메뉴 건너뛰기




Volumn 38, Issue 3, 2014, Pages

A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms

Author keywords

Classification algorithms; Classification of sleep stage; EEG signals; Feature selection algorithms

Indexed keywords

ADULT; AGED; ARTICLE; ARTIFICIAL NEURAL NETWORK; CLASSIFICATION ALGORITHM; CLINICAL ARTICLE; COMPARATIVE STUDY; ELECTROENCEPHALOGRAPHY; ENTROPY; FEMALE; HUMAN; MALE; SLEEP STAGE; SUPPORT VECTOR MACHINE; ALGORITHM; COMPUTER ASSISTED DIAGNOSIS; DECISION TREE; MIDDLE AGED; PHYSIOLOGY; PROCEDURES;

EID: 84895092631     PISSN: 01485598     EISSN: 1573689X     Source Type: Journal    
DOI: 10.1007/s10916-014-0018-0     Document Type: Article
Times cited : (253)

References (73)
  • 1
    • 84865072705 scopus 로고    scopus 로고
    • A transition-constrained discrete hidden Markov model for automatic sleep staging
    • Pan, S. T.; Kuo, C. E.; Zeng, J. H.; Liang, S. F.; A transition- constrained discrete hidden Markov model for automatic sleep staging. BioMedical Eng OnLine. 11:52-71, 2012.
    • (2012) BioMedical Eng OnLine. , vol.11 , pp. 52-71
    • Pan, S.T.1    Kuo, C.E.2    Zeng, J.H.3    Liang, S.F.4
  • 2
    • 84889570242 scopus 로고    scopus 로고
    • Novel approaches for automated epileptic diagnosis using FCBF feature selection and classification algorithms
    • Sen, B.; Peker, M.; Novel approaches for automated epileptic diagnosis using FCBF feature selection and classification algorithms. Turk. J. Electr. Eng. Comput. Sci. 21:2092-2109, 2013.
    • (2013) Turk. J. Electr. Eng. Comput. Sci. , vol.21 , pp. 2092-2109
    • Sen, B.1    Peker, M.2
  • 3
    • 84865740254 scopus 로고    scopus 로고
    • Automated sleep stage identification system based on time-frequency analysis of a single EEG channel and random forest classifier
    • Fraiwan, L.; Lweesy, K.; Khasawneh, N.; Wenz, H.; Dickhaus, H.; Automated sleep stage identification system based on time-frequency analysis of a single EEG channel and random forest classifier. Comput Methods Prog Biomed 108(1):10-19, 2012.
    • (2012) Comput Methods Prog Biomed , vol.108 , Issue.1 , pp. 10-19
    • Fraiwan, L.1    Lweesy, K.2    Khasawneh, N.3    Wenz, H.4    Dickhaus, H.5
  • 4
    • 84889564293 scopus 로고    scopus 로고
    • Epileptic seizure detection from SEEG data by using higher order statistics and spectra
    • Artan, R. B.; Yazgan, E.; Epileptic seizure detection from SEEG data by using higher order statistics and spectra. itüdergisi 7:102-111, 2008.
    • (2008) Itüdergisi , vol.7 , pp. 102-111
    • Artan, R.B.1    Yazgan, E.2
  • 6
    • 84866237286 scopus 로고    scopus 로고
    • Classification of human emotions from EEG signals using statistical features and neural network
    • Yuen, C. T.; San, W. S.; Rizoni, M.; Seong, T. C.; Classification of human emotions from EEG signals using statistical features and neural network. Int. J Integr Eng. 1:71-79, 2009.
    • (2009) Int. J Integr Eng. , vol.1 , pp. 71-79
    • Yuen, C.T.1    San, W.S.2    Rizoni, M.3    Seong, T.C.4
  • 7
    • 84889580974 scopus 로고    scopus 로고
    • The detection of an epileptiform activity on EEG signals by using data mining process
    • Albayrak, M.; Koklukaya, E.; The detection of an epileptiform activity on EEG signals by using data mining process. e-Journal of New World Sci. Acad 4(1):1-12, 2009.
    • (2009) E-Journal of New World Sci. Acad , vol.4 , Issue.1 , pp. 1-12
    • Albayrak, M.1    Koklukaya, E.2
  • 8
    • 33751396389 scopus 로고    scopus 로고
    • EEG signal classification using wavelet feature extraction and a mixture of expert model
    • Subasi, A.; EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst Appl 32:1084-1093, 2007.
    • (2007) Expert Syst Appl , vol.32 , pp. 1084-1093
    • Subasi, A.1
  • 9
    • 84884818641 scopus 로고    scopus 로고
    • Classification of sleep stages using class-dependent sequential feature selection and artificial neural network
    • 10.1007/s00521-012-1065-4
    • Ozsen, S.; Classification of sleep stages using class-dependent sequential feature selection and artificial neural network. Neural Comput. & Applic. 2012. doi: 10.1007/s00521-012-1065-4.
    • (2012) Neural Comput. & Applic.
    • Ozsen, S.1
  • 10
    • 82255179061 scopus 로고    scopus 로고
    • Discrete harmony search based expert model for epileptic seizure detection in electroencephalography
    • Gandhi, T. K.; Chakraborty, P.; Roy, G. G.; Panigrahi, B. K.; Discrete harmony search based expert model for epileptic seizure detection in electroencephalography. Expert Syst Appl 39(4):4055-4062, 2012.
    • (2012) Expert Syst Appl , vol.39 , Issue.4 , pp. 4055-4062
    • Gandhi, T.K.1    Chakraborty, P.2    Roy, G.G.3    Panigrahi, B.K.4
  • 11
    • 34047120243 scopus 로고    scopus 로고
    • Seizure detection in EEG signals: A comparison of different approaches
    • Mohseni, H. R.; Maghsoudi, A.; Shamsollahi, M. B.; Seizure detection in EEG signals: A comparison of different approaches. IEEE EMBS'06. pp. 6724-6727, 2006.
    • (2006) IEEE EMBS'06 , pp. 6724-6727
    • Mohseni, H.R.1    Maghsoudi, A.2    Shamsollahi, M.B.3
  • 14
    • 24044474732 scopus 로고    scopus 로고
    • Artificial neural network based epileptic detection using time domain and frequency domain features
    • Srinivasan, V.; Eswaran, C.; Sriraam, N.; Artificial neural network based epileptic detection using time domain and frequency domain features. J Med Syst 29:647-660, 2005.
    • (2005) J Med Syst , vol.29 , pp. 647-660
    • Srinivasan, V.1    Eswaran, C.2    Sriraam, N.3
  • 15
    • 44449121467 scopus 로고    scopus 로고
    • Permutation entropy to detect vigilance changes and preictal states from scalp EEG in epileptic patients-A preliminary study
    • Bruzzo, A. A.; Gesierich, B.; Santi, M.; Tassinari, C. A.; Birbaumer, N.; Rubboli, G.; Permutation entropy to detect vigilance changes and preictal states from scalp EEG in epileptic patients-A preliminary study. Neurol Sci 29(1):3-9, 2008.
    • (2008) Neurol Sci , vol.29 , Issue.1 , pp. 3-9
    • Bruzzo, A.A.1    Gesierich, B.2    Santi, M.3    Tassinari, C.A.4    Birbaumer, N.5    Rubboli, G.6
  • 16
    • 80855164495 scopus 로고    scopus 로고
    • EEG non-linear feature extraction using correlation dimension and Hurst exponent
    • Geng, S.; Zhou, W.; Yuan, Q.; Cai, D.; Zeng, Y.; EEG non-linear feature extraction using correlation dimension and Hurst exponent. Neurol Res 33(9):908-912, 2011.
    • (2011) Neurol Res , vol.33 , Issue.9 , pp. 908-912
    • Geng, S.1    Zhou, W.2    Yuan, Q.3    Cai, D.4    Zeng, Y.5
  • 17
    • 57649210350 scopus 로고    scopus 로고
    • A new approach to automated epileptic diagnosis using EEG and probabilistic neural network
    • Bao, F. S.; Lie, D. Y.; Zhang, Y.; A new approach to automated epileptic diagnosis using EEG and probabilistic neural network. ICTAI'08. pp. 482-486, 2008.
    • (2008) ICTAI'08 , pp. 482-486
    • Bao, F.S.1    Lie, D.Y.2    Zhang, Y.3
  • 18
    • 84860227271 scopus 로고    scopus 로고
    • Employment and comparison of different Artificial Neural Networks for epilepsy diagnosis from EEG signals
    • Sezer, E.; Isik, H.; Saracoglu, E.; Employment and comparison of different Artificial Neural Networks for epilepsy diagnosis from EEG signals. J Med Syst 36(1):347-62, 2012.
    • (2012) J Med Syst , vol.36 , Issue.1 , pp. 347-362
    • Sezer, E.1    Isik, H.2    Saracoglu, E.3
  • 20
    • 0005984999 scopus 로고    scopus 로고
    • Sleep stage classification using wavelet transform and neural network
    • Oropesa, E.; Cycon, H. L.; Jobert, M.; Sleep stage classification using wavelet transform and neural network. ICSI Technical Report TR-99-008. pp. 1-7, 1999.
    • (1999) ICSI Technical Report TR-99-008 , pp. 1-7
    • Oropesa, E.1    Cycon, H.L.2    Jobert, M.3
  • 21
    • 0035197525 scopus 로고    scopus 로고
    • Computer-assisted sleep staging
    • Agarwal, R.; Gotman, J.; Computer-assisted sleep staging. IEEE Trans Biomed Eng 48:1412-1423, 2001.
    • (2001) IEEE Trans Biomed Eng , vol.48 , pp. 1412-1423
    • Agarwal, R.1    Gotman, J.2
  • 24
    • 49949152648 scopus 로고    scopus 로고
    • Artificial neural network and wavelet based automated detection of sleep spindles, REM sleep and wake states
    • Sinha, R. K.; Artificial neural network and wavelet based automated detection of sleep spindles, REM sleep and wake states. J Med Syst 32:291-299, 2008.
    • (2008) J Med Syst , vol.32 , pp. 291-299
    • Sinha, R.K.1
  • 25
    • 55649111116 scopus 로고    scopus 로고
    • Discrimination ability of individual measures used in sleep stages classification
    • Šušmáková, K.; Krakovská, A.; Discrimination ability of individual measures used in sleep stages classification. Artif Intell Med 44:261-277, 2008.
    • (2008) Artif Intell Med , vol.44 , pp. 261-277
    • Šušmáková, K.1    Krakovská, A.2
  • 26
    • 77951616783 scopus 로고    scopus 로고
    • Automated sleep-wake staging combining robust feature extraction, artificial neural network classification, and flexible decision rules
    • 1193.94029 2666696
    • Chapotot, F.; Becq, G.; Automated sleep-wake staging combining robust feature extraction, artificial neural network classification, and flexible decision rules. Int J Adapt Control and Signal Process 24:409-423, 2010.
    • (2010) Int J Adapt Control and Signal Process , vol.24 , pp. 409-423
    • Chapotot, F.1    Becq, G.2
  • 27
    • 17444384508 scopus 로고    scopus 로고
    • Automatic recognition of vigilance state by using wavelet-based artificial neural network
    • Subasi, A.; Kiymik, M. K.; Akin, M.; Erogul, O.; Automatic recognition of vigilance state by using wavelet-based artificial neural network. Neural Comput Appl. 14(1):45-55, 2005.
    • (2005) Neural Comput Appl. , vol.14 , Issue.1 , pp. 45-55
    • Subasi, A.1    Kiymik, M.K.2    Akin, M.3    Erogul, O.4
  • 29
    • 34249797621 scopus 로고    scopus 로고
    • Classification of human sleep stages based on EEG processing using hidden markov models
    • Doroshenkov, L. G.; Konyshev, V. A.; Selishchev, S. V.; Classification of human sleep stages based on EEG processing using hidden markov models. Biomed Eng 41:25-28, 2007.
    • (2007) Biomed Eng , vol.41 , pp. 25-28
    • Doroshenkov, L.G.1    Konyshev, V.A.2    Selishchev, S.V.3
  • 30
    • 61849113679 scopus 로고    scopus 로고
    • Automatic sleep stage classification based on EEG signals using neural networks and wavelet packet coefficients
    • Ebrahimi, F.; Mikaeili, M.; Estrada, E.; Nazeran, H.; Automatic sleep stage classification based on EEG signals using neural networks and wavelet packet coefficients. Proceeding of IEEE EMBC. pp. 1151-1154, 2008.
    • (2008) Proceeding of IEEE EMBC , pp. 1151-1154
    • Ebrahimi, F.1    Mikaeili, M.2    Estrada, E.3    Nazeran, H.4
  • 31
    • 77954758023 scopus 로고    scopus 로고
    • Genetic fuzzy classifier for sleep stage identification
    • Jo, H. G.; Park, J. Y.; Lee, C. K.; An, S. K.; Yoo, S. K.; Genetic fuzzy classifier for sleep stage identification. Comput Biol Med 40:629-634, 2010.
    • (2010) Comput Biol Med , vol.40 , pp. 629-634
    • Jo, H.G.1    Park, J.Y.2    Lee, C.K.3    An, S.K.4    Yoo, S.K.5
  • 32
    • 84978672058 scopus 로고    scopus 로고
    • A novel data pre-processing method on automatic determining of sleep stages: K-means clustering based feature weighting
    • Gunes, S.; Polat, K.; Yosunkaya, S.; Dursun, M.; A novel data pre-processing method on automatic determining of sleep stages: K-means clustering based feature weighting. Complex Systems and Applications-ICCSA. Le Havre-France. pp. 112-117, 2009.
    • (2009) Complex Systems and Applications-ICCSA. le Havre-France , pp. 112-117
    • Gunes, S.1    Polat, K.2    Yosunkaya, S.3    Dursun, M.4
  • 33
    • 77956063187 scopus 로고    scopus 로고
    • Estimation of sleep stages by an artificial neural network employing EEG, EMG and EOG
    • Tagluk, M. E.; Sezgin, N.; Akin, M.; Estimation of sleep stages by an artificial neural network employing EEG, EMG and EOG. J Med Syst 34:717-725, 2010.
    • (2010) J Med Syst , vol.34 , pp. 717-725
    • Tagluk, M.E.1    Sezgin, N.2    Akin, M.3
  • 34
    • 77952334576 scopus 로고    scopus 로고
    • Classification of sleep stages using multi-wavelet time frequency entropy and LDA
    • Fraiwan, L.; Lweesy, K.; Khasawneh, N.; Fraiwan, M.; Wenz, H.; Dickhaus, H.; Classification of sleep stages using multi-wavelet time frequency entropy and LDA. Methods Inf Med 49(3):230-237, 2010.
    • (2010) Methods Inf Med , vol.49 , Issue.3 , pp. 230-237
    • Fraiwan, L.1    Lweesy, K.2    Khasawneh, N.3    Fraiwan, M.4    Wenz, H.5    Dickhaus, H.6
  • 35
    • 84873736761 scopus 로고    scopus 로고
    • Automatic sleep stage recurrent neural classifier using energy features of EEG signals
    • Hsu, Y. L.; Yang, Y. T.; Wang, J. S.; Hsu, C. Y.; Automatic sleep stage recurrent neural classifier using energy features of EEG signals. Neurocomputing 104:105-114, 2013.
    • (2013) Neurocomputing , vol.104 , pp. 105-114
    • Hsu, Y.L.1    Yang, Y.T.2    Wang, J.S.3    Hsu, C.Y.4
  • 36
    • 14844283547 scopus 로고    scopus 로고
    • PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals
    • Goldberger, A. L.; Amaral, L. A.; Glass, L.; et al.; PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23):215-220, 2000.
    • (2000) Circulation , vol.101 , Issue.23 , pp. 215-220
    • Goldberger, A.L.1    Amaral, L.A.2    Glass, L.3
  • 37
    • 0018649856 scopus 로고
    • Automated EEG analysis with microcomputers
    • Smith, J. R.; Karacan, I.; Yang, M.; Automated EEG analysis with microcomputers. Sleep 1(4):435-443, 1979.
    • (1979) Sleep , vol.1 , Issue.4 , pp. 435-443
    • Smith, J.R.1    Karacan, I.2    Yang, M.3
  • 38
    • 0033551578 scopus 로고    scopus 로고
    • Anticipating epileptic seizures in real time by a non-linear analysis of similarity between EEG recordings
    • Quyen, M. L. V.; Martinerie, J.; Baulac, M.; Varela, F.; Anticipating epileptic seizures in real time by a non-linear analysis of similarity between EEG recordings. Neuroreport 10:2149-215, 1999.
    • (1999) Neuroreport , vol.10 , pp. 2149-2215
    • Quyen, M.L.V.1    Martinerie, J.2    Baulac, M.3    Varela, F.4
  • 39
    • 6544281328 scopus 로고
    • Time domain descriptors and their relation to a particular model for generation of EEG activity
    • Stuttgart: Gustav Fischer Verlag
    • Hjorth, B.; Time domain descriptors and their relation to a particular model for generation of EEG activity. In: CEAN - Computerized EEG analysis, Stuttgart: Gustav Fischer Verlag. pp. 3-8, 1975.
    • (1975) CEAN - Computerized EEG Analysis , pp. 3-8
    • Hjorth, B.1
  • 40
    • 0029213422 scopus 로고
    • Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns
    • Petrosian, A.; Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns. IEEE CBMS' 95. pp. 212-217, 1995.
    • (1995) IEEE CBMS' 95 , pp. 212-217
    • Petrosian, A.1
  • 41
    • 33745235087 scopus 로고    scopus 로고
    • One-class novelty detection for seizure analysis from intracranial EEG
    • 1222.92052 2274396
    • Gardner, A. B.; Krieger, A. E.; Vachtsevanos, G.; Litt, B.; One-class novelty detection for seizure analysis from intracranial EEG. J Mach Learn Res 7:1025-1044, 2006.
    • (2006) J Mach Learn Res , vol.7 , pp. 1025-1044
    • Gardner, A.B.1    Krieger, A.E.2    Vachtsevanos, G.3    Litt, B.4
  • 42
    • 61549101900 scopus 로고    scopus 로고
    • Line length: An efficient feature for seizure onset detection
    • Esteller, R.; Echaus, J.; Tcheng, T.; Litt, B.; Pless, B.; Line length: an efficient feature for seizure onset detection. IEEE EMBS'01. pp. 1707-1710, 2001.
    • (2001) IEEE EMBS'01 , pp. 1707-1710
    • Esteller, R.1    Echaus, J.2    Tcheng, T.3    Litt, B.4    Pless, B.5
  • 43
    • 0023819518 scopus 로고
    • Fractals and the analysis of waveforms
    • Katz, M. J.; Fractals and the analysis of waveforms. Comput Biol Med 18:145-156, 1988.
    • (1988) Comput Biol Med , vol.18 , pp. 145-156
    • Katz, M.J.1
  • 45
    • 84898887142 scopus 로고    scopus 로고
    • Rotation-Invariant texture analysis and classification by artificial neural networks and wavelet transform
    • Hasiloglu, A.; Rotation-Invariant texture analysis and classification by artificial neural networks and wavelet transform. Technical report, 1999.
    • (1999) Technical Report
    • Hasiloglu, A.1
  • 46
    • 33845386973 scopus 로고    scopus 로고
    • Application of adaptive neuro-fuzzy inference system for epileptic seizure detection using wavelet feature extraction
    • Subasi, A.; Application of adaptive neuro-fuzzy inference system for epileptic seizure detection using wavelet feature extraction. Comput Biol Med 37(2):227-244, 2007.
    • (2007) Comput Biol Med , vol.37 , Issue.2 , pp. 227-244
    • Subasi, A.1
  • 48
    • 84898917835 scopus 로고    scopus 로고
    • A new complex-valued intelligent system for automated epilepsy diagnosis using EEG signals
    • Peker, M.; Sen, B.; A new complex-valued intelligent system for automated epilepsy diagnosis using EEG signals. Glob J Technol: 3rd World Conference on Inf Technol. 3:1121-1128, 2013.
    • (2013) Glob J Technol: 3rd World Conference on Inf Technol. , vol.3 , pp. 1121-1128
    • Peker, M.1    Sen, B.2
  • 49
    • 70350726290 scopus 로고    scopus 로고
    • Entropy and complexity measures for EEG signal classification of schizophrenic and control participants
    • Sabeti, M.; Katebi, S.; Boostani, R.; Entropy and complexity measures for EEG signal classification of schizophrenic and control participants. Artif Intell Med 47:263-274, 2009.
    • (2009) Artif Intell Med , vol.47 , pp. 263-274
    • Sabeti, M.1    Katebi, S.2    Boostani, R.3
  • 50
    • 34250599768 scopus 로고
    • On a new axiomatic theory of probability
    • Rényi, A.; On a new axiomatic theory of probability. Acta Math Hung. 6:285-335, 1995.
    • (1995) Acta Math Hung. , vol.6 , pp. 285-335
    • Rényi, A.1
  • 51
    • 11044221135 scopus 로고    scopus 로고
    • Accessed: 10.10.2012
    • Approximate entropy, http://en.wikipedia.org/wiki/Approximate-entropy (Accessed: 10.10.2012)
    • Approximate Entropy
  • 52
    • 77954055617 scopus 로고    scopus 로고
    • Morphology variability analysis of wrist pulse waveform for assessment of arteriosclerosis status
    • Xu, L.; Meng, M. Q. H.; Qi, X.; Wang, K.; Morphology variability analysis of wrist pulse waveform for assessment of arteriosclerosis status. J Med Syst 34(3):331-339, 2010.
    • (2010) J Med Syst , vol.34 , Issue.3 , pp. 331-339
    • Xu, L.1    Meng, M.Q.H.2    Qi, X.3    Wang, K.4
  • 53
    • 80052836687 scopus 로고    scopus 로고
    • Epileptic EEG classification based on extreme learning machine and nonlinear features
    • Yuan, Q.; Zhou, W.; Li, S.; Cai, D.; Epileptic EEG classification based on extreme learning machine and nonlinear features. Epilepsy Res 96:29-38, 2011.
    • (2011) Epilepsy Res , vol.96 , pp. 29-38
    • Yuan, Q.1    Zhou, W.2    Li, S.3    Cai, D.4
  • 55
    • 0028355806 scopus 로고
    • Physiological time-series analysis: What does regularity quantify?
    • Pincus, S. M.; Goldberger, A. L.; Physiological time-series analysis: what does regularity quantify? Am Physiol. Soc. 266:1643-1656, 1994.
    • (1994) Am Physiol. Soc. , vol.266 , pp. 1643-1656
    • Pincus, S.M.1    Goldberger, A.L.2
  • 56
    • 4243997063 scopus 로고    scopus 로고
    • Permutation entropy: A natural complexity measure for time series
    • Bandt, C.; Pompe, B.; Permutation entropy: a natural complexity measure for time series. Phys Rev Lett 88(17):1-4, 2002.
    • (2002) Phys Rev Lett , vol.88 , Issue.17 , pp. 1-4
    • Bandt, C.1    Pompe, B.2
  • 57
    • 68949190582 scopus 로고    scopus 로고
    • Fine-grained permutation entropy as a measure of natural complexity for time series
    • Liu, X. F.; Wang, Y.; Fine-grained permutation entropy as a measure of natural complexity for time series. Chinese Phys B 18:2690-2695, 2009.
    • (2009) Chinese Phys B , vol.18 , pp. 2690-2695
    • Liu, X.F.1    Wang, Y.2
  • 59
    • 1942451938 scopus 로고    scopus 로고
    • Feature selection for high-dimensional data: A fast correlation-based filter solution
    • Yu, L.; Liu, H.; Feature selection for high-dimensional data: A fast correlation-based filter solution. ICML'03. pp. 856-863, 2003.
    • (2003) ICML'03 , pp. 856-863
    • Yu, L.1    Liu, H.2
  • 61
    • 84992726552 scopus 로고
    • Estimating attributes: Analysis and extensions of RELIEF
    • Kononenko, I.; Estimating attributes: Analysis and extensions of RELIEF. ECML'94. pp. 171-182, 1994.
    • (1994) ECML'94 , pp. 171-182
    • Kononenko, I.1
  • 62
    • 84859217470 scopus 로고    scopus 로고
    • Predicting and analyzing secondary education placement-test scores: A data mining approach
    • Sen, B.; Ucar, E.; Delen, D.; Predicting and analyzing secondary education placement-test scores: A data mining approach. Expert Syst Appl 39(10):9468-9476, 2012.
    • (2012) Expert Syst Appl , vol.39 , Issue.10 , pp. 9468-9476
    • Sen, B.1    Ucar, E.2    Delen, D.3
  • 63
    • 81055132958 scopus 로고    scopus 로고
    • Classification of satellite images using decision trees: Kocaeli case
    • Kavzoglu, T.; Colkesen, I.; Classification of satellite images using decision trees: Kocaeli case. Electron. J Map Technol. 2(1):36-45, 2010.
    • (2010) Electron. J Map Technol. , vol.2 , Issue.1 , pp. 36-45
    • Kavzoglu, T.1    Colkesen, I.2
  • 65
    • 84898895638 scopus 로고    scopus 로고
    • Application of inductive learning to gain knowledge of an expert system
    • Akgobek, O.; Application of inductive learning to gain knowledge of an expert system. VI. Production Research Symposium. pp. 1-4, 2006.
    • (2006) VI. Production Research Symposium , pp. 1-4
    • Akgobek, O.1
  • 66
    • 80053917080 scopus 로고    scopus 로고
    • Optical gain model proposed with the use of artificial neural networks optimised by artificial bee colony algorithm
    • Yigit, S.; Eryigit, R.; Celebi, F. V.; Optical gain model proposed with the use of artificial neural networks optimised by artificial bee colony algorithm. Optoelectronics Adv Mater Rapid Commun 5(9):1026-1029, 2011.
    • (2011) Optoelectronics Adv Mater Rapid Commun , vol.5 , Issue.9 , pp. 1026-1029
    • Yigit, S.1    Eryigit, R.2    Celebi, F.V.3
  • 67
    • 22544451562 scopus 로고    scopus 로고
    • A proposed CAD model based on amplified spontaneous emission spectroscopy
    • Celebi, F. V.; A proposed CAD model based on amplified spontaneous emission spectroscopy. J Optoelectron Adv Mater 7(3):1573-1579, 2005.
    • (2005) J Optoelectron Adv Mater , vol.7 , Issue.3 , pp. 1573-1579
    • Celebi, F.V.1
  • 68
    • 33847728647 scopus 로고    scopus 로고
    • The use of artificial neural networks in simulation of mobile ground vehicles
    • Goktas, H.; Cavusoglu, A.; Sen, B.; Toktas, I.; The use of artificial neural networks in simulation of mobile ground vehicles. Math Comput Appl. 12(2):87-96, 2007.
    • (2007) Math Comput Appl. , vol.12 , Issue.2 , pp. 87-96
    • Goktas, H.1    Cavusoglu, A.2    Sen, B.3    Toktas, I.4
  • 69
    • 77952083070 scopus 로고    scopus 로고
    • An accurate single CAD model based on radial basis function network
    • 2768252
    • Celebi, N.; An accurate single CAD model based on radial basis function network. J. Optoelectron. Adv. Mater Rapid Commun. 4(4):498-501, 2010.
    • (2010) J. Optoelectron. Adv. Mater Rapid Commun. , vol.4 , Issue.4 , pp. 498-501
    • Celebi, N.1
  • 70
    • 34249753618 scopus 로고
    • Support vector networks
    • 0831.68098
    • Cortes, C.; Vapnik, V.; Support vector networks. Mach Learn 20(3):273-297, 1995.
    • (1995) Mach Learn , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 71
    • 84872108571 scopus 로고    scopus 로고
    • A medical decision support system based on support vector machines and the genetic algorithm for the evaluation of fetal well-being
    • Ocak, H.; A medical decision support system based on support vector machines and the genetic algorithm for the evaluation of fetal well-being. J Med Syst 37(2):1-9, 2013.
    • (2013) J Med Syst , vol.37 , Issue.2 , pp. 1-9
    • Ocak, H.1
  • 72
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • 1007.68152
    • Breiman, L.; Random forests. Mach Learn 45(1):5-32, 2001.
    • (2001) Mach Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 73
    • 0033178851 scopus 로고    scopus 로고
    • Sleep related breathing disorders in adults: Recommendations for syndrome definition and measurement techniques in clinical research
    • American academy of sleep medicine task force
    • American academy of sleep medicine task force, Sleep related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. Sleep 22:667-689, 1999.
    • (1999) Sleep , vol.22 , pp. 667-689


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.