메뉴 건너뛰기




Volumn 14, Issue , 2013, Pages 1891-1945

Generalized spike-and-slab priors for Bayesian group feature selection using expectation propagation

Author keywords

Approximate inference; Expectation propagation; Generalized spike and slab priors; Group feature selection; Sequential experimental design; Signal reconstruction; Sparse linear model

Indexed keywords

APPROXIMATE INFERENCE; EXPECTATION PROPAGATION; GENERALIZED SPIKE-AND-SLAB PRIORS; LINEAR MODELING; SEQUENTIAL EXPERIMENTAL DESIGN;

EID: 84884218772     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (66)

References (64)
  • 1
    • 84898964031 scopus 로고    scopus 로고
    • A variational Bayesian framework for graphical models
    • MIT Press
    • H. Attias. A variational Bayesian framework for graphical models. In In Advances in Neural Information Processing Systems, volume 12, pages 209-215. MIT Press, 2000.
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 209-215
    • Attias, H.1
  • 2
    • 46249088758 scopus 로고    scopus 로고
    • Consistency of the group lasso and multiple kernel learning
    • ISSN 1532-4435
    • F. R. Bach. Consistency of the group lasso and multiple kernel learning. Journal of Machine Learning Research, 9:1179-1225, 2008. ISSN 1532-4435.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 1179-1225
    • Bach, F.R.1
  • 3
    • 80052901105 scopus 로고    scopus 로고
    • Group-lasso on splines for spectrum cartography
    • October, ISSN 1053-587X
    • J. A. Bazerque, G. Mateos, and G. B. Giannakis. Group-lasso on splines for spectrum cartography. Transactions on Signal Proccesing, 59(10):4648-4663, October 2011. ISSN 1053-587X.
    • (2011) Transactions on Signal Proccesing , vol.59 , Issue.10 , pp. 4648-4663
    • Bazerque, J.A.1    Mateos, G.2    Giannakis, G.B.3
  • 6
    • 85032750937 scopus 로고    scopus 로고
    • An introduction to compressive sampling
    • march, ISSN 1053-5888
    • E. J. Candes and M. B. Wakin. An introduction to compressive sampling. IEEE Signal Processing Magazine, 25(2):21-30, march 2008. ISSN 1053-5888.
    • (2008) IEEE Signal Processing Magazine , vol.25 , Issue.2 , pp. 21-30
    • Candes, E.J.1    Wakin, M.B.2
  • 8
    • 84972528615 scopus 로고
    • Bayesian experimental design: A review
    • K. Chaloner and I. Verdinelli. Bayesian experimental design: A review. Statistical Science, 10:273-304, 1995.
    • (1995) Statistical Science , vol.10 , pp. 273-304
    • Chaloner, K.1    Verdinelli, I.2
  • 9
    • 0033481108 scopus 로고    scopus 로고
    • Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables
    • P. Damien, J. Wakefield, and S. Walker. Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables. Journal of the Royal Statistical Society Series B, 61(2):331-344, 1999.
    • (1999) Journal of the Royal Statistical Society Series B , vol.61 , Issue.2 , pp. 331-344
    • Damien, P.1    Wakefield, J.2    Walker, S.3
  • 10
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • ISSN 1533-7928
    • J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7:1-30, 2006. ISSN 1533-7928.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1
  • 12
    • 84899019663 scopus 로고    scopus 로고
    • Analysis of sparse Bayesian learning
    • Thomas G. Dietterich, Suzanna Becker, and Zoubin Ghahramani, editors, MIT Press
    • A. C. Faul and M. E. Tipping. Analysis of sparse Bayesian learning. In Thomas G. Dietterich, Suzanna Becker, and Zoubin Ghahramani, editors, Advances in Neural Information Processing Systems 14, pages 383-389. MIT Press, 2001.
    • (2001) Advances in Neural Information Processing Systems 14 , pp. 383-389
    • Faul, A.C.1    Tipping, M.E.2
  • 14
    • 0031526204 scopus 로고    scopus 로고
    • Approaches for Bayesian variable selection
    • E. I. George and R. E. McCulloch. Approaches for Bayesian variable selection. Statistica Sinica, 7(2):339-373, 1997.
    • (1997) Statistica Sinica , vol.7 , Issue.2 , pp. 339-373
    • George, E.I.1    McCulloch, R.E.2
  • 15
    • 78049353036 scopus 로고    scopus 로고
    • Bayesian source localization with the multivariate Laplace prior
    • Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors
    • M. Van Gerven, B. Cseke, R. Oostenveld, and T. Heskes. Bayesian source localization with the multivariate Laplace prior. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 1901-1909, 2009.
    • (2009) Advances in Neural Information Processing Systems 22 , pp. 1901-1909
    • Van Gerven, M.1    Cseke, B.2    Oostenveld, R.3    Heskes, T.4
  • 16
    • 0000647838 scopus 로고    scopus 로고
    • Variable selection and model comparison in regression
    • J. Geweke. Variable selection and model comparison in regression. Bayesian Statistics, 5:609-620, 1996.
    • (1996) Bayesian Statistics , vol.5 , pp. 609-620
    • Geweke, J.1
  • 19
    • 78049339967 scopus 로고    scopus 로고
    • Expectation propagation for Bayesian multi-task feature selection
    • José L. Balcázar, Francesco Bonchi, Aristides Gionis, and Michèle Sebag, editors, Springer
    • D. Hernández-Lobato, J. M. Hernández-Lobato, T. Helleputte, and P. Dupont. Expectation propagation for Bayesian multi-task feature selection. In José L. Balcázar, Francesco Bonchi, Aristides Gionis, and Michèle Sebag, editors, Proceedings of the European Conference on Machine Learning, volume 6321, pages 522-537. Springer, 2010.
    • (2010) Proceedings of the European Conference on Machine Learning , vol.6321 , pp. 522-537
    • Hernández-Lobato, D.1    Hernández-Lobato, J.M.2    Helleputte, T.3    Dupont, P.4
  • 21
    • 78049349010 scopus 로고    scopus 로고
    • Hub gene selection methods for the reconstruction of transcription networks
    • José L. Balcázar, Francesco Bonchi, Aristides Gionis, and Michèle Sebag, editors
    • J. M. Hernández-Lobato and T. Dijkstra. Hub gene selection methods for the reconstruction of transcription networks. In José L. Balcázar, Francesco Bonchi, Aristides Gionis, and Michèle Sebag, editors, Machine Learning and Knowledge Discovery in Databases, European Conference, Proceedings, Part I, volume 6321, pages 506-521, 2010.
    • (2010) Machine Learning and Knowledge Discovery in Databases, European Conference, Proceedings, Part I , vol.6321 , pp. 506-521
    • Hernández-Lobato, J.M.1    Dijkstra, T.2
  • 22
    • 85161971986 scopus 로고    scopus 로고
    • Regulator discovery from gene expression time series of malaria parasites: A hierarchical approach
    • J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, The MIT Press
    • J. M. Hernández-Lobato, T. Dijkstra, and T. Heskes. Regulator discovery from gene expression time series of malaria parasites: A hierarchical approach. In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 649-656. The MIT Press, 2008.
    • (2008) Advances in Neural Information Processing Systems 20 , pp. 649-656
    • Hernández-Lobato, J.M.1    Dijkstra, T.2    Heskes, T.3
  • 24
    • 77955136689 scopus 로고    scopus 로고
    • The benefit of group sparsity
    • J. Huang and T. Zhang. The benefit of group sparsity. The Annals of Statistics, 38:1978-2004, 2010.
    • (2010) The Annals of Statistics , vol.38 , pp. 1978-2004
    • Huang, J.1    Zhang, T.2
  • 25
    • 4043084564 scopus 로고    scopus 로고
    • Tutorial on variational approximation methods
    • M. Opper and D. Saad, editors, MIT Press
    • T. S. Jaakkola. Tutorial on variational approximation methods. In M. Opper and D. Saad, editors, Advances in Mean Field Methods: Theory and Practice, pages 129-159. MIT Press, 2001.
    • (2001) Advances in Mean Field Methods: Theory and Practice , pp. 129-159
    • Jaakkola, T.S.1
  • 27
    • 44849087307 scopus 로고    scopus 로고
    • Bayesian compressive sensing
    • june, ISSN 1053-587X
    • S. Ji, Y. Xue, and L. Carin. Bayesian compressive sensing. IEEE Transactions on Signal Processing, 56(6):2346-2356, june 2008. ISSN 1053-587X.
    • (2008) IEEE Transactions on Signal Processing , vol.56 , Issue.6 , pp. 2346-2356
    • Ji, S.1    Xue, Y.2    Carin, L.3
  • 28
  • 30
    • 84905499203 scopus 로고    scopus 로고
    • The variational garrote
    • Submitted
    • H. J. Kappen and Vicenç Gómez. The variational garrote. Machine Learning, pages 1-17, 2013. Submitted.
    • (2013) Machine Learning , pp. 1-17
    • Kappen, H.J.1    Gómez, V.2
  • 31
    • 80053281077 scopus 로고    scopus 로고
    • Feature selection via block-regularized regression
    • David A. McAllester and Petri Myllymäki, editors, AUAI Press
    • S. Kim and E. P. Xing. Feature selection via block-regularized regression. In David A. McAllester and Petri Myllymäki, editors, Proceedings of the 24th Conference in Uncertainty in Artificial Intelligence, pages 325-332. AUAI Press, 2008.
    • (2008) Proceedings of the 24th Conference in Uncertainty in Artificial Intelligence , pp. 325-332
    • Kim, S.1    Xing, E.P.2
  • 32
    • 33746126624 scopus 로고    scopus 로고
    • Blockwise sparse regression
    • ISSN 1017-0405
    • Y. Kim, J. Kim, and Y. Kim. Blockwise sparse regression. Statistica Sinica, 16(2):375, 2006. ISSN 1017-0405.
    • (2006) Statistica Sinica , vol.16 , Issue.2 , pp. 375
    • Kim, Y.1    Kim, J.2    Kim, Y.3
  • 33
    • 80053225881 scopus 로고    scopus 로고
    • Fast sparse Gaussian process methods: The informative vector machine
    • S. Becker, S. Thrun, and K. Obermayer, editors, MIT Press, Cambridge, MA
    • N. Lawrence, M. W. Seeger, and R. Herbrich. Fast sparse Gaussian process methods: The informative vector machine. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing Systems 15, pages 609-616. MIT Press, Cambridge, MA, 2003.
    • (2003) Advances in Neural Information Processing Systems 15 , pp. 609-616
    • Lawrence, N.1    Seeger, M.W.2    Herbrich, R.3
  • 34
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Le Cun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 36
    • 0036772522 scopus 로고    scopus 로고
    • Bayesian automatic relevance determination algorithms for classifying gene expression data
    • Y. Li, C. Campbell, and M. Tipping. Bayesian automatic relevance determination algorithms for classifying gene expression data. Bioinformatics, 18(10):1332-1339, 2002.
    • (2002) Bioinformatics , vol.18 , Issue.10 , pp. 1332-1339
    • Li, Y.1    Campbell, C.2    Tipping, M.3
  • 37
    • 0000695404 scopus 로고
    • Information-based objective functions for active data selection
    • D. J. C. MacKay. Information-based objective functions for active data selection. Neural Computation, 4:590-604, 1991.
    • (1991) Neural Computation , vol.4 , pp. 590-604
    • MacKay, D.J.C.1
  • 39
    • 25444450079 scopus 로고    scopus 로고
    • A sparse signal reconstruction perspective for source localization with sensor arrays
    • D. M. Malioutov, M. Çetin, and A. S. Willsky. A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing, 53 (8-2):3010-3022, 2005.
    • (2005) IEEE Transactions on Signal Processing , vol.53 , Issue.8-12 , pp. 3010-3022
    • Malioutov, D.M.1    Çetin, M.2    Willsky, A.S.3
  • 42
  • 45
    • 56349122110 scopus 로고    scopus 로고
    • Approximations for binary Gaussian process classification
    • 10
    • H. Nickisch and C. E. Rasmussen. Approximations for binary Gaussian process classification. Journal of Machine Learning Research, 9:2035-2078, 10 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 2035-2078
    • Nickisch, H.1    Rasmussen, C.E.2
  • 47
    • 79955502711 scopus 로고    scopus 로고
    • Multidimensional shrinkage-thresholding operator and group lasso penalties
    • A. T. Puig, A. Wiesel, G. F., and A. O. Hero. Multidimensional shrinkage-thresholding operator and group lasso penalties. IEEE Signal Processing Letters, 18(6):363-366, 2011.
    • (2011) IEEE Signal Processing Letters , vol.18 , Issue.6 , pp. 363-366
    • Puig, A.T.1    Wiesel, A.2    Hero, A.O.G.F.3
  • 48
    • 79961135005 scopus 로고    scopus 로고
    • R Development Core Team, R Foundation for Statistical Computing, Vienna, Austria, URL ISBN 3-900051-07-0
    • R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2011. URL http://www.R-project.org/. ISBN 3-900051-07-0.
    • (2011) R: A Language and Environment for Statistical Computing
  • 50
    • 56449115709 scopus 로고    scopus 로고
    • The group-lasso for generalized linear models: Uniqueness of solutions and efficient algorithms
    • A. McCallum and S. Roweis, editors
    • V. Roth and B. Fischer. The group-lasso for generalized linear models: uniqueness of solutions and efficient algorithms. In A. McCallum and S. Roweis, editors, Proceedings of the 25th International Conference on Machine Learning, pages 848-855, 2008.
    • (2008) Proceedings of the 25th International Conference on Machine Learning , pp. 848-855
    • Roth, V.1    Fischer, B.2
  • 51
    • 84858769402 scopus 로고    scopus 로고
    • Regularized learning with networks of features
    • D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors
    • T. Sandler, J. Blitzer, P. P. Talukdar, and L. H. Ungar. Regularized learning with networks of features. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems 21, pages 1401-1408. 2009.
    • (2009) Advances in Neural Information Processing Systems , vol.21 , pp. 1401-1408
    • Sandler, T.1    Blitzer, J.2    Talukdar, P.P.3    Ungar, L.H.4
  • 52
    • 84871993172 scopus 로고    scopus 로고
    • Spike-and-slab priors for function selection in structured additive regression models
    • F. Scheipl, L. Fahrmeir, and T. Kneib. Spike-and-slab priors for function selection in structured additive regression models. Journal of the American Statistical Association, 107:1518-1532, 2012.
    • (2012) Journal of the American Statistical Association , vol.107 , pp. 1518-1532
    • Scheipl, F.1    Fahrmeir, L.2    Kneib, T.3
  • 54
    • 44649181578 scopus 로고    scopus 로고
    • Bayesian inference and optimal design for the sparse linear model
    • M. W. Seeger. Bayesian inference and optimal design for the sparse linear model. Journal of Machine Learning Research, 9:759-813, 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 759-813
    • Seeger, M.W.1
  • 55
    • 73349101812 scopus 로고    scopus 로고
    • Optimization of k-space trajectories for compressed sensing by Bayesian experimental design
    • M. W. Seeger, H. Nickisch, R. Pohmann, and B. Schölkopf. Optimization of k-space trajectories for compressed sensing by Bayesian experimental design. Magnetic Resonance in Medicine, 63(1):116-126, 2009.
    • (2009) Magnetic Resonance in Medicine , vol.63 , Issue.1 , pp. 116-126
    • Seeger, M.W.1    Nickisch, H.2    Pohmann, R.3    Schölkopf, B.4
  • 57
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • M. E. Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1:211-244, 2001.
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 60
    • 84864068747 scopus 로고    scopus 로고
    • Recovery of jointly sparse signals from few random projections
    • Y. Weiss, B. Schölkopf, and J. Platt, editors, MIT Press, Cambridge, MA
    • M. Wakin, M. Duarte, S. Sarvotham, D. Baron, and R. Baraniuk. Recovery of jointly sparse signals from few random projections. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural Information Processing Systems 18, pages 1433-1440. MIT Press, Cambridge, MA, 2006.
    • (2006) Advances in Neural Information Processing Systems 18 , pp. 1433-1440
    • Wakin, M.1    Duarte, M.2    Sarvotham, S.3    Baron, D.4    Baraniuk, R.5
  • 61
    • 0242295767 scopus 로고    scopus 로고
    • Bayesian factor regression models in the "large p, small n" paradigm
    • Oxford University Press
    • M. West. Bayesian factor regression models in the "large p, small n" paradigm. In Bayesian Statistics 7, pages 723-732. Oxford University Press, 2003.
    • (2003) Bayesian Statistics 7 , pp. 723-732
    • West, M.1
  • 64
    • 0041095137 scopus 로고
    • Bayesian invariant measurements of generalization
    • ISSN 1370-4621
    • H. Zhu and R. Rohwer. Bayesian invariant measurements of generalization. Neural Processing Letters, 2:28-31, 1995. ISSN 1370-4621.
    • (1995) Neural Processing Letters , vol.2 , pp. 28-31
    • Zhu, H.1    Rohwer, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.