메뉴 건너뛰기




Volumn 205, Issue , 2016, Pages 463-471

Selecting discriminative features in social media data: An unsupervised approach

Author keywords

Graph partitioning; Link information; Social media; Unsupervised feature selection

Indexed keywords

ALGORITHMS; CLUSTERING ALGORITHMS; DATA HANDLING; DATA MINING; FEATURE EXTRACTION; ITERATIVE METHODS; SOCIAL SCIENCES COMPUTING;

EID: 84969951768     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2016.03.078     Document Type: Article
Times cited : (10)

References (53)
  • 1
    • 26444454606 scopus 로고    scopus 로고
    • Feature selection for unsupervised learning
    • Dy J., Brodley C. Feature selection for unsupervised learning. J. Mach. Learn. Res. 2004, 5:845-889.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 845-889
    • Dy, J.1    Brodley, C.2
  • 3
    • 85099325734 scopus 로고
    • Irrelevant feature and the subset selection problem
    • John G., Kohavi R., Pfleger K. Irrelevant feature and the subset selection problem. ICML 1994.
    • (1994) ICML
    • John, G.1    Kohavi, R.2    Pfleger, K.3
  • 4
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • Liu H., Yu L. Toward integrating feature selection algorithms for classification and clustering. TKDE 2005.
    • (2005) TKDE
    • Liu, H.1    Yu, L.2
  • 5
    • 0037342804 scopus 로고    scopus 로고
    • Unsupervised feature selection applied to content based retrieval of lung images
    • Dy J.G., Brodley C.E., Kak A.C., Broderick L.S., Aisen A.M. Unsupervised feature selection applied to content based retrieval of lung images. TPAMI 2003.
    • (2003) TPAMI
    • Dy, J.G.1    Brodley, C.E.2    Kak, A.C.3    Broderick, L.S.4    Aisen, A.M.5
  • 6
    • 0034592759 scopus 로고    scopus 로고
    • Visualization and interactive feature selection for unsupervised data
    • Dy J.G., Brodley C.E. Visualization and interactive feature selection for unsupervised data. KDD 2000, 360-364.
    • (2000) KDD , pp. 360-364
    • Dy, J.G.1    Brodley, C.E.2
  • 8
    • 84899029465 scopus 로고    scopus 로고
    • Feature selection in clustering problems
    • Roth V., Lange T. Feature selection in clustering problems. NIPS 2004, 16:473-480.
    • (2004) NIPS , vol.16 , pp. 473-480
    • Roth, V.1    Lange, T.2
  • 9
    • 33645957324 scopus 로고    scopus 로고
    • Bayesian feature and model selection for Gaussian mixture models
    • Constantinopoulos C., Titsias M., Likas A. Bayesian feature and model selection for Gaussian mixture models. TPAMI 2006, 1013-1018.
    • (2006) TPAMI , pp. 1013-1018
    • Constantinopoulos, C.1    Titsias, M.2    Likas, A.3
  • 10
    • 0002878444 scopus 로고    scopus 로고
    • Feature subset selection and order identification for unsupervised learning
    • Dy J.G., Brodley C.E. Feature subset selection and order identification for unsupervised learning. ICML 2000.
    • (2000) ICML
    • Dy, J.G.1    Brodley, C.E.2
  • 11
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., Weston J., Barnhill S., Vapnik V. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002, 46(1):389-422.
    • (2002) Mach. Learn. , vol.46 , Issue.1 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 12
    • 37649028224 scopus 로고    scopus 로고
    • Finding and evaluating community structure in networks
    • Newman M.E.J., Girvan.M. Finding and evaluating community structure in networks. Phys. Rev. E 2004, 69(2):26113.
    • (2004) Phys. Rev. E , vol.69 , Issue.2 , pp. 26113
    • Newman, M.E.J.1    Girvan, M.2
  • 13
    • 83055161693 scopus 로고    scopus 로고
    • Towards feature selection in network
    • Gu Q., Han J. Towards feature selection in network. CIKM 2011.
    • (2011) CIKM
    • Gu, Q.1    Han, J.2
  • 15
    • 85065703189 scopus 로고    scopus 로고
    • Correlation-based feature selection for discrete and numeric class machine learning
    • Hall M. Correlation-based feature selection for discrete and numeric class machine learning. ICML 2000.
    • (2000) ICML
    • Hall, M.1
  • 16
    • 33749255817 scopus 로고    scopus 로고
    • R 1-pca: rotational invariant l 1-norm principal component analysis for robust subspace factorization
    • Ding C., Zhou D., He X., Zha H. R 1-pca: rotational invariant l 1-norm principal component analysis for robust subspace factorization. ICML 2006.
    • (2006) ICML
    • Ding, C.1    Zhou, D.2    He, X.3    Zha, H.4
  • 18
    • 85135939782 scopus 로고    scopus 로고
    • Efficient and robust feature selection via joint l21-norms minimization
    • Nie F., Huang H., Cai X., Ding C. Efficient and robust feature selection via joint l21-norms minimization. NIPS 2010.
    • (2010) NIPS
    • Nie, F.1    Huang, H.2    Cai, X.3    Ding, C.4
  • 22
    • 0348250078 scopus 로고
    • Network studies of social influence
    • Marsden P., Friedkin N. Network studies of social influence. Sociol. Methods Res. 1993, 22(1):127-151.
    • (1993) Sociol. Methods Res. , vol.22 , Issue.1 , pp. 127-151
    • Marsden, P.1    Friedkin, N.2
  • 23
    • 0023453329 scopus 로고
    • Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
    • Rousseeuw P. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20(1):53-65.
    • (1987) J. Comput. Appl. Math. , vol.20 , Issue.1 , pp. 53-65
    • Rousseeuw, P.1
  • 24
    • 33845535234 scopus 로고    scopus 로고
    • Laplacian score for feature selection
    • He X., Cai D., Niyogi P. Laplacian score for feature selection. NIPS 2006, 18(507).
    • (2006) NIPS , vol.18 , Issue.507
    • He, X.1    Cai, D.2    Niyogi, P.3
  • 25
    • 84866052116 scopus 로고    scopus 로고
    • Unsupervised Feature Selection for Linked Social Media
    • Tang J., Liu H. Unsupervised Feature Selection for Linked Social Media. Data. KDD 2012.
    • (2012) Data. KDD
    • Tang, J.1    Liu, H.2
  • 26
    • 84959493567 scopus 로고    scopus 로고
    • Clustering-guided sparse structural learning for unsupervised feature selection
    • Li Z., Liu J., Yang Y., Zhou X., Lu.H. Clustering-guided sparse structural learning for unsupervised feature selection. IEEE Trans. Knowl. Data Eng. 2014, 26(9):2138-2150.
    • (2014) IEEE Trans. Knowl. Data Eng. , vol.26 , Issue.9 , pp. 2138-2150
    • Li, Z.1    Liu, J.2    Yang, Y.3    Zhou, X.4    Lu, H.5
  • 27
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles-a knowledge reuse framework for combining multiple partitions
    • Strehl A., Ghosh J. Cluster ensembles-a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 2002, vol. 3:583-617.
    • (2002) J. Mach. Learn. Res. , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 29
    • 79951756832 scopus 로고    scopus 로고
    • Discovering Overlapping Groups in Social Media
    • Wang X., Tang L., Gao H., Liu H. Discovering Overlapping Groups in Social Media. ICDM 2010.
    • (2010) ICDM
    • Wang, X.1    Tang, L.2    Gao, H.3    Liu, H.4
  • 30
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of ReliefF and RReliefF
    • Robnik-Sikonja M., Kononenko I. Theoretical and empirical analysis of ReliefF and RReliefF. Mach. Learn. 2003, 53(1):23-69.
    • (2003) Mach. Learn. , vol.53 , Issue.1 , pp. 23-69
    • Robnik-Sikonja, M.1    Kononenko, I.2
  • 31
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
    • Peng H., Long F., Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 1226-1238.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 35
    • 84887308017 scopus 로고    scopus 로고
    • Spectral methods for community detection and graph partitioning
    • Newman M.E.J. Spectral methods for community detection and graph partitioning. Phys. Rev. 2013, 88(4).
    • (2013) Phys. Rev. , vol.88 , Issue.4
    • Newman, M.E.J.1
  • 39
    • 84959457076 scopus 로고    scopus 로고
    • Image annotation by latent community detection and multi-kernel learning
    • Gu Y., et al. Image annotation by latent community detection and multi-kernel learning. IEEE Trans. Image Process. 2015.
    • (2015) IEEE Trans. Image Process.
    • Gu, Y.1
  • 40
    • 84933565196 scopus 로고    scopus 로고
    • Relational user attribute inference in social media
    • Fang Quan, Sang Jitao, Xu Changsheng, Shamim Hossain M. Relational user attribute inference in social media. IEEE Trans. Multimed. 2015, 17(7):1031-1044.
    • (2015) IEEE Trans. Multimed. , vol.17 , Issue.7 , pp. 1031-1044
    • Fang, Q.1    Sang, J.2    Xu, C.3    Shamim Hossain, M.4
  • 41
    • 84910097710 scopus 로고    scopus 로고
    • An unsupervised feature selection framework for social media data
    • Tang J., Liu H. An unsupervised feature selection framework for social media data. IEEE Trans. Knowl. Data Eng. 2014, 26(12).
    • (2014) IEEE Trans. Knowl. Data Eng. , vol.26 , Issue.12
    • Tang, J.1    Liu, H.2
  • 42
    • 84907444290 scopus 로고    scopus 로고
    • A unified framework of latent feature learning in social media
    • Yuan Z., Sang J., Xu C., Liu Y. A unified framework of latent feature learning in social media. IEEE Trans. Multimed. 2014, 16(6):1624-1635.
    • (2014) IEEE Trans. Multimed. , vol.16 , Issue.6 , pp. 1624-1635
    • Yuan, Z.1    Sang, J.2    Xu, C.3    Liu, Y.4
  • 43
    • 84942434123 scopus 로고    scopus 로고
    • CoSelect: feature selection with instance selection for social media data
    • J. Tang, H. Liu, CoSelect: feature selection with instance selection for social media data, in: SIAM International Conference on Data Mining, 2013.
    • (2013) SIAM International Conference on Data Mining
    • Tang, J.1    Liu, H.2
  • 44
    • 0002457803 scopus 로고
    • Selection of variables to preserve multivariate data structure, using principal components
    • Krzanowski W. Selection of variables to preserve multivariate data structure, using principal components. Appl. Stat. 1987, 22-33.
    • (1987) Appl. Stat. , pp. 22-33
    • Krzanowski, W.1
  • 46
    • 84943804725 scopus 로고    scopus 로고
    • Unsupervised feature selection via nonnegative spectral analysis and redundancy control
    • Li Z., Tang.J. Unsupervised feature selection via nonnegative spectral analysis and redundancy control. IEEE Trans. Image Process. 2015, 24(12):5343-5355.
    • (2015) IEEE Trans. Image Process. , vol.24 , Issue.12 , pp. 5343-5355
    • Li, Z.1    Tang, J.2
  • 47
    • 85167619203 scopus 로고    scopus 로고
    • Nonnegative spectral clustering with discriminative regularization
    • Yang Y., Shen H.T., Nie F., Ji R., Zhou X. Nonnegative spectral clustering with discriminative regularization. AAAI 2011.
    • (2011) AAAI
    • Yang, Y.1    Shen, H.T.2    Nie, F.3    Ji, R.4    Zhou, X.5
  • 48
    • 84897694626 scopus 로고    scopus 로고
    • Discriminative nonnegative spectral clustering with out-of-sample extension
    • Yang Y., Yang Y., Shen H.T., Zhang Y., Du X., Zhou X. Discriminative nonnegative spectral clustering with out-of-sample extension. TKDE 2013, 25(8):1760-1771.
    • (2013) TKDE , vol.25 , Issue.8 , pp. 1760-1771
    • Yang, Y.1    Yang, Y.2    Shen, H.T.3    Zhang, Y.4    Du, X.5    Zhou, X.6
  • 49
    • 84973430602 scopus 로고    scopus 로고
    • http://facebook.com.
  • 50
    • 84973425109 scopus 로고    scopus 로고
    • http://twitter.com.
  • 51
    • 84973425110 scopus 로고    scopus 로고
    • http://www.blogcatalog.com.
  • 52
    • 84973430594 scopus 로고    scopus 로고
    • http://www.flickr.com.
  • 53
    • 84973424619 scopus 로고    scopus 로고
    • http://dmml.asu.edu/users/xufei/datasets.html.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.