메뉴 건너뛰기




Volumn 20, Issue 1, 2016, Pages 108-118

A novel method for automated diagnosis of epilepsy using complex-valued classifiers

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER AIDED DIAGNOSIS; ELECTROENCEPHALOGRAPHY; ELECTROPHYSIOLOGY; METADATA; NEUROLOGY; TREES (MATHEMATICS);

EID: 84971371361     PISSN: 21682194     EISSN: 21682208     Source Type: Journal    
DOI: 10.1109/JBHI.2014.2387795     Document Type: Article
Times cited : (182)

References (52)
  • 1
    • 0001187832 scopus 로고
    • The electric currents of brain
    • R. Caton, "The electric currents of brain," Brit. Med. J., vol. 2, pp. 265-278, 1875.
    • (1875) Brit. Med. J , vol.2 , pp. 265-278
    • Caton, R.1
  • 2
    • 34250548621 scopus 로고
    • Über das Elektroenkephalogramm des Menschen
    • H. Berger, "Über das Elektroenkephalogramm des Menschen," Arch Psychiatr Nervenkr, vol. 87, pp. 527-570, 1929.
    • (1929) Arch Psychiatr Nervenkr , vol.87 , pp. 527-570
    • Berger, H.1
  • 3
    • 77957187316 scopus 로고
    • The Berger rhythm: Potential changes from the occipital lobes in man
    • E. D. Adrian and B. H. C. Matthews, "The Berger rhythm: Potential changes from the occipital lobes in man," Brain, J. Neurol., vol. 57, pp. 355-385, 1934.
    • (1934) Brain J. Neurol , vol.57 , pp. 355-385
    • Adrian, E.D.1    Matthews, B.H.C.2
  • 4
    • 84895092631 scopus 로고    scopus 로고
    • A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms
    • B. Sen, M. Peker, F. V. Celebi, and A. Cavusoglu, "A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms," J. Med. Syst., vol. 38, no. 18, 2014.
    • (2014) J. Med. Syst , vol.38 , Issue.18
    • Sen, B.1    Peker, M.2    Celebi, F.V.3    Cavusoglu, A.4
  • 5
    • 84889570242 scopus 로고    scopus 로고
    • Novel approaches for automated epileptic diagnosis using FCBF feature selection and classification algorithms
    • B. Sen and M. Peker, "Novel approaches for automated epileptic diagnosis using FCBF feature selection and classification algorithms," Turk. J. Electr. Eng. Comput. Sci., vol. 21, pp. 2092-2109, 2013.
    • (2013) Turk J. Electr. Eng. Comput. Sci , vol.21 , pp. 2092-2109
    • Sen, B.1    Peker, M.2
  • 6
    • 0030219951 scopus 로고    scopus 로고
    • Detection of seizure activity in EEG by an artificial neural network: A preliminary study
    • N. Pradhan, P. K. Sadasivan, and G. R. Arunodaya, "Detection of seizure activity in EEG by an artificial neural network: A preliminary study," Comput. Biomed. Res., vol. 29, pp. 303-313, 1996.
    • (1996) Comput. Biomed. Res , vol.29 , pp. 303-313
    • Pradhan, N.1    Sadasivan, P.K.2    Arunodaya, G.R.3
  • 7
    • 0033990625 scopus 로고    scopus 로고
    • Recurrent neural network based prediction of epileptic seizures in intra- and extra-cranial EEG
    • A. Petrosian, D. Prokhorov, R. Homan, R. Dashei, and D. Wunsch, "Recurrent neural network based prediction of epileptic seizures in intra- and extra-cranial EEG," Neurocomputing, vol. 30, pp. 201-218, 2000.
    • (2000) Neurocomputing , vol.30 , pp. 201-218
    • Petrosian, A.1    Prokhorov, D.2    Homan, R.3    Dashei, R.4    Wunsch, D.5
  • 8
    • 24044474732 scopus 로고    scopus 로고
    • Artificial neural network based epileptic detection using time domain and frequency domain features
    • V. Srinivasan, C. Eswaran, and N. Sriraam, "Artificial neural network based epileptic detection using time domain and frequency domain features," J. Med. Syst., vol. 29, no. 6, pp. 647-660, 2005.
    • (2005) J. Med. Syst , vol.29 , Issue.6 , pp. 647-660
    • Srinivasan, V.1    Eswaran, C.2    Sriraam, N.3
  • 9
    • 0842310823 scopus 로고    scopus 로고
    • A neural-network-based detection of epilepsy
    • V. Nigam and D. Graupe, "A neural-network-based detection of epilepsy," Neurol. Res., vol. 26, no. 1, pp. 55-60, 2004.
    • (2004) Neurol. Res , vol.26 , Issue.1 , pp. 55-60
    • Nigam, V.1    Graupe, D.2
  • 10
    • 17744374301 scopus 로고    scopus 로고
    • Classification of EEG signals using neural network and logistic regression
    • A. Subasi and E. Ercelebi, "Classification of EEG signals using neural network and logistic regression," Comput. Methods Programs Biomed., vol. 78, pp. 87-99, 2005.
    • (2005) Comput. Methods Programs Biomed , vol.78 , pp. 87-99
    • Subasi, A.1    Ercelebi, E.2
  • 11
    • 33751396389 scopus 로고    scopus 로고
    • EEG signal classification using wavelet feature extraction and a mixture of expert model
    • A. Subasi, "EEG signal classification using wavelet feature extraction and a mixture of expert model," Expert Syst. Appl., vol. 32, no. 4, pp. 1084-1093, 2007.
    • (2007) Expert Syst. Appl , vol.32 , Issue.4 , pp. 1084-1093
    • Subasi, A.1
  • 14
    • 38749083808 scopus 로고    scopus 로고
    • Automatic seizure detection based on time-frequency analysis and artificial neural networks
    • A. T. Tzallas, M. G. Tsipouras, and D. I. Fotiadis, "Automatic seizure detection based on time-frequency analysis and artificial neural networks," Comput. Intell. Neurosci., vol. 7, no. 3, pp. 1-13, 2007.
    • (2007) Comput. Intell. Neurosci , vol.7 , Issue.3 , pp. 1-13
    • Tzallas, A.T.1    Tsipouras, M.G.2    Fotiadis, D.I.3
  • 15
    • 34247217946 scopus 로고    scopus 로고
    • Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast fourier transform
    • K. Polat and S. Gunes, "Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast fourier transform," Appl. Math. Comput., vol. 187, no. 2, pp. 1017-1026, 2007.
    • (2007) Appl. Math. Comput , vol.187 , Issue.2 , pp. 1017-1026
    • Polat, K.1    Gunes, S.2
  • 17
    • 41549102581 scopus 로고    scopus 로고
    • Analysis of EEG signals during epileptic and alcoholic states using AR modeling techniques
    • O. Faust, U. R. Acharya, A. R. Allen, and C. M. Lin, "Analysis of EEG signals during epileptic and alcoholic states using AR modeling techniques," IRBM, vol. 29, no. 1, pp. 44-52, 2008.
    • (2008) IRBM , vol.29 , Issue.1 , pp. 44-52
    • Faust, O.1    Acharya, U.R.2    Allen, A.R.3    Lin, C.M.4
  • 18
    • 76449108621 scopus 로고    scopus 로고
    • Automatic identification of epileptic EEG signals using nonlinear parameters
    • U. R. Acharya, C. K. Chua, T. C. Lim, Dorithy, and J. S. Suri, "Automatic identification of epileptic EEG signals using nonlinear parameters," J. Mech. Med. Biol., vol. 9, no. 4, pp. 539-553, 2009.
    • (2009) J. Mech. Med. Biol , vol.9 , Issue.4 , pp. 539-553
    • Acharya, U.R.1    Chua, C.K.2    Lim, T.C.3    Dorithy4    Suri, J.S.5
  • 19
    • 67650751415 scopus 로고    scopus 로고
    • Classification of EEG signals using relative wavelet energy and artificial neural networks
    • L. Guo, D. Rivero, J. A. Seoane, and A. Pazos, "Classification of EEG signals using relative wavelet energy and artificial neural networks," Genetic Evol. Comput. Conf., 2009, pp. 177-184.
    • (2009) Genetic Evol. Comput. Conf , pp. 177-184
    • Guo, L.1    Rivero, D.2    Seoane, J.A.3    Pazos, A.4
  • 20
    • 80053348045 scopus 로고    scopus 로고
    • Automatic detection of epileptic EEG signals using higher order cumulant features
    • U. R. Acharya, S. V. Sree, and J. S. Suri, "Automatic detection of epileptic EEG signals using higher order cumulant features," Int. J. Neural Syst., vol. 21, pp. 403-414, 2011.
    • (2011) Int. J. Neural Syst. , vol.21 , pp. 403-414
    • Acharya, U.R.1    Sree, S.V.2    Suri, J.S.3
  • 21
    • 79960037752 scopus 로고    scopus 로고
    • Application of recurrence quantification analysis for the automated identification of epileptic EEG signals
    • U. R. Acharya, S. V. Sree, S. Chattopadhyay, W. Yu, and A. P. C. Alvin, "Application of recurrence quantification analysis for the automated identification of epileptic EEG signals," Int. J. Neural Syst., vol. 21, no. 3, pp. 199-211, 2011.
    • (2011) Int J. Neural Syst , vol.21 , Issue.3 , pp. 199-211
    • Acharya, U.R.1    Sree, S.V.2    Chattopadhyay, S.3    Yu, W.4    Alvin, A.P.C.5
  • 22
    • 84859217391 scopus 로고    scopus 로고
    • Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework
    • no.10
    • U. R. Acharya, S. V. Sree, P. C. A. Ang, and J. S. Suri, "Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework," Expert Syst. Appl., vol. 39, no.10,pp. 9072-9078, 2012.
    • (2012) Expert Syst. Appl , vol.39 , pp. 9072-9078
    • Acharya, U.R.1    Sree, S.V.2    Ang, P.C.A.3    Suri, J.S.4
  • 24
    • 84885161446 scopus 로고    scopus 로고
    • A new framework based on recurrence quantification analysis for epileptic seizure detection
    • no. 3 May
    • M. Niknazar, S. R. Mousavi, B. Vosoughi Vahdat, and M. Sayyah, "A new framework based on recurrence quantification analysis for epileptic seizure detection," IEEE J. Biomed. Health Informat., vol. 17, no. 3, pp. 572-578, May 2013.
    • (2013) IEEE J. Biomed. Health Informat. , vol.17 , pp. 572-578
    • Niknazar, M.1    Mousavi, S.R.2    Vosoughi Vahdat, B.3    Sayyah, M.4
  • 25
    • 84898917835 scopus 로고    scopus 로고
    • A new complex-valued intelligent system for automated epilepsy diagnosis using EEG signals
    • M. Peker and B. Sen, "A new complex-valued intelligent system for automated epilepsy diagnosis using EEG signals," in Proc. AWERProcedia Inf. Technol. Comput. Sci. Conf., 2013, pp. 1121-1128.
    • (2013) Proc. AWERProcedia Inf. Technol. Comput. Sci. Conf , pp. 1121-1128
    • Peker, M.1    Sen, B.2
  • 26
    • 0035023402 scopus 로고    scopus 로고
    • The epileptic process as nonlinear deterministic dynamics in a stochastic environment: An evaluation on mesial temporal lobe epilepsy
    • R. G. Andrzejak, G. Widman, K. Lehnertz, C. Rieke, P. David, and C. E. Elger, "The epileptic process as nonlinear deterministic dynamics in a stochastic environment: An evaluation on mesial temporal lobe epilepsy," Epilepsy Res., vol. 44, pp. 129-140, 2001.
    • (2001) Epilepsy Res , vol.44 , pp. 129-140
    • Andrzejak, R.G.1    Widman, G.2    Lehnertz, K.3    Rieke, C.4    David, P.5    Elger, C.E.6
  • 27
    • 50049115236 scopus 로고    scopus 로고
    • Application of complex discrete wavelet transform in classification of doppler signals using complex-valued artificial neural network
    • M. Ceylan, R. Ceylan, Y. Özbay, and S. Kara, "Application of complex discrete wavelet transform in classification of doppler signals using complex-valued artificial neural network," Artif. Intell. Med., vol. 44, no. 1, pp. 65-76, 2008.
    • (2008) Artif. Intell. Med , vol.44 , Issue.1 , pp. 65-76
    • Ceylan, M.1    Ceylan, R.2    Özbay, Y.3    Kara, S.4
  • 28
    • 3042642039 scopus 로고    scopus 로고
    • Embolic doppler ultrasound signal detection using discrete wavelet transform
    • Jun
    • N. Aydin, F. Marvasti, and H. S. Markus, "Embolic doppler ultrasound signal detection using discrete wavelet transform," IEEE Trans. Inf. Technol. Biomed., vol. 8, no. 2, pp. 182-190, Jun. 2004.
    • (2004) IEEE Trans. Inf. Technol. Biomed , vol.8 , Issue.2 , pp. 182-190
    • Aydin, N.1    Marvasti, F.2    Markus, H.S.3
  • 30
    • 0031166725 scopus 로고    scopus 로고
    • Image processing with complex daubechies wavelets
    • J. M. Lina, "Image processing with complex daubechies wavelets," J. Math. Imag. Vis., vol. 7, pp. 211-223, 1997.
    • (1997) J. Math. Imag. Vis. , vol.7 , pp. 211-223
    • Lina, J.M.1
  • 32
    • 84971469253 scopus 로고    scopus 로고
    • Performance analysis of a novel OFDM system based on dual-tree complex wavelet transform
    • M. H. M. Nerma, N. S. Kamel, and V. Jeoti, "Performance analysis of a novel OFDM system based on dual-tree complex wavelet transform," Ubiquitous Comput. Commun. J., vol. 4, no. 3, pp. 813-822, 2009.
    • (2009) Ubiquitous Comput. Commun. J , vol.4 , Issue.3 , pp. 813-822
    • Nerma, M.H.M.1    Kamel, N.S.2    Jeoti, V.3
  • 33
    • 84885077016 scopus 로고    scopus 로고
    • Fall detection using single-tree complex wavelet transform
    • A. Yazar, F. Keskin, B. U. Toreyin, and A. E. Cetin, "Fall detection using single-tree complex wavelet transform," Pattern Recog. Lett., vol. 34, no. 15, pp. 1945-1952, 2013.
    • (2013) Pattern Recog Lett. , vol.34 , Issue.15 , pp. 1945-1952
    • Yazar, A.1    Keskin, F.2    Toreyin, B.U.3    Cetin, A.E.4
  • 34
    • 0016494934 scopus 로고
    • The complex LMS algorithm
    • Apr.
    • B. Widrow, J. Mccool, and M. Ball, "The complex LMS algorithm," Proc. IEEE, vol. 63, no. 4, pp. 719-720, Apr. 1975.
    • (1975) Proc IEEE , vol.63 , Issue.4 , pp. 719-720
    • Widrow, B.1    Mccool, J.2    Ball, M.3
  • 35
    • 0025562164 scopus 로고
    • Modification of back-propagation for complex-valued signal processing in frequency domain
    • M. S. Kim and C. C. Guest, "Modification of back-propagation for complex-valued signal processing in frequency domain," in Proc. Int. Joint Conf. Neural Netw., 1990, pp. 27-31.
    • (1990) Proc. Int. Joint Conf. Neural Netw , pp. 27-31
    • Kim, M.S.1    Guest, C.C.2
  • 37
    • 0031277466 scopus 로고    scopus 로고
    • An extension of the back-propagation algorithm to complex numbers
    • T. Nitta, "An extension of the back-propagation algorithm to complex numbers," Neural Netw., vol. 10, pp. 1391-1415, 1997.
    • (1997) Neural Netw , vol.10 , pp. 1391-1415
    • Nitta, T.1
  • 38
    • 67650022773 scopus 로고    scopus 로고
    • Inversion of complexvalued neural networks using complex back-propagation algorithm
    • A. S. Gangal, P. K. Kalra, and D. S. Chauhan, "Inversion of complexvalued neural networks using complex back-propagation algorithm," Int. J. Math. Comput. Simul., vol. 1, no. 3, pp. 1-8, 2009.
    • (2009) Int J. Math. Comput. Simul , vol.1 , Issue.3 , pp. 1-8
    • Gangal, A.S.1    Kalra, P.K.2    Chauhan, D.S.3
  • 39
    • 25844513261 scopus 로고    scopus 로고
    • Conception of complex probabilistic neural network system for classification of partial discharge patterns using multifarious inputs
    • B. Karthikeyan, S. Gopal, and M. Vimala, "Conception of complex probabilistic neural network system for classification of partial discharge patterns using multifarious inputs," Expert Syst. Appl., vol. 29, no. 4, pp. 953-963, 2005.
    • (2005) Expert Syst. Appl , vol.29 , Issue.4 , pp. 953-963
    • Karthikeyan, B.1    Gopal, S.2    Vimala, M.3
  • 41
    • 0348156824 scopus 로고    scopus 로고
    • Orthogonality of decision boundaries in complex-valued neural networks
    • T. Nitta, "Orthogonality of decision boundaries in complex-valued neural networks," Neural Comput., vol. 16, no. 1, pp. 73-97, 2004.
    • (2004) Neural Comput , vol.16 , Issue.1 , pp. 73-97
    • Nitta, T.1
  • 42
    • 34249333128 scopus 로고    scopus 로고
    • Complexvalued wavelet artificial neural network for doppler signals classifying
    • Y. Ozbay, S. Kara, F. Latifoglu, R. Ceylan, and M. Ceylan, "Complexvalued wavelet artificial neural network for doppler signals classifying," Artif. Intell. Med., vol. 40, no. 2, pp. 143-156, 2007.
    • (2007) Artif. Intell. Med , vol.40 , Issue.2 , pp. 143-156
    • Ozbay, Y.1    Kara, S.2    Latifoglu, F.3    Ceylan, R.4    Ceylan, M.5
  • 43
    • 0027815555 scopus 로고
    • A back-propagation algorithm for complex numbered neural networks
    • T. Nitta, "A back-propagation algorithm for complex numbered neural networks," in Proc. Int. Joint Conf. Neural Netw., 1993, pp. 1649-1652.
    • (1993) Proc. Int. Joint Conf. Neural Netw , pp. 1649-1652
    • Nitta, T.1
  • 44
    • 0026219227 scopus 로고
    • The complex back propagation algorithm
    • Sep
    • H. Leung and S. Haykin, "The complex back propagation algorithm," IEEE Trans. Signal Process., vol. 39, no. 9, pp. 2101-2104, Sep. 1991.
    • (1991) IEEE Trans. Signal Process , vol.39 , Issue.9 , pp. 2101-2104
    • Leung, H.1    Haykin, S.2
  • 45
    • 85116514991 scopus 로고
    • Chaotic oscillators and complex mapping feed forward networks (CMFFNS) for signal detection in noisy environments
    • D. L. Birx and S. J. Pipenberg, "Chaotic oscillators and complex mapping feed forward networks (CMFFNS) for signal detection in noisy environments," in Proc. Int. Joint Conf. Neural Netw., 1992, pp. 881-888.
    • (1992) Proc. Int. Joint Conf. Neural Netw , pp. 881-888
    • Birx, D.L.1    Pipenberg, S.J.2
  • 46
    • 0026845135 scopus 로고
    • On the complex back propagation algorithm
    • Apr.
    • N. Benvenuto and F. Piazza, "On the complex back propagation algorithm," IEEE Trans. Signal Process., vol. 40, no. 4, pp. 967-969, Apr. 1992.
    • (1992) IEEE Trans. Signal Process , vol.40 , Issue.4 , pp. 967-969
    • Benvenuto, N.1    Piazza, F.2
  • 47
    • 79953693243 scopus 로고    scopus 로고
    • Automatic feature extraction using genetic programming: An application to epileptic EEG classification
    • L. Guo, D. Rivero, J. Dorado, C. R. Munteanu, and A. Pazos, "Automatic feature extraction using genetic programming: An application to epileptic EEG classification," Expert Syst. Appl., vol. 38, no. 8, pp. 10425-10436, 2011.
    • (2011) Expert Syst. Appl , vol.38 , Issue.8 , pp. 10425-10436
    • Guo, L.1    Rivero, D.2    Dorado, J.3    Munteanu, C.R.4    Pazos, A.5
  • 48
    • 84859351360 scopus 로고    scopus 로고
    • Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals
    • no. 2
    • U. R. Acharya, S. V. Sree, P. C. A. Ang, R. Yanti, and J. S. Suri, "Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals," Int. J. Neural Syst., vol. 22, no. 2, pp. 1-14, 2012.
    • (2012) Int. J. Neural Syst. , vol.22 , pp. 1-14
    • Acharya, U.R.1    Sree, S.V.2    Ang, P.C.A.3    Yanti, R.4    Suri, J.S.5
  • 49
    • 79957981604 scopus 로고    scopus 로고
    • EEG signals classification using the k-means clustering and a multilayer perceptron neural network model
    • U. Orhan, M. Hekim, and M. Ozer, "EEG signals classification using the k-means clustering and a multilayer perceptron neural network model," Expert Syst. Appl., vol. 38, pp. 13475-13481, 2011.
    • (2011) Expert Syst. Appl , vol.38 , pp. 13475-13481
    • Orhan, U.1    Hekim, M.2    Ozer, M.3
  • 50
    • 77955054723 scopus 로고    scopus 로고
    • Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks
    • no.1
    • L. Guo, D. Rivero, J. Dorado, J. R. Rabunal, and A. Pazos, "Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks," J. Neurosci. Methods,vol. 191,no.1,pp.101-109, 2010.
    • (2010) J. Neurosci. Methods , vol.191 , pp. 101-109
    • Guo, L.1    Rivero, D.2    Dorado, J.3    Rabunal, J.R.4    Pazos, A.5
  • 51
    • 84894582585 scopus 로고    scopus 로고
    • Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine
    • Y. Kumar, M. L. Dewal, and R. S. Anand, "Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine," Neurocomputing, vol. 133, pp. 271-279, 2014.
    • (2014) Neurocomputing , vol.133 , pp. 271-279
    • Kumar, Y.1    Dewal, M.L.2    Anand, R.S.3
  • 52
    • 56349101801 scopus 로고    scopus 로고
    • Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy
    • H. Ocak, "Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy," Expert Syst. Appl., vol. 36, no. 2, pp. 2027-2036, 2009.
    • (2009) Expert Syst. Appl , vol.36 , Issue.2 , pp. 2027-2036
    • Ocak, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.