메뉴 건너뛰기




Volumn , Issue , 2013, Pages

Learning feature selection dependencies in multi-task learning

Author keywords

[No Author keywords available]

Indexed keywords

ADDITIONAL DATUM; EXACT INFERENCE; EXPECTATION PROPAGATION; LEARNING DEPENDENCIES; MODEL COEFFICIENT; MULTITASK LEARNING; PROBABILISTIC MODELING; RELEVANT FEATURES;

EID: 84899000606     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (24)

References (24)
  • 1
    • 73349131388 scopus 로고    scopus 로고
    • Statistical challenges of high-dimensional data. Philosophical transactions of the royal society a: Mathematical
    • I. M. Johnstone and D. M. Titterington. Statistical challenges of high-dimensional data. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367(1906):4237, 2009.
    • (2009) Physical and Engineering Sciences , vol.367 , Issue.1906 , pp. 4237
    • Johnstone, I.M.1    Titterington, D.M.2
  • 4
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Series B (Methodological)
    • R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 58(1):267-288, 1996.
    • (1996) Journal of the Royal Statistical Society , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 5
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • M. E. Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1:211-244, 2001.
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 7
    • 78049353036 scopus 로고    scopus 로고
    • Bayesian source localization with the multivariate Laplace prior
    • Y. Bengio D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors
    • M. Van Gerven, B. Cseke, R. Oostenveld, and T. Heskes. Bayesian source localization with the multivariate Laplace prior. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 1901-1909, 2009.
    • (2009) Advances in Neural Information Processing Systems , vol.22 , pp. 1901-1909
    • Van Gerven, M.1    Cseke, B.2    Oostenveld, R.3    Heskes, T.4
  • 8
    • 78349232078 scopus 로고    scopus 로고
    • The group-lasso: ℓ1;1 regularization versus ℓ1;2 regularization
    • Goesele et al., editor, 32nd Springer
    • Julia E. Vogt and Volker Roth. The group-lasso: ℓ1;1 regularization versus ℓ1;2 regularization. In Goesele et al., editor, 32nd Anual Symposium of the German Association for Pattern Recognition, volume 6376, pages 252-261. Springer, 2010.
    • (2010) Anual Symposium of the German Association for Pattern Recognition , vol.6376 , pp. 252-261
    • Vogt, J.E.1    Roth, V.2
  • 9
    • 33746126624 scopus 로고    scopus 로고
    • Blockwise sparse regression
    • Y. Kim, J. Kim, and Y. Kim. Blockwise sparse regression. Statistica Sinica, 16(2):375, 2006.
    • (2006) Statistica Sinica , vol.16 , Issue.2 , pp. 375
    • Kim, Y.1    Kim, J.2    Kim, Y.3
  • 10
    • 78049339967 scopus 로고    scopus 로고
    • Expectation propagation for bayesian multi-task feature selection
    • José L. Balcázar, Francesco Bonchi, Aristides Gionis, and Michèle Sebag, editors. Springer
    • D. Hernández-Lobato, J. M. Hernández-Lobato, T. Helleputte, and P. Dupont. Expectation propagation for Bayesian multi-task feature selection. In José L. Balcázar, Francesco Bonchi, Aristides Gionis, and Michèle Sebag, editors, Proceedings of the European Conference on Machine Learning, volume 6321, pages 522-537. Springer, 2010.
    • (2010) Proceedings of the European Conference on Machine Learning , vol.6321 , pp. 522-537
    • Hernández-Lobato, D.1    Hernández-Lobato, J.M.2    Helleputte, T.3    Dupont, P.4
  • 11
    • 70049105714 scopus 로고    scopus 로고
    • Joint covariate selection and joint subspace selection for multiple classification problems
    • G. Obozinski, B. Taskar, and M. I. Jordan. Joint covariate selection and joint subspace selection for multiple classification problems. Statistics and Computing, pages 1-22, 2009.
    • (2009) Statistics and Computing , pp. 1-22
    • Obozinski, G.1    Taskar, B.2    Jordan, M.I.3
  • 14
    • 84864063089 scopus 로고    scopus 로고
    • Multi-task feature learning
    • B. Schölkopf, J. Platt, and T. Hoffman, editors MIT Press, Cambridge, MA
    • A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task feature learning. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems 19, pages 41-48. MIT Press, Cambridge, MA, 2007.
    • (2007) Advances in Neural Information Processing Systems , vol.19 , pp. 41-48
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 15
    • 85162062975 scopus 로고    scopus 로고
    • A dirty model for multi-task learning
    • J. Lafferty C. K. I. Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editors
    • A. Jalali, P. Ravikumar, S. Sanghavi, and C. Ruan. A dirty model for multi-task learning. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems 23, pages 964-972. 2010.
    • (2010) Advances in Neural Information Processing Systems , vol.23 , pp. 964-972
    • Jalali, A.1    Ravikumar, P.2    Sanghavi, S.3    Ruan, C.4
  • 16
    • 85162008868 scopus 로고    scopus 로고
    • Learning horizontal connections in a sparse coding model of natural images
    • J C. Platt, D. Koller, Y. Singer, and S. Roweis, editors MIT Press, Cambridge, MA
    • P. Garrigues and B. Olshausen. Learning horizontal connections in a sparse coding model of natural images. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 505-512. MIT Press, Cambridge, MA, 2008.
    • (2008) Advances in Neural Information Processing Systems , vol.20 , pp. 505-512
    • Garrigues, P.1    Olshausen, B.2
  • 17
    • 84860009365 scopus 로고    scopus 로고
    • Exploiting statistical dependencies in sparse representations for signal recovery
    • T. Peleg, Y. C Eldar, and M. Elad. Exploiting statistical dependencies in sparse representations for signal recovery. Signal Processing, IEEE Transactions on, 60(5):2286-2303, 2012.
    • (2012) Signal Processing IEEE Transactions on , vol.60 , Issue.5 , pp. 2286-2303
    • Peleg, T.1    Eldar, Y.C.2    Elad, M.3
  • 21
    • 43449137394 scopus 로고    scopus 로고
    • Expectation propagation for exponential families
    • University of California Berkeley
    • M. W. Seeger. Expectation propagation for exponential families. Technical report, Department of EECS, University of California, Berkeley, 2006.
    • (2006) Technical Report, Department of EECS
    • Seeger, M.W.1
  • 22
    • 84898946347 scopus 로고    scopus 로고
    • Carnegie Mellon University, Department of Statistics
    • T. Minka. Power EP. Technical report, Carnegie Mellon University, Department of Statistics, 2004.
    • (2004) Power EP Technical Report
    • Minka, T.1
  • 23
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.