. Syst. 2002, 60:211-224.
-
(2002)
Chemom. Intell. Lab. Syst.
, vol.60
, pp. 211-224
-
-
Geladi, P.1
-
12
-
-
0003522412
-
Artificial Neural Networks
-
Prentice-Hall, Upper Saddle River
-
Patterson D. Artificial Neural Networks. Theory and Applications 1996, Prentice-Hall, Upper Saddle River.
-
(1996)
Theory and Applications
-
-
Patterson, D.1
-
15
-
-
0003408420
-
-
MIT Press, Cambridge, MA, USA
-
Scholkopf B., Smola A.J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond 2001, MIT Press, Cambridge, MA, USA.
-
(2001)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
-
-
Scholkopf, B.1
Smola, A.J.2
-
16
-
-
43049155941
-
A versatile strategy for achieving the second-order advantage when applying different artificial neural networks to non-linear second-order data: unfolded principal component analysis/residual bilinearization
-
Reiriz A.G., Damiani P.C., Culzoni M.J., Goicoechea H.C., Olivieri A.C. A versatile strategy for achieving the second-order advantage when applying different artificial neural networks to non-linear second-order data: unfolded principal component analysis/residual bilinearization. Chemom. Intell. Lab. Syst. 2008, 92:61-70.
-
(2008)
Chemom. Intell. Lab. Syst.
, vol.92
, pp. 61-70
-
-
Reiriz, A.G.1
Damiani, P.C.2
Culzoni, M.J.3
Goicoechea, H.C.4
Olivieri, A.C.5
-
17
-
-
0037127460
-
Determination of organic matter in soils using radial basis function networks and near infrared spectroscopy
-
Fidêncio P.H., Poppi R.J., de Andrade J.C. Determination of organic matter in soils using radial basis function networks and near infrared spectroscopy. Anal. Chim. Acta. 2002, 453:125-134.
-
(2002)
Anal. Chim. Acta.
, vol.453
, pp. 125-134
-
-
Fidêncio, P.H.1
Poppi, R.J.2
de Andrade, J.C.3
-
18
-
-
0003401675
-
A tutorial on support vector regression
-
Royal Holloway College, Univ. London, London, U.K
-
Smola A., Schölkopf B. A tutorial on support vector regression. NeuroCOLT Tech. Rep. NC-TR-98-030 1998, Royal Holloway College, Univ. London, London, U.K.
-
(1998)
NeuroCOLT Tech. Rep. NC-TR-98-030
-
-
Smola, A.1
Schölkopf, B.2
-
19
-
-
0003798635
-
-
Cambridge Univ. Press, Cambridge, U.K.
-
Cristianini N., Shawe-Taylor J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods, 1st ed 2000, Cambridge Univ. Press, Cambridge, U.K.
-
(2000)
An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods, 1st ed
-
-
Cristianini, N.1
Shawe-Taylor, J.2
-
20
-
-
0001002401
-
Approximation and radial basis function networks
-
Park J., Sandberg I. Approximation and radial basis function networks. Neural Comput. 1993, 5:305-316.
-
(1993)
Neural Comput.
, vol.5
, pp. 305-316
-
-
Park, J.1
Sandberg, I.2
-
21
-
-
0025490985
-
Networks for approximation and learning
-
Poggio T., Girosi F. Networks for approximation and learning. Proc. IEEE 1990, 78(9):1481-1497.
-
(1990)
Proc. IEEE
, vol.78
, Issue.9
, pp. 1481-1497
-
-
Poggio, T.1
Girosi, F.2
-
22
-
-
0003599567
-
Introduction to radial basis functions networks
-
April
-
Orr M.J. Introduction to radial basis functions networks. Technical Reports 1996, April. http://www.anc.ed.ac.uk/~mjo/papers/intro.ps.
-
(1996)
Technical Reports
-
-
Orr, M.J.1
-
23
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Freund Y., Schapire R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55:119-139.
-
(1997)
J. Comput. Syst. Sci.
, vol.55
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
24
-
-
0037186544
-
Stochastic gradient boosting
-
Friedman J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38:367-378.
-
(2002)
Comput. Stat. Data Anal.
, vol.38
, pp. 367-378
-
-
Friedman, J.H.1
-
25
-
-
0002432565
-
Multivariate adaptive regression splines
-
Friedman J.H. Multivariate adaptive regression splines. Ann. Stat. 1991, 19:1-141.
-
(1991)
Ann. Stat.
, vol.19
, pp. 1-141
-
-
Friedman, J.H.1
-
26
-
-
0003802343
-
-
Wadsworth, Monterey
-
Breiman L., Friedman J.H., Olshen R.A., Stone C.J. Classification and Regression Trees 1984, Wadsworth, Monterey.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.H.2
Olshen, R.A.3
Stone, C.J.4
-
27
-
-
77952548488
-
An improved boosting partial least squares method for near-infrared spectroscopic quantitative analysis
-
Shao X., Bian X., Cai W. An improved boosting partial least squares method for near-infrared spectroscopic quantitative analysis. Anal. Chim. Acta. 2010, 666:32-37.
-
(2010)
Anal. Chim. Acta.
, vol.666
, pp. 32-37
-
-
Shao, X.1
Bian, X.2
Cai, W.3
-
28
-
-
33646849614
-
Boosting support vector regression in QSAR studies of bioactivities of chemical compounds
-
Zhou Y.P., Jiang J.H., Lin W.Q., Zou H.Y., Wu H.L., Shen G.L., Yu R.Q. Boosting support vector regression in QSAR studies of bioactivities of chemical compounds. Eur. Pharmacol. Sci. 2006, 28:344-353.
-
(2006)
Eur. Pharmacol. Sci.
, vol.28
, pp. 344-353
-
-
Zhou, Y.P.1
Jiang, J.H.2
Lin, W.Q.3
Zou, H.Y.4
Wu, H.L.5
Shen, G.L.6
Yu, R.Q.7
-
30
-
-
34249307438
-
Investigations of bagged kernel partial least squares (KPLS) and boosting KPLS with applications to near-infrared (NIR) spectra
-
Shinzawa H., Jiang J.H., Ritthiruangdej P., Ozaki Y. Investigations of bagged kernel partial least squares (KPLS) and boosting KPLS with applications to near-infrared (NIR) spectra. J. Chemom. 2006, 20:436-444.
-
(2006)
J. Chemom.
, vol.20
, pp. 436-444
-
-
Shinzawa, H.1
Jiang, J.H.2
Ritthiruangdej, P.3
Ozaki, Y.4
-
31
-
-
33847276241
-
Dry film method with ytterbium as the internal standard for near infrared spectroscopic plasma glucose assay coupled with boosting support vector regression
-
Zhou Y.P., Jiang J.H., Wu H.L., Shen G.L., Yu R.Q., Ozaki Y. Dry film method with ytterbium as the internal standard for near infrared spectroscopic plasma glucose assay coupled with boosting support vector regression. J. Chemom. 2006, 20:13-21.
-
(2006)
J. Chemom.
, vol.20
, pp. 13-21
-
-
Zhou, Y.P.1
Jiang, J.H.2
Wu, H.L.3
Shen, G.L.4
Yu, R.Q.5
Ozaki, Y.6
-
34
-
-
32944462016
-
Mutual information for the selection of relevant variables in spectrometric nonlinear modelling
-
Rossi F., Lendasse A., Francois D., Wertz V., Verleysen M. Mutual information for the selection of relevant variables in spectrometric nonlinear modelling. Chemom. Intell. Lab. Syst. 2006, 80:215-226.
-
(2006)
Chemom. Intell. Lab. Syst.
, vol.80
, pp. 215-226
-
-
Rossi, F.1
Lendasse, A.2
Francois, D.3
Wertz, V.4
Verleysen, M.5
-
35
-
-
39749131593
-
A data-driven functional projection approach for the selection of feature ranges in spectra with ICA or cluster analysis
-
Krier C., Rossi F., François D., Verleysen M. A data-driven functional projection approach for the selection of feature ranges in spectra with ICA or cluster analysis. Chemom. Intell. Lab. Syst. 2008, 91:43-53.
-
(2008)
Chemom. Intell. Lab. Syst.
, vol.91
, pp. 43-53
-
-
Krier, C.1
Rossi, F.2
François, D.3
Verleysen, M.4
-
36
-
-
84886999063
-
-
Available from
-
Tecator meat sample dataset Available from. http://lib.stat.cmu.edu/datasets/tecator.
-
Tecator meat sample dataset
-
-
-
38
-
-
0027943145
-
Comparing the predictive accuracy of models using a simple randomization test
-
van der Voet H. Comparing the predictive accuracy of models using a simple randomization test. Chemom. Intell. Lab. Syst. 1994, 25:313-323.
-
(1994)
Chemom. Intell. Lab. Syst.
, vol.25
, pp. 313-323
-
-
van der Voet, H.1
|