-
1
-
-
84898964031
-
A variational Bayesian framework for graphical models
-
MIT Press
-
H. Attias. A variational Bayesian framework for graphical models. In In Advances in Neural Information Processing Systems, volume 12, pages 209-215. MIT Press, 2000.
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
, pp. 209-215
-
-
Attias, H.1
-
2
-
-
46249088758
-
Consistency of the group lasso and multiple kernel learning
-
ISSN 1532-4435
-
F. R. Bach. Consistency of the group lasso and multiple kernel learning. Journal of Machine Learning Research, 9:1179-1225, 2008. ISSN 1532-4435.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 1179-1225
-
-
Bach, F.R.1
-
3
-
-
80052901105
-
Group-lasso on splines for spectrum cartography
-
October, ISSN 1053-587X
-
J. A. Bazerque, G. Mateos, and G. B. Giannakis. Group-lasso on splines for spectrum cartography. Transactions on Signal Proccesing, 59(10):4648-4663, October 2011. ISSN 1053-587X.
-
(2011)
Transactions on Signal Proccesing
, vol.59
, Issue.10
, pp. 4648-4663
-
-
Bazerque, J.A.1
Mateos, G.2
Giannakis, G.B.3
-
5
-
-
84860524227
-
Biographies, Bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification
-
Prague, Czech Republic
-
J. Blitzer, M. Dredze, and F. Pereira. Biographies, Bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. In Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 440-407, Prague, Czech Republic, 2007.
-
(2007)
Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics
, pp. 440-407
-
-
Blitzer, J.1
Dredze, M.2
Pereira, F.3
-
6
-
-
85032750937
-
An introduction to compressive sampling
-
march, ISSN 1053-5888
-
E. J. Candes and M. B. Wakin. An introduction to compressive sampling. IEEE Signal Processing Magazine, 25(2):21-30, march 2008. ISSN 1053-5888.
-
(2008)
IEEE Signal Processing Magazine
, vol.25
, Issue.2
, pp. 21-30
-
-
Candes, E.J.1
Wakin, M.B.2
-
8
-
-
84972528615
-
Bayesian experimental design: A review
-
K. Chaloner and I. Verdinelli. Bayesian experimental design: A review. Statistical Science, 10:273-304, 1995.
-
(1995)
Statistical Science
, vol.10
, pp. 273-304
-
-
Chaloner, K.1
Verdinelli, I.2
-
9
-
-
0033481108
-
Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables
-
P. Damien, J. Wakefield, and S. Walker. Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables. Journal of the Royal Statistical Society Series B, 61(2):331-344, 1999.
-
(1999)
Journal of the Royal Statistical Society Series B
, vol.61
, Issue.2
, pp. 331-344
-
-
Damien, P.1
Wakefield, J.2
Walker, S.3
-
10
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
ISSN 1533-7928
-
J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7:1-30, 2006. ISSN 1533-7928.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1-30
-
-
Demšar, J.1
-
12
-
-
84899019663
-
Analysis of sparse Bayesian learning
-
Thomas G. Dietterich, Suzanna Becker, and Zoubin Ghahramani, editors, MIT Press
-
A. C. Faul and M. E. Tipping. Analysis of sparse Bayesian learning. In Thomas G. Dietterich, Suzanna Becker, and Zoubin Ghahramani, editors, Advances in Neural Information Processing Systems 14, pages 383-389. MIT Press, 2001.
-
(2001)
Advances in Neural Information Processing Systems 14
, pp. 383-389
-
-
Faul, A.C.1
Tipping, M.E.2
-
14
-
-
0031526204
-
Approaches for Bayesian variable selection
-
E. I. George and R. E. McCulloch. Approaches for Bayesian variable selection. Statistica Sinica, 7(2):339-373, 1997.
-
(1997)
Statistica Sinica
, vol.7
, Issue.2
, pp. 339-373
-
-
George, E.I.1
McCulloch, R.E.2
-
15
-
-
78049353036
-
Bayesian source localization with the multivariate Laplace prior
-
Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors
-
M. Van Gerven, B. Cseke, R. Oostenveld, and T. Heskes. Bayesian source localization with the multivariate Laplace prior. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 1901-1909, 2009.
-
(2009)
Advances in Neural Information Processing Systems 22
, pp. 1901-1909
-
-
Van Gerven, M.1
Cseke, B.2
Oostenveld, R.3
Heskes, T.4
-
16
-
-
0000647838
-
Variable selection and model comparison in regression
-
J. Geweke. Variable selection and model comparison in regression. Bayesian Statistics, 5:609-620, 1996.
-
(1996)
Bayesian Statistics
, vol.5
, pp. 609-620
-
-
Geweke, J.1
-
17
-
-
84966204836
-
Methods for modifying matrix factorizations
-
P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders. Methods for modifying matrix factorizations. Mathematics of Computation, 28(126):505-535, 1974.
-
(1974)
Mathematics of Computation
, vol.28
, Issue.126
, pp. 505-535
-
-
Gill, P.E.1
Golub, G.H.2
Murray, W.3
Saunders, M.A.4
-
19
-
-
78049339967
-
Expectation propagation for Bayesian multi-task feature selection
-
José L. Balcázar, Francesco Bonchi, Aristides Gionis, and Michèle Sebag, editors, Springer
-
D. Hernández-Lobato, J. M. Hernández-Lobato, T. Helleputte, and P. Dupont. Expectation propagation for Bayesian multi-task feature selection. In José L. Balcázar, Francesco Bonchi, Aristides Gionis, and Michèle Sebag, editors, Proceedings of the European Conference on Machine Learning, volume 6321, pages 522-537. Springer, 2010.
-
(2010)
Proceedings of the European Conference on Machine Learning
, vol.6321
, pp. 522-537
-
-
Hernández-Lobato, D.1
Hernández-Lobato, J.M.2
Helleputte, T.3
Dupont, P.4
-
21
-
-
78049349010
-
Hub gene selection methods for the reconstruction of transcription networks
-
José L. Balcázar, Francesco Bonchi, Aristides Gionis, and Michèle Sebag, editors
-
J. M. Hernández-Lobato and T. Dijkstra. Hub gene selection methods for the reconstruction of transcription networks. In José L. Balcázar, Francesco Bonchi, Aristides Gionis, and Michèle Sebag, editors, Machine Learning and Knowledge Discovery in Databases, European Conference, Proceedings, Part I, volume 6321, pages 506-521, 2010.
-
(2010)
Machine Learning and Knowledge Discovery in Databases, European Conference, Proceedings, Part I
, vol.6321
, pp. 506-521
-
-
Hernández-Lobato, J.M.1
Dijkstra, T.2
-
22
-
-
85161971986
-
Regulator discovery from gene expression time series of malaria parasites: A hierarchical approach
-
J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, The MIT Press
-
J. M. Hernández-Lobato, T. Dijkstra, and T. Heskes. Regulator discovery from gene expression time series of malaria parasites: A hierarchical approach. In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 649-656. The MIT Press, 2008.
-
(2008)
Advances in Neural Information Processing Systems 20
, pp. 649-656
-
-
Hernández-Lobato, J.M.1
Dijkstra, T.2
Heskes, T.3
-
24
-
-
77955136689
-
The benefit of group sparsity
-
J. Huang and T. Zhang. The benefit of group sparsity. The Annals of Statistics, 38:1978-2004, 2010.
-
(2010)
The Annals of Statistics
, vol.38
, pp. 1978-2004
-
-
Huang, J.1
Zhang, T.2
-
25
-
-
4043084564
-
Tutorial on variational approximation methods
-
M. Opper and D. Saad, editors, MIT Press
-
T. S. Jaakkola. Tutorial on variational approximation methods. In M. Opper and D. Saad, editors, Advances in Mean Field Methods: Theory and Practice, pages 129-159. MIT Press, 2001.
-
(2001)
Advances in Mean Field Methods: Theory and Practice
, pp. 129-159
-
-
Jaakkola, T.S.1
-
27
-
-
44849087307
-
Bayesian compressive sensing
-
june, ISSN 1053-587X
-
S. Ji, Y. Xue, and L. Carin. Bayesian compressive sensing. IEEE Transactions on Signal Processing, 56(6):2346-2356, june 2008. ISSN 1053-587X.
-
(2008)
IEEE Transactions on Signal Processing
, vol.56
, Issue.6
, pp. 2346-2356
-
-
Ji, S.1
Xue, Y.2
Carin, L.3
-
28
-
-
58649110599
-
Multitask compressive sensing
-
January, ISSN 1053-587X
-
S. Ji, D. Dunson, and L. Carin. Multitask compressive sensing. IEEE Transactions on Signal Processing, 57(1):92-106, January 2009. ISSN 1053-587X.
-
(2009)
IEEE Transactions on Signal Processing
, vol.57
, Issue.1
, pp. 92-106
-
-
Ji, S.1
Dunson, D.2
Carin, L.3
-
30
-
-
84905499203
-
The variational garrote
-
Submitted
-
H. J. Kappen and Vicenç Gómez. The variational garrote. Machine Learning, pages 1-17, 2013. Submitted.
-
(2013)
Machine Learning
, pp. 1-17
-
-
Kappen, H.J.1
Gómez, V.2
-
31
-
-
80053281077
-
Feature selection via block-regularized regression
-
David A. McAllester and Petri Myllymäki, editors, AUAI Press
-
S. Kim and E. P. Xing. Feature selection via block-regularized regression. In David A. McAllester and Petri Myllymäki, editors, Proceedings of the 24th Conference in Uncertainty in Artificial Intelligence, pages 325-332. AUAI Press, 2008.
-
(2008)
Proceedings of the 24th Conference in Uncertainty in Artificial Intelligence
, pp. 325-332
-
-
Kim, S.1
Xing, E.P.2
-
32
-
-
33746126624
-
Blockwise sparse regression
-
ISSN 1017-0405
-
Y. Kim, J. Kim, and Y. Kim. Blockwise sparse regression. Statistica Sinica, 16(2):375, 2006. ISSN 1017-0405.
-
(2006)
Statistica Sinica
, vol.16
, Issue.2
, pp. 375
-
-
Kim, Y.1
Kim, J.2
Kim, Y.3
-
33
-
-
80053225881
-
Fast sparse Gaussian process methods: The informative vector machine
-
S. Becker, S. Thrun, and K. Obermayer, editors, MIT Press, Cambridge, MA
-
N. Lawrence, M. W. Seeger, and R. Herbrich. Fast sparse Gaussian process methods: The informative vector machine. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing Systems 15, pages 609-616. MIT Press, Cambridge, MA, 2003.
-
(2003)
Advances in Neural Information Processing Systems 15
, pp. 609-616
-
-
Lawrence, N.1
Seeger, M.W.2
Herbrich, R.3
-
34
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
Le Cun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
35
-
-
12244265090
-
Gene selection: A Bayesian variable selection approach
-
K. E. Lee, N. Sha, E. R. Dougherty, M. Vannucci, and B. K. Mallick. Gene selection: A Bayesian variable selection approach. Bioinformatics, 19(1):90-97, 2003.
-
(2003)
Bioinformatics
, vol.19
, Issue.1
, pp. 90-97
-
-
Lee, K.E.1
Sha, N.2
Dougherty, E.R.3
Vannucci, M.4
Mallick, B.K.5
-
36
-
-
0036772522
-
Bayesian automatic relevance determination algorithms for classifying gene expression data
-
Y. Li, C. Campbell, and M. Tipping. Bayesian automatic relevance determination algorithms for classifying gene expression data. Bioinformatics, 18(10):1332-1339, 2002.
-
(2002)
Bioinformatics
, vol.18
, Issue.10
, pp. 1332-1339
-
-
Li, Y.1
Campbell, C.2
Tipping, M.3
-
37
-
-
0000695404
-
Information-based objective functions for active data selection
-
D. J. C. MacKay. Information-based objective functions for active data selection. Neural Computation, 4:590-604, 1991.
-
(1991)
Neural Computation
, vol.4
, pp. 590-604
-
-
MacKay, D.J.C.1
-
39
-
-
25444450079
-
A sparse signal reconstruction perspective for source localization with sensor arrays
-
D. M. Malioutov, M. Çetin, and A. S. Willsky. A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing, 53 (8-2):3010-3022, 2005.
-
(2005)
IEEE Transactions on Signal Processing
, vol.53
, Issue.8-12
, pp. 3010-3022
-
-
Malioutov, D.M.1
Çetin, M.2
Willsky, A.S.3
-
40
-
-
37849035696
-
The group lasso for logistic regression
-
ISSN 1467-9868
-
L. Meier, S. Van De Geer, and P. Bühlmann. The group lasso for logistic regression. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(1):53-71, 2008. ISSN 1467-9868.
-
(2008)
Journal of the Royal Statistical Society: Series B (Statistical Methodology)
, vol.70
, Issue.1
, pp. 53-71
-
-
Meier, L.1
Van De Geer, S.2
Bühlmann, P.3
-
47
-
-
79955502711
-
Multidimensional shrinkage-thresholding operator and group lasso penalties
-
A. T. Puig, A. Wiesel, G. F., and A. O. Hero. Multidimensional shrinkage-thresholding operator and group lasso penalties. IEEE Signal Processing Letters, 18(6):363-366, 2011.
-
(2011)
IEEE Signal Processing Letters
, vol.18
, Issue.6
, pp. 363-366
-
-
Puig, A.T.1
Wiesel, A.2
Hero, A.O.G.F.3
-
48
-
-
79961135005
-
-
R Development Core Team, R Foundation for Statistical Computing, Vienna, Austria, URL ISBN 3-900051-07-0
-
R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2011. URL http://www.R-project.org/. ISBN 3-900051-07-0.
-
(2011)
R: A Language and Environment for Statistical Computing
-
-
-
49
-
-
71149093268
-
The Bayesian group-lasso for analyzing contingency tables
-
New York, NY, USA, ACM. ISBN 978-1-60558-516-1
-
S. Raman, T. J. Fuchs, P. J. Wild, E. Dahl, and V. Roth. The Bayesian group-lasso for analyzing contingency tables. In Proceedings of the 26th Annual International Conference on Machine Learning, ICML'09, pages 881-888, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-516-1.
-
(2009)
Proceedings of the 26th Annual International Conference on Machine Learning, ICML'09
, pp. 881-888
-
-
Raman, S.1
Fuchs, T.J.2
Wild, P.J.3
Dahl, E.4
Roth, V.5
-
50
-
-
56449115709
-
The group-lasso for generalized linear models: Uniqueness of solutions and efficient algorithms
-
A. McCallum and S. Roweis, editors
-
V. Roth and B. Fischer. The group-lasso for generalized linear models: uniqueness of solutions and efficient algorithms. In A. McCallum and S. Roweis, editors, Proceedings of the 25th International Conference on Machine Learning, pages 848-855, 2008.
-
(2008)
Proceedings of the 25th International Conference on Machine Learning
, pp. 848-855
-
-
Roth, V.1
Fischer, B.2
-
51
-
-
84858769402
-
Regularized learning with networks of features
-
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors
-
T. Sandler, J. Blitzer, P. P. Talukdar, and L. H. Ungar. Regularized learning with networks of features. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems 21, pages 1401-1408. 2009.
-
(2009)
Advances in Neural Information Processing Systems
, vol.21
, pp. 1401-1408
-
-
Sandler, T.1
Blitzer, J.2
Talukdar, P.P.3
Ungar, L.H.4
-
52
-
-
84871993172
-
Spike-and-slab priors for function selection in structured additive regression models
-
F. Scheipl, L. Fahrmeir, and T. Kneib. Spike-and-slab priors for function selection in structured additive regression models. Journal of the American Statistical Association, 107:1518-1532, 2012.
-
(2012)
Journal of the American Statistical Association
, vol.107
, pp. 1518-1532
-
-
Scheipl, F.1
Fahrmeir, L.2
Kneib, T.3
-
54
-
-
44649181578
-
Bayesian inference and optimal design for the sparse linear model
-
M. W. Seeger. Bayesian inference and optimal design for the sparse linear model. Journal of Machine Learning Research, 9:759-813, 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 759-813
-
-
Seeger, M.W.1
-
55
-
-
73349101812
-
Optimization of k-space trajectories for compressed sensing by Bayesian experimental design
-
M. W. Seeger, H. Nickisch, R. Pohmann, and B. Schölkopf. Optimization of k-space trajectories for compressed sensing by Bayesian experimental design. Magnetic Resonance in Medicine, 63(1):116-126, 2009.
-
(2009)
Magnetic Resonance in Medicine
, vol.63
, Issue.1
, pp. 116-126
-
-
Seeger, M.W.1
Nickisch, H.2
Pohmann, R.3
Schölkopf, B.4
-
57
-
-
0001224048
-
Sparse Bayesian learning and the relevance vector machine
-
M. E. Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1:211-244, 2001.
-
(2001)
Journal of Machine Learning Research
, vol.1
, pp. 211-244
-
-
Tipping, M.E.1
-
59
-
-
78349232078
-
1, ∞ regularization
-
Goesele et al., editor, Springer
-
1, ∞ regularization. In Goesele et al., editor, 32nd Anual Symposium of the German Association for Pattern Recognition, volume 6376, pages 252-261. Springer, 2010.
-
(2010)
32nd Anual Symposium of the German Association for Pattern Recognition
, vol.6376
, pp. 252-261
-
-
Vogt, J.E.1
Roth, V.2
-
60
-
-
84864068747
-
Recovery of jointly sparse signals from few random projections
-
Y. Weiss, B. Schölkopf, and J. Platt, editors, MIT Press, Cambridge, MA
-
M. Wakin, M. Duarte, S. Sarvotham, D. Baron, and R. Baraniuk. Recovery of jointly sparse signals from few random projections. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural Information Processing Systems 18, pages 1433-1440. MIT Press, Cambridge, MA, 2006.
-
(2006)
Advances in Neural Information Processing Systems 18
, pp. 1433-1440
-
-
Wakin, M.1
Duarte, M.2
Sarvotham, S.3
Baron, D.4
Baraniuk, R.5
-
61
-
-
0242295767
-
Bayesian factor regression models in the "large p, small n" paradigm
-
Oxford University Press
-
M. West. Bayesian factor regression models in the "large p, small n" paradigm. In Bayesian Statistics 7, pages 723-732. Oxford University Press, 2003.
-
(2003)
Bayesian Statistics 7
, pp. 723-732
-
-
West, M.1
-
64
-
-
0041095137
-
Bayesian invariant measurements of generalization
-
ISSN 1370-4621
-
H. Zhu and R. Rohwer. Bayesian invariant measurements of generalization. Neural Processing Letters, 2:28-31, 1995. ISSN 1370-4621.
-
(1995)
Neural Processing Letters
, vol.2
, pp. 28-31
-
-
Zhu, H.1
Rohwer, R.2
|