-
1
-
-
73349131388
-
Statistical challenges of high-dimensional data. Philosophical transactions of the royal society a: Mathematical
-
I. M. Johnstone and D. M. Titterington. Statistical challenges of high-dimensional data. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367(1906):4237, 2009.
-
(2009)
Physical and Engineering Sciences
, vol.367
, Issue.1906
, pp. 4237
-
-
Johnstone, I.M.1
Titterington, D.M.2
-
4
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
Series B (Methodological)
-
R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 58(1):267-288, 1996.
-
(1996)
Journal of the Royal Statistical Society
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
5
-
-
0001224048
-
Sparse Bayesian learning and the relevance vector machine
-
M. E. Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1:211-244, 2001.
-
(2001)
Journal of Machine Learning Research
, vol.1
, pp. 211-244
-
-
Tipping, M.E.1
-
7
-
-
78049353036
-
Bayesian source localization with the multivariate Laplace prior
-
Y. Bengio D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors
-
M. Van Gerven, B. Cseke, R. Oostenveld, and T. Heskes. Bayesian source localization with the multivariate Laplace prior. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 1901-1909, 2009.
-
(2009)
Advances in Neural Information Processing Systems
, vol.22
, pp. 1901-1909
-
-
Van Gerven, M.1
Cseke, B.2
Oostenveld, R.3
Heskes, T.4
-
8
-
-
78349232078
-
The group-lasso: ℓ1;1 regularization versus ℓ1;2 regularization
-
Goesele et al., editor, 32nd Springer
-
Julia E. Vogt and Volker Roth. The group-lasso: ℓ1;1 regularization versus ℓ1;2 regularization. In Goesele et al., editor, 32nd Anual Symposium of the German Association for Pattern Recognition, volume 6376, pages 252-261. Springer, 2010.
-
(2010)
Anual Symposium of the German Association for Pattern Recognition
, vol.6376
, pp. 252-261
-
-
Vogt, J.E.1
Roth, V.2
-
9
-
-
33746126624
-
Blockwise sparse regression
-
Y. Kim, J. Kim, and Y. Kim. Blockwise sparse regression. Statistica Sinica, 16(2):375, 2006.
-
(2006)
Statistica Sinica
, vol.16
, Issue.2
, pp. 375
-
-
Kim, Y.1
Kim, J.2
Kim, Y.3
-
10
-
-
78049339967
-
Expectation propagation for bayesian multi-task feature selection
-
José L. Balcázar, Francesco Bonchi, Aristides Gionis, and Michèle Sebag, editors. Springer
-
D. Hernández-Lobato, J. M. Hernández-Lobato, T. Helleputte, and P. Dupont. Expectation propagation for Bayesian multi-task feature selection. In José L. Balcázar, Francesco Bonchi, Aristides Gionis, and Michèle Sebag, editors, Proceedings of the European Conference on Machine Learning, volume 6321, pages 522-537. Springer, 2010.
-
(2010)
Proceedings of the European Conference on Machine Learning
, vol.6321
, pp. 522-537
-
-
Hernández-Lobato, D.1
Hernández-Lobato, J.M.2
Helleputte, T.3
Dupont, P.4
-
11
-
-
70049105714
-
Joint covariate selection and joint subspace selection for multiple classification problems
-
G. Obozinski, B. Taskar, and M. I. Jordan. Joint covariate selection and joint subspace selection for multiple classification problems. Statistics and Computing, pages 1-22, 2009.
-
(2009)
Statistics and Computing
, pp. 1-22
-
-
Obozinski, G.1
Taskar, B.2
Jordan, M.I.3
-
12
-
-
70449089773
-
Probabilistic joint feature selection for multi-task learning
-
SIAM
-
T. Xiong, J. Bi, B. Rao, and V. Cherkassky. Probabilistic joint feature selection for multi-task learning. In Proceedings of the Seventh SIAM International Conference on Data Mining, pages 332-342. SIAM, 2007.
-
(2007)
Proceedings of the Seventh SIAM International Conference on Data Mining
, pp. 332-342
-
-
Xiong, T.1
Bi, J.2
Rao, B.3
Cherkassky, V.4
-
14
-
-
84864063089
-
Multi-task feature learning
-
B. Schölkopf, J. Platt, and T. Hoffman, editors MIT Press, Cambridge, MA
-
A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task feature learning. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems 19, pages 41-48. MIT Press, Cambridge, MA, 2007.
-
(2007)
Advances in Neural Information Processing Systems
, vol.19
, pp. 41-48
-
-
Argyriou, A.1
Evgeniou, T.2
Pontil, M.3
-
15
-
-
85162062975
-
A dirty model for multi-task learning
-
J. Lafferty C. K. I. Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editors
-
A. Jalali, P. Ravikumar, S. Sanghavi, and C. Ruan. A dirty model for multi-task learning. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems 23, pages 964-972. 2010.
-
(2010)
Advances in Neural Information Processing Systems
, vol.23
, pp. 964-972
-
-
Jalali, A.1
Ravikumar, P.2
Sanghavi, S.3
Ruan, C.4
-
16
-
-
85162008868
-
Learning horizontal connections in a sparse coding model of natural images
-
J C. Platt, D. Koller, Y. Singer, and S. Roweis, editors MIT Press, Cambridge, MA
-
P. Garrigues and B. Olshausen. Learning horizontal connections in a sparse coding model of natural images. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 505-512. MIT Press, Cambridge, MA, 2008.
-
(2008)
Advances in Neural Information Processing Systems
, vol.20
, pp. 505-512
-
-
Garrigues, P.1
Olshausen, B.2
-
17
-
-
84860009365
-
Exploiting statistical dependencies in sparse representations for signal recovery
-
T. Peleg, Y. C Eldar, and M. Elad. Exploiting statistical dependencies in sparse representations for signal recovery. Signal Processing, IEEE Transactions on, 60(5):2286-2303, 2012.
-
(2012)
Signal Processing IEEE Transactions on
, vol.60
, Issue.5
, pp. 2286-2303
-
-
Peleg, T.1
Eldar, Y.C.2
Elad, M.3
-
21
-
-
43449137394
-
Expectation propagation for exponential families
-
University of California Berkeley
-
M. W. Seeger. Expectation propagation for exponential families. Technical report, Department of EECS, University of California, Berkeley, 2006.
-
(2006)
Technical Report, Department of EECS
-
-
Seeger, M.W.1
-
22
-
-
84898946347
-
-
Carnegie Mellon University, Department of Statistics
-
T. Minka. Power EP. Technical report, Carnegie Mellon University, Department of Statistics, 2004.
-
(2004)
Power EP Technical Report
-
-
Minka, T.1
-
23
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
24
-
-
76749107542
-
Online learning for matrix factorization and sparse coding
-
J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse coding. Journal of Machine Learning Research, 11:19-60, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 19-60
-
-
Mairal, J.1
Bach, F.2
Ponce, J.3
Sapiro, G.4
|