메뉴 건너뛰기




Volumn 99, Issue 3, 2015, Pages 437-487

Expectation propagation in linear regression models with spike-and-slab priors

Author keywords

Expectation propagation; Linear regression; Selective shrinkage; Spike and slab

Indexed keywords

ALGORITHMS; INFERENCE ENGINES; LAPLACE TRANSFORMS; MATHEMATICAL MODELS; SHRINKAGE;

EID: 84939976814     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-014-5475-7     Document Type: Article
Times cited : (66)

References (58)
  • 2
    • 0003278032 scopus 로고    scopus 로고
    • Inferring parameters and structure of latent variable models by variational Bayes
    • Laskey KB, Prade H, (eds), Morgan Kaufmann, Los Altos
    • Attias, H. (1999). Inferring parameters and structure of latent variable models by variational Bayes. In K. B. Laskey & H. Prade (Eds.), UAI (pp. 21–30). Los Altos: Morgan Kaufmann.
    • (1999) UAI , pp. 21-30
    • Attias, H.1
  • 3
    • 0742305866 scopus 로고    scopus 로고
    • Network biology: Understanding the cell’s functional organization
    • Barabási, A. L., & Oltvai, Z. N. (2004). Network biology: Understanding the cell’s functional organization. Nature Reviews Genetics, 5(2), 101–113.
    • (2004) Nature Reviews Genetics , vol.5 , Issue.2 , pp. 101-113
    • Barabási, A.L.1    Oltvai, Z.N.2
  • 5
    • 84860524227 scopus 로고    scopus 로고
    • Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification
    • Blitzer, J., Dredze, M., & Pereira, F. (2007). Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. In Proceedings of the 45th annual meeting of the ACL (pp. 440–447).
    • (2007) In Proceedings of the 45th annual meeting of the ACL , pp. 440-447
    • Blitzer, J.1    Dredze, M.2    Pereira, F.3
  • 6
    • 1542469448 scopus 로고    scopus 로고
    • Bayesian wavelet regression on curves with application to a spectroscopic calibration problem
    • Brown, P., Fearn, T., & Vannucci, M. (2001). Bayesian wavelet regression on curves with application to a spectroscopic calibration problem. Journal of the American Statistical Association, 96, 398–408.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 398-408
    • Brown, P.1    Fearn, T.2    Vannucci, M.3
  • 7
    • 69449098014 scopus 로고    scopus 로고
    • Estimating bayes factors via thermodynamic integration and population mcmc
    • Calderhead, B., & Girolami, M. (2009). Estimating bayes factors via thermodynamic integration and population mcmc. Computational Statistics & Data Analysis, 53(12), 4028–4045.
    • (2009) Computational Statistics & Data Analysis , vol.53 , Issue.12 , pp. 4028-4045
    • Calderhead, B.1    Girolami, M.2
  • 9
    • 84860819981 scopus 로고    scopus 로고
    • Scalable variational inference for bayesian variable selection in regression, and its accuracy in genetic association studies
    • Carbonetto, P., & Stephens, M. (2012). Scalable variational inference for bayesian variable selection in regression, and its accuracy in genetic association studies. Bayesian Analysis, 6(4), 1–42.
    • (2012) Bayesian Analysis , vol.6 , Issue.4
    • Carbonetto, P.1    Stephens, M.2
  • 13
    • 34250727580 scopus 로고    scopus 로고
    • Davis, J., & Goadrich, M. (2006). The relationship between precision-recall and ROC curves. In Proceedings of the 23rd international conference on machine learning (pp. 233–240). New York, NY: ACM
    • Davis, J., & Goadrich, M. (2006). The relationship between precision-recall and ROC curves. In Proceedings of the 23rd international conference on machine learning (pp. 233–240). New York, NY: ACM.
  • 15
    • 84977775326 scopus 로고    scopus 로고
    • Analysis of sparse bayesian learning. In T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in Neural Information Processing Systems, 14
    • Faul, A. C., & Tippin, M. E. (2001). Analysis of sparse bayesian learning. In T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in Neural Information Processing Systems, 14, 383–389.
    • (2001) 383–389
    • Faul, A.C.1    Tippin, M.E.2
  • 17
    • 14844286390 scopus 로고    scopus 로고
    • Reverse-engineering transcription control networks
    • Gardner, T. S., & Faith, J. J. (2005). Reverse-engineering transcription control networks. Physics of Life Reviews, 2(1), 65–88.
    • (2005) Physics of Life Reviews , vol.2 , Issue.1 , pp. 65-88
    • Gardner, T.S.1    Faith, J.J.2
  • 18
    • 0031526204 scopus 로고    scopus 로고
    • Approaches for Bayesian variable selection
    • George, E. I., & McCulloch, R. E. (1997). Approaches for Bayesian variable selection. Statistica Sinica, 7(2), 339–373.
    • (1997) Statistica Sinica , vol.7 , Issue.2 , pp. 339-373
    • George, E.I.1    McCulloch, R.E.2
  • 19
    • 0000647838 scopus 로고    scopus 로고
    • Variable selection and model comparison in regression
    • Geweke, J., et al. (1996). Variable selection and model comparison in regression. Bayesian statistics, 5, 609–620.
    • (1996) Bayesian statistics , vol.5 , pp. 609-620
    • Geweke, J.1
  • 21
    • 78049349010 scopus 로고    scopus 로고
    • Hub gene selection methods for the reconstruction of transcription networks. In J. L. Balcázar, F. Bonchi, A. Gionis, & M. Sebag (Eds.), ECML-PKDD 2010. Lecture notes in artificial intelligence (Vol
    • Berlin: Springer
    • Hernández-Lobato, J. M., & Dijkstra, T. M. H. (2010). Hub gene selection methods for the reconstruction of transcription networks. In J. L. Balcázar, F. Bonchi, A. Gionis, & M. Sebag (Eds.), ECML-PKDD 2010. Lecture notes in artificial intelligence (Vol. 6321). Berlin: Springer.
    • (2010) 6321)
    • Hernández-Lobato, J.M.1    Dijkstra, T.M.H.2
  • 23
    • 85161971986 scopus 로고    scopus 로고
    • Regulator discovery from gene expression time series of malaria parasites: a hierachical approach
    • Platt J, Koller D, Singer Y, Roweis S, (eds), 20, MIT Press, Cambridge, MA
    • Hernández-Lobato, J. M., Dijkstra, T., & Heskes, T. (2008). Regulator discovery from gene expression time series of malaria parasites: a hierachical approach. In J. Platt, D. Koller, Y. Singer, & S. Roweis (Eds.), Advances in neural information processing systems (Vol. 20, pp. 649–656). Cambridge, MA: MIT Press.
    • (2008) Advances in neural information processing systems , pp. 649-656
    • Hernández-Lobato, J.M.1    Dijkstra, T.2    Heskes, T.3
  • 25
    • 22944460748 scopus 로고    scopus 로고
    • Spike and slab variable selection: Frequentist and Bayesian strategies
    • Ishwaran, H., & Rao, J. S. (2005). Spike and slab variable selection: Frequentist and Bayesian strategies. The Annals of Statistics, 33(2), 730–773.
    • (2005) The Annals of Statistics , vol.33 , Issue.2 , pp. 730-773
    • Ishwaran, H.1    Rao, J.S.2
  • 28
    • 25444528713 scopus 로고    scopus 로고
    • Assessing approximate inference for binary Gaussian process classification
    • Kuss, M., & Rasmussen, C. E. (2005). Assessing approximate inference for binary Gaussian process classification. The Journal of Machine Learning Research, 6, 1679–1704.
    • (2005) The Journal of Machine Learning Research , vol.6 , pp. 1679-1704
    • Kuss, M.1    Rasmussen, C.E.2
  • 30
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay, D. J. C. (1992). Bayesian interpolation. Neural Computation, 4(3), 415–447.
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 415-447
    • MacKay, D.J.C.1
  • 33
    • 59649110273 scopus 로고    scopus 로고
    • Generating realistic in silico gene networks for performance assessment of reverse engineering methods
    • Marbach, D., Schaffter, T., Mattiussi, C., & Floreano, D. (2009). Generating realistic in silico gene networks for performance assessment of reverse engineering methods. Journal of Computational Biology, 16(2), 229–239.
    • (2009) Journal of Computational Biology , vol.16 , Issue.2 , pp. 229-239
    • Marbach, D.1    Schaffter, T.2    Mattiussi, C.3    Floreano, D.4
  • 37
    • 56349122110 scopus 로고    scopus 로고
    • Approximations for binary Gaussian process classification
    • Nickisch, H., & Rasmussen, C. E. (2008). Approximations for binary Gaussian process classification. Journal of Machine Learning Research, 9, 2035–2078.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 2035-2078
    • Nickisch, H.1    Rasmussen, C.E.2
  • 39
    • 84986745987 scopus 로고
    • Application of near infrared reflectance spectroscopy to the compositional analysis of biscuits and biscuit doughs
    • Osborne, B. G., Fearn, T., Miller, A. R., & Douglas, S. (1984). Application of near infrared reflectance spectroscopy to the compositional analysis of biscuits and biscuit doughs. Journal of the Science of Food and Agriculture, 35(1), 99–105.
    • (1984) Journal of the Science of Food and Agriculture , vol.35 , Issue.1 , pp. 99-105
    • Osborne, B.G.1    Fearn, T.2    Miller, A.R.3    Douglas, S.4
  • 43
    • 84858769402 scopus 로고    scopus 로고
    • Regularized learning with networks of features. In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), Advances in neural information processing systems (vol. 21, pp
    • Sandler, T., Talukdar, P. P., Ungar, L. H., & Blitzer, J. (2008). Regularized learning with networks of features. In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), Advances in neural information processing systems (vol. 21, pp. 1401–1408).
    • (2008) 1401–1408)
    • Sandler, T.1    Talukdar, P.P.2    Ungar, L.H.3    Blitzer, J.4
  • 45
    • 44649181578 scopus 로고    scopus 로고
    • Bayesian inference and optimal design for the sparse linear model
    • Seeger, M. W. (2008). Bayesian inference and optimal design for the sparse linear model. The Journal of Machine Learning Research, 9, 759–813.
    • (2008) The Journal of Machine Learning Research , vol.9 , pp. 759-813
    • Seeger, M.W.1
  • 46
    • 73349101812 scopus 로고    scopus 로고
    • Optimization of k-space trajectories for compressed sensing by Bayesian experimental design
    • Seeger, M., Nickisch, H., & Schlkopf, B. (2010). Optimization of k-space trajectories for compressed sensing by Bayesian experimental design. Magnetic Resonance in Medicine, 63(1), 116–126.
    • (2010) Magnetic Resonance in Medicine , vol.63 , Issue.1 , pp. 116-126
    • Seeger, M.1    Nickisch, H.2    Schlkopf, B.3
  • 47
    • 0036899286 scopus 로고    scopus 로고
    • From patterns to pathways: Gene expression data analysis comes of age
    • Slonim, D. K. (2002). From patterns to pathways: Gene expression data analysis comes of age. Nature Genetics, 32, 502–508.
    • (2002) Nature Genetics , vol.32 , pp. 502-508
    • Slonim, D.K.1
  • 48
    • 41149097163 scopus 로고    scopus 로고
    • Experimental design for efficient identification of gene regulatory networks using sparse Bayesian models
    • Steinke, F., Seeger, M., & Tsuda, K. (2007). Experimental design for efficient identification of gene regulatory networks using sparse Bayesian models. BMC Systems Biology, 1(1), 51.
    • (2007) BMC Systems Biology , vol.1 , Issue.1 , pp. 51
    • Steinke, F.1    Seeger, M.2    Tsuda, K.3
  • 50
    • 84939956626 scopus 로고    scopus 로고
    • Team, R. D. C. (2007). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. , ISBN:3-900051-07-0
    • Team, R. D. C. (2007). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. http://www.R-project.org, ISBN:3-900051-07-0
  • 51
    • 0032077377 scopus 로고    scopus 로고
    • From specific gene regulation to genomic networks: A global analysis of transcriptional regulation in Escherichia coli
    • Thieffry, D., Huerta, A. M., Pérez-Rueda, E., & Collado-Vides, J. (1998). From specific gene regulation to genomic networks: A global analysis of transcriptional regulation in Escherichia coli. BioEssays, 20(5), 433–440.
    • (1998) BioEssays , vol.20 , Issue.5 , pp. 433-440
    • Thieffry, D.1    Huerta, A.M.2    Pérez-Rueda, E.3    Collado-Vides, J.4
  • 52
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society B, 58(1), 267–288.
    • (1996) Journal of the Royal Statistical Society B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 53
    • 84939938001 scopus 로고    scopus 로고
    • Fast marginal likelihood maximisation for sparse Bayesian models. In C. M. Bishop & B. J
    • Eds.: Proceedings of the ninth international workshop on artificial intelligence and statistics
    • Tipping, M. E., & Faul, A. (2003). Fast marginal likelihood maximisation for sparse Bayesian models. In C. M. Bishop & B. J. Frey (Eds.), Proceedings of the ninth international workshop on artificial intelligence and statistics.
    • (2003) Frey
    • Tipping, M.E.1    Faul, A.2
  • 54
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector machine. The Journal of Machine Learning Research, 1, 211–244.
    • (2001) The Journal of Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 56
    • 78049353036 scopus 로고    scopus 로고
    • Bayesian source localization with the multivariate Laplace prior. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, & A. Culotta (Eds.), Advances in neural information processing systems (Vol. 22, pp
    • van Gerven, M., Cseke, B., Oostenveld, R., & Heskes, T. (2009). Bayesian source localization with the multivariate Laplace prior. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, & A. Culotta (Eds.), Advances in neural information processing systems (Vol. 22, pp. 1901–1909).
    • (2009) 1901–1909)
    • van Gerven, M.1    Cseke, B.2    Oostenveld, R.3    Heskes, T.4
  • 57
    • 33748908922 scopus 로고    scopus 로고
    • Perspectives on sparse Bayesian learning
    • Thrun S, Saul L, Schölkopf B, (eds), 16, MIT Press, Cambridge, MA
    • Wipf, D., Palmer, J., & Rao, B. (2004). Perspectives on sparse Bayesian learning. In S. Thrun, L. Saul, & B. Schölkopf (Eds.), Advances in neural information processing systems (Vol. 16). Cambridge, MA: MIT Press.
    • (2004) Advances in neural information processing systems
    • Wipf, D.1    Palmer, J.2    Rao, B.3
  • 58
    • 0041095137 scopus 로고
    • Bayesian invariant measurements of generalization
    • Zhu, H., & Rohwer, R. (1995). Bayesian invariant measurements of generalization. Neural Processing Letters, 2(6), 28–31.
    • (1995) Neural Processing Letters , vol.2 , Issue.6 , pp. 28-31
    • Zhu, H.1    Rohwer, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.