메뉴 건너뛰기




Volumn 26, Issue 12, 2014, Pages 2914-2927

An unsupervised feature selection framework for social media data

Author keywords

linked data; pseudo labels; social dimension regularization; social media; Unsupervised feature selection

Indexed keywords

LINKED DATUM; SOCIAL DIMENSIONS; SOCIAL MEDIA; SOCIAL MEDIA DATUM; UNSUPERVISED FEATURE SELECTION;

EID: 84910097710     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/TKDE.2014.2320728     Document Type: Article
Times cited : (63)

References (40)
  • 5
    • 33645957324 scopus 로고    scopus 로고
    • Bayesian feature and model selection for gaussian mixture models
    • Jun.
    • C. Constantinopoulos, M. Titsias, and A. Likas, "Bayesian feature and model selection for gaussian mixture models," IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 6, pp. 1013-1018, Jun. 2006.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , Issue.6 , pp. 1013-1018
    • Constantinopoulos, C.1    Titsias, M.2    Likas, A.3
  • 6
    • 33749255817 scopus 로고    scopus 로고
    • R 1-pca: Rotational invariant l 1-norm principal component analysis for robust subspace factorization
    • C. Ding, D. Zhou, X. He, and H. Zha, "R 1-pca: Rotational invariant l 1-norm principal component analysis for robust subspace factorization," in Proc. 23rd Int. Conf. Mach. Learn., 2006, pp. 281-288.
    • (2006) Proc. 23rd Int. Conf. Mach. Learn. , pp. 281-288
    • Ding, C.1    Zhou, D.2    He, X.3    Zha, H.4
  • 8
    • 26444454606 scopus 로고    scopus 로고
    • Feature selection for unsupervised learning
    • J. Dy and C. Brodley, "Feature selection for unsupervised learning," J. Mach. Learn. Res., vol. 5, pp. 845-889, 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 845-889
    • Dy, J.1    Brodley, C.2
  • 9
    • 0002878444 scopus 로고    scopus 로고
    • Feature subset selection and order identification for unsupervised learning
    • J. G. Dy and C. E. Brodley, "Feature subset selection and order identification for unsupervised learning," in ICML, 2000.
    • (2000) ICML
    • Dy, J.G.1    Brodley, C.E.2
  • 12
    • 1842637512 scopus 로고    scopus 로고
    • Mixed-membership models of scientific publications
    • E. Erosheva, S. Fienberg, and J. Lafferty, "Mixed-membership models of scientific publications," in Proc. Nat. Acad. Sci. USA, vol. 101, pp. 5220-5227, 2004.
    • (2004) Proc. Nat. Acad. Sci. USA , vol.101 , pp. 5220-5227
    • Erosheva, E.1    Fienberg, S.2    Lafferty, J.3
  • 14
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene selection for cancer classification using support vector machines," Mach. Learn., vol. 46, pp. 389-422, 2002.
    • (2002) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 15
    • 85065703189 scopus 로고    scopus 로고
    • Correlation-based feature selection for discrete and numeric class machine learning
    • M. A. Hall, "Correlation-based feature selection for discrete and numeric class machine learning," in Proc. 17th Int. Conf. Mach. Learn., 2000, pp. 359-366.
    • (2000) Proc. 17th Int. Conf. Mach. Learn. , pp. 359-366
    • Hall, M.A.1
  • 17
    • 0004151494 scopus 로고
    • Cambridge U.K. Cambridge Univ. Press
    • R. Horn and C. Johnson, Matrix Analysis. Cambridge, U.K. Cambridge Univ. Press, 1990.
    • (1990) Matrix Analysis
    • Horn, R.1    Johnson, C.2
  • 21
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • Apr.
    • H. Liu and L. Yu, "Toward integrating feature selection algorithms for classification and clustering," IEEE Trans. Knowl. Data Eng., vol. 17, no. 4, pp. 491-502, Apr. 2005.
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 22
    • 80053145416 scopus 로고    scopus 로고
    • Multi-task feature learning via efficient l 2, 1-norm minimization
    • J. Liu, S. Ji, and J. Ye, "Multi-task feature learning via efficient l 2, 1-norm minimization," in Proc. 25th Conf. Uncertainty Artif. Intell., 2009, pp. 339-348.
    • (2009) Proc. 25th Conf. Uncertainty Artif. Intell. , pp. 339-348
    • Liu, J.1    Ji, S.2    Ye, J.3
  • 23
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • U. Luxburg, "A tutorial on spectral clustering," Statist. Comput., vol. 17, no. 4, pp. 395-416, 2007.
    • (2007) Statist. Comput. , vol.17 , Issue.4 , pp. 395-416
    • Luxburg, U.1
  • 24
    • 0348250078 scopus 로고
    • Network studies of social influence
    • P. Marsden and N. Friedkin, "Network studies of social influence," Sociol. Methods Res., vol. 22, no. 1, pp. 127-151, 1993.
    • (1993) Sociol. Methods Res. , vol.22 , Issue.1 , pp. 127-151
    • Marsden, P.1    Friedkin, N.2
  • 25
    • 0035639140 scopus 로고    scopus 로고
    • Birds of a feather: Homophily in social networks
    • M. McPherson, L. S. Lovin, and J. M. Cook, "Birds of a feather: Homophily in social networks," Annu. Rev. Sociol., vol. 27, pp. 415-444, 2001.
    • (2001) Annu. Rev. Sociol. , vol.27 , pp. 415-444
    • McPherson, M.1    Lovin, L.S.2    Cook, J.M.3
  • 26
    • 37649028224 scopus 로고    scopus 로고
    • Finding and evaluating community structure in networks
    • M. E. J. Newman and M. Girvan, "Finding and evaluating community structure in networks," Phys. Rev. E, vol. 69, p. 026113, 2004.
    • (2004) Phys. Rev. e , vol.69
    • Newman, M.E.J.1    Girvan, M.2
  • 27
    • 85135939782 scopus 로고    scopus 로고
    • Efficient and robust feature selection via joint l21-norms minimization
    • F. Nie, H. Huang, X. Cai, and C. Ding, "Efficient and robust feature selection via joint l21-norms minimization," in Proc. Adv. Neural Inf. Process. Syst., 2010, pp. 1813-1821.
    • (2010) Proc. Adv. Neural Inf. Process. Syst. , pp. 1813-1821
    • Nie, F.1    Huang, H.2    Cai, X.3    Ding, C.4
  • 28
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
    • Aug.
    • H. Peng, F. Long, and C. Ding, "Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy," IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1226-1238, Aug. 2005.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 31
    • 84880191846 scopus 로고    scopus 로고
    • Feature selection with linked data in social media
    • J. Tang and H. Liu, "Feature selection with linked data in social media," in Proc. 13th SIAM Int. Conf. Data Mining, 2012, pp. 118-128.
    • (2012) Proc. 13th SIAM Int. Conf. Data Mining , pp. 118-128
    • Tang, J.1    Liu, H.2
  • 37
    • 27844550205 scopus 로고    scopus 로고
    • Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weightedbased approach
    • L. Wolf and A. Shashua, "Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weightedbased approach," J. Mach. Learn. Res., vol. 6, pp. 1855-1887, 2005.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1855-1887
    • Wolf, L.1    Shashua, A.2
  • 39
    • 34547981441 scopus 로고    scopus 로고
    • Spectral feature selection for supervised and unsupervised learning
    • Z. Zhao and H. Liu, "Spectral feature selection for supervised and unsupervised learning," in Proc. 24th Int. Conf. Mach. Learn., 2007, pp. 1151-1157.
    • (2007) Proc. 24th Int. Conf. Mach. Learn. , pp. 1151-1157
    • Zhao, Z.1    Liu, H.2
  • 40
    • 77958565426 scopus 로고    scopus 로고
    • Efficient spectral feature selection with minimum redundancy
    • Z. Zhao, L. Wang, and H. Liu, "Efficient spectral feature selection with minimum redundancy," in Proc. 24th AAAI Conf. Artif. Intell., 2010, pp. 1-6.
    • (2010) Proc. 24th AAAI Conf. Artif. Intell. , pp. 1-6
    • Zhao, Z.1    Wang, L.2    Liu, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.