-
2
-
-
0003278032
-
Inferring parameters and structure of latent variable models by variational Bayes
-
Laskey KB, Prade H, (eds), Morgan Kaufmann, Los Altos
-
Attias, H. (1999). Inferring parameters and structure of latent variable models by variational Bayes. In K. B. Laskey & H. Prade (Eds.), UAI (pp. 21–30). Los Altos: Morgan Kaufmann.
-
(1999)
UAI
, pp. 21-30
-
-
Attias, H.1
-
3
-
-
0742305866
-
Network biology: Understanding the cell’s functional organization
-
Barabási, A. L., & Oltvai, Z. N. (2004). Network biology: Understanding the cell’s functional organization. Nature Reviews Genetics, 5(2), 101–113.
-
(2004)
Nature Reviews Genetics
, vol.5
, Issue.2
, pp. 101-113
-
-
Barabási, A.L.1
Oltvai, Z.N.2
-
5
-
-
84860524227
-
Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification
-
Blitzer, J., Dredze, M., & Pereira, F. (2007). Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. In Proceedings of the 45th annual meeting of the ACL (pp. 440–447).
-
(2007)
In Proceedings of the 45th annual meeting of the ACL
, pp. 440-447
-
-
Blitzer, J.1
Dredze, M.2
Pereira, F.3
-
6
-
-
1542469448
-
Bayesian wavelet regression on curves with application to a spectroscopic calibration problem
-
Brown, P., Fearn, T., & Vannucci, M. (2001). Bayesian wavelet regression on curves with application to a spectroscopic calibration problem. Journal of the American Statistical Association, 96, 398–408.
-
(2001)
Journal of the American Statistical Association
, vol.96
, pp. 398-408
-
-
Brown, P.1
Fearn, T.2
Vannucci, M.3
-
7
-
-
69449098014
-
Estimating bayes factors via thermodynamic integration and population mcmc
-
Calderhead, B., & Girolami, M. (2009). Estimating bayes factors via thermodynamic integration and population mcmc. Computational Statistics & Data Analysis, 53(12), 4028–4045.
-
(2009)
Computational Statistics & Data Analysis
, vol.53
, Issue.12
, pp. 4028-4045
-
-
Calderhead, B.1
Girolami, M.2
-
9
-
-
84860819981
-
Scalable variational inference for bayesian variable selection in regression, and its accuracy in genetic association studies
-
Carbonetto, P., & Stephens, M. (2012). Scalable variational inference for bayesian variable selection in regression, and its accuracy in genetic association studies. Bayesian Analysis, 6(4), 1–42.
-
(2012)
Bayesian Analysis
, vol.6
, Issue.4
-
-
Carbonetto, P.1
Stephens, M.2
-
10
-
-
79958714651
-
Handling sparsity via the horseshoe
-
Carvalho, C. M., Polson, N. G., & Scott, J. G. (2009). Handling sparsity via the horseshoe. Journal of Machine Learning Research W&CP, 5, 73–80.
-
(2009)
Journal of Machine Learning Research W&CP
, vol.5
, pp. 73-80
-
-
Carvalho, C.M.1
Polson, N.G.2
Scott, J.G.3
-
12
-
-
0033481108
-
Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables
-
Damien, P., Wakefield, J., & Walker, S. (1999). Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables. Journal of the Royal Statistical Society Series B (Statistical Methodology), 61(2), 331–344.
-
(1999)
Journal of the Royal Statistical Society Series B (Statistical Methodology)
, vol.61
, Issue.2
, pp. 331-344
-
-
Damien, P.1
Wakefield, J.2
Walker, S.3
-
13
-
-
34250727580
-
-
Davis, J., & Goadrich, M. (2006). The relationship between precision-recall and ROC curves. In Proceedings of the 23rd international conference on machine learning (pp. 233–240). New York, NY: ACM
-
Davis, J., & Goadrich, M. (2006). The relationship between precision-recall and ROC curves. In Proceedings of the 23rd international conference on machine learning (pp. 233–240). New York, NY: ACM.
-
-
-
-
15
-
-
84977775326
-
Analysis of sparse bayesian learning. In T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in Neural Information Processing Systems, 14
-
Faul, A. C., & Tippin, M. E. (2001). Analysis of sparse bayesian learning. In T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in Neural Information Processing Systems, 14, 383–389.
-
(2001)
383–389
-
-
Faul, A.C.1
Tippin, M.E.2
-
17
-
-
14844286390
-
Reverse-engineering transcription control networks
-
Gardner, T. S., & Faith, J. J. (2005). Reverse-engineering transcription control networks. Physics of Life Reviews, 2(1), 65–88.
-
(2005)
Physics of Life Reviews
, vol.2
, Issue.1
, pp. 65-88
-
-
Gardner, T.S.1
Faith, J.J.2
-
18
-
-
0031526204
-
Approaches for Bayesian variable selection
-
George, E. I., & McCulloch, R. E. (1997). Approaches for Bayesian variable selection. Statistica Sinica, 7(2), 339–373.
-
(1997)
Statistica Sinica
, vol.7
, Issue.2
, pp. 339-373
-
-
George, E.I.1
McCulloch, R.E.2
-
19
-
-
0000647838
-
Variable selection and model comparison in regression
-
Geweke, J., et al. (1996). Variable selection and model comparison in regression. Bayesian statistics, 5, 609–620.
-
(1996)
Bayesian statistics
, vol.5
, pp. 609-620
-
-
Geweke, J.1
-
20
-
-
84966204836
-
Methods for modifying matrix factorizations
-
Gill, P. E., Golub, G. H., Murray, W., & Saunders, M. A. (1974). Methods for modifying matrix factorizations. Mathematics of Computation, 28(126), 505–535.
-
(1974)
Mathematics of Computation
, vol.28
, Issue.126
, pp. 505-535
-
-
Gill, P.E.1
Golub, G.H.2
Murray, W.3
Saunders, M.A.4
-
21
-
-
78049349010
-
Hub gene selection methods for the reconstruction of transcription networks. In J. L. Balcázar, F. Bonchi, A. Gionis, & M. Sebag (Eds.), ECML-PKDD 2010. Lecture notes in artificial intelligence (Vol
-
Berlin: Springer
-
Hernández-Lobato, J. M., & Dijkstra, T. M. H. (2010). Hub gene selection methods for the reconstruction of transcription networks. In J. L. Balcázar, F. Bonchi, A. Gionis, & M. Sebag (Eds.), ECML-PKDD 2010. Lecture notes in artificial intelligence (Vol. 6321). Berlin: Springer.
-
(2010)
6321)
-
-
Hernández-Lobato, J.M.1
Dijkstra, T.M.H.2
-
23
-
-
85161971986
-
Regulator discovery from gene expression time series of malaria parasites: a hierachical approach
-
Platt J, Koller D, Singer Y, Roweis S, (eds), 20, MIT Press, Cambridge, MA
-
Hernández-Lobato, J. M., Dijkstra, T., & Heskes, T. (2008). Regulator discovery from gene expression time series of malaria parasites: a hierachical approach. In J. Platt, D. Koller, Y. Singer, & S. Roweis (Eds.), Advances in neural information processing systems (Vol. 20, pp. 649–656). Cambridge, MA: MIT Press.
-
(2008)
Advances in neural information processing systems
, pp. 649-656
-
-
Hernández-Lobato, J.M.1
Dijkstra, T.2
Heskes, T.3
-
24
-
-
77955558195
-
Expectation propagation for microarray data classification
-
Hernández-Lobato, D., Hernández-Lobato, J. M., & Suárez, A. (2010). Expectation propagation for microarray data classification. Pattern Recognition Letters, 31(12), 1618–1626.
-
(2010)
Pattern Recognition Letters
, vol.31
, Issue.12
, pp. 1618-1626
-
-
Hernández-Lobato, D.1
Hernández-Lobato, J.M.2
Suárez, A.3
-
25
-
-
22944460748
-
Spike and slab variable selection: Frequentist and Bayesian strategies
-
Ishwaran, H., & Rao, J. S. (2005). Spike and slab variable selection: Frequentist and Bayesian strategies. The Annals of Statistics, 33(2), 730–773.
-
(2005)
The Annals of Statistics
, vol.33
, Issue.2
, pp. 730-773
-
-
Ishwaran, H.1
Rao, J.S.2
-
26
-
-
44849087307
-
Bayesian compressive sensing
-
Ji, S., Xue, Y., & Carin, L. (2008). Bayesian compressive sensing. IEEE Transactions on Signal Processing, 56(6), 2346–2356.
-
(2008)
IEEE Transactions on Signal Processing
, vol.56
, Issue.6
, pp. 2346-2356
-
-
Ji, S.1
Xue, Y.2
Carin, L.3
-
27
-
-
73349131388
-
Statistical challenges of high-dimensional data
-
Johnstone, I. M., & Titterington, D. M. (2009). Statistical challenges of high-dimensional data. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367(1906), 4237–4253.
-
(2009)
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
, vol.367
, Issue.1906
, pp. 4237-4253
-
-
Johnstone, I.M.1
Titterington, D.M.2
-
28
-
-
25444528713
-
Assessing approximate inference for binary Gaussian process classification
-
Kuss, M., & Rasmussen, C. E. (2005). Assessing approximate inference for binary Gaussian process classification. The Journal of Machine Learning Research, 6, 1679–1704.
-
(2005)
The Journal of Machine Learning Research
, vol.6
, pp. 1679-1704
-
-
Kuss, M.1
Rasmussen, C.E.2
-
29
-
-
12244265090
-
Gene selection: A Bayesian variable selection approach
-
Lee, K. E., Sha, N., Dougherty, E. R., Vannucci, M., & Mallick, B. K. (2003). Gene selection: A Bayesian variable selection approach. Bioinformatics, 19(1), 90–97.
-
(2003)
Bioinformatics
, vol.19
, Issue.1
, pp. 90-97
-
-
Lee, K.E.1
Sha, N.2
Dougherty, E.R.3
Vannucci, M.4
Mallick, B.K.5
-
30
-
-
0001025418
-
Bayesian interpolation
-
MacKay, D. J. C. (1992). Bayesian interpolation. Neural Computation, 4(3), 415–447.
-
(1992)
Neural Computation
, vol.4
, Issue.3
, pp. 415-447
-
-
MacKay, D.J.C.1
-
33
-
-
59649110273
-
Generating realistic in silico gene networks for performance assessment of reverse engineering methods
-
Marbach, D., Schaffter, T., Mattiussi, C., & Floreano, D. (2009). Generating realistic in silico gene networks for performance assessment of reverse engineering methods. Journal of Computational Biology, 16(2), 229–239.
-
(2009)
Journal of Computational Biology
, vol.16
, Issue.2
, pp. 229-239
-
-
Marbach, D.1
Schaffter, T.2
Mattiussi, C.3
Floreano, D.4
-
36
-
-
0000130839
-
Bayesian variable selection in linear regression
-
Mitchell, T., & Beauchamp, J. (1988). Bayesian variable selection in linear regression. Journal of the American Statistical Association, 83(404), 1023–1032.
-
(1988)
Journal of the American Statistical Association
, vol.83
, Issue.404
, pp. 1023-1032
-
-
Mitchell, T.1
Beauchamp, J.2
-
39
-
-
84986745987
-
Application of near infrared reflectance spectroscopy to the compositional analysis of biscuits and biscuit doughs
-
Osborne, B. G., Fearn, T., Miller, A. R., & Douglas, S. (1984). Application of near infrared reflectance spectroscopy to the compositional analysis of biscuits and biscuit doughs. Journal of the Science of Food and Agriculture, 35(1), 99–105.
-
(1984)
Journal of the Science of Food and Agriculture
, vol.35
, Issue.1
, pp. 99-105
-
-
Osborne, B.G.1
Fearn, T.2
Miller, A.R.3
Douglas, S.4
-
40
-
-
0003635237
-
-
Wiley, Canada
-
Osborne, B., Fearn, T., Hindle, P., & Hindle, P. (1993). Practical NIR spectroscopy with applications in food and beverage analysis. Longman food technology series. Canada: Wiley.
-
(1993)
Practical NIR spectroscopy with applications in food and beverage analysis. Longman food technology series
-
-
Osborne, B.1
Fearn, T.2
Hindle, P.3
Hindle, P.4
-
42
-
-
62849120031
-
Approximate Bayesian inference for latent Gaussian models by using integrated nested laplace approximations
-
Rue, H., Martino, S., & Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested laplace approximations. Journal of the Royal Statistical Society: Series B (statistical methodology), 71(2), 319–392.
-
(2009)
Journal of the Royal Statistical Society: Series B (statistical methodology)
, vol.71
, Issue.2
, pp. 319-392
-
-
Rue, H.1
Martino, S.2
Chopin, N.3
-
43
-
-
84858769402
-
Regularized learning with networks of features. In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), Advances in neural information processing systems (vol. 21, pp
-
Sandler, T., Talukdar, P. P., Ungar, L. H., & Blitzer, J. (2008). Regularized learning with networks of features. In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), Advances in neural information processing systems (vol. 21, pp. 1401–1408).
-
(2008)
1401–1408)
-
-
Sandler, T.1
Talukdar, P.P.2
Ungar, L.H.3
Blitzer, J.4
-
45
-
-
44649181578
-
Bayesian inference and optimal design for the sparse linear model
-
Seeger, M. W. (2008). Bayesian inference and optimal design for the sparse linear model. The Journal of Machine Learning Research, 9, 759–813.
-
(2008)
The Journal of Machine Learning Research
, vol.9
, pp. 759-813
-
-
Seeger, M.W.1
-
46
-
-
73349101812
-
Optimization of k-space trajectories for compressed sensing by Bayesian experimental design
-
Seeger, M., Nickisch, H., & Schlkopf, B. (2010). Optimization of k-space trajectories for compressed sensing by Bayesian experimental design. Magnetic Resonance in Medicine, 63(1), 116–126.
-
(2010)
Magnetic Resonance in Medicine
, vol.63
, Issue.1
, pp. 116-126
-
-
Seeger, M.1
Nickisch, H.2
Schlkopf, B.3
-
47
-
-
0036899286
-
From patterns to pathways: Gene expression data analysis comes of age
-
Slonim, D. K. (2002). From patterns to pathways: Gene expression data analysis comes of age. Nature Genetics, 32, 502–508.
-
(2002)
Nature Genetics
, vol.32
, pp. 502-508
-
-
Slonim, D.K.1
-
48
-
-
41149097163
-
Experimental design for efficient identification of gene regulatory networks using sparse Bayesian models
-
Steinke, F., Seeger, M., & Tsuda, K. (2007). Experimental design for efficient identification of gene regulatory networks using sparse Bayesian models. BMC Systems Biology, 1(1), 51.
-
(2007)
BMC Systems Biology
, vol.1
, Issue.1
, pp. 51
-
-
Steinke, F.1
Seeger, M.2
Tsuda, K.3
-
49
-
-
36249019789
-
Dialogue on reverse-engineering assessment and methods
-
Stolovitzky, G., Monroe, D., & Califano, A. (2007). Dialogue on reverse-engineering assessment and methods. Annals of the New York Academy of Sciences, 1115, 1–22.
-
(2007)
Annals of the New York Academy of Sciences
, vol.1115
-
-
Stolovitzky, G.1
Monroe, D.2
Califano, A.3
-
50
-
-
84939956626
-
-
Team, R. D. C. (2007). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. , ISBN:3-900051-07-0
-
Team, R. D. C. (2007). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. http://www.R-project.org, ISBN:3-900051-07-0
-
-
-
-
51
-
-
0032077377
-
From specific gene regulation to genomic networks: A global analysis of transcriptional regulation in Escherichia coli
-
Thieffry, D., Huerta, A. M., Pérez-Rueda, E., & Collado-Vides, J. (1998). From specific gene regulation to genomic networks: A global analysis of transcriptional regulation in Escherichia coli. BioEssays, 20(5), 433–440.
-
(1998)
BioEssays
, vol.20
, Issue.5
, pp. 433-440
-
-
Thieffry, D.1
Huerta, A.M.2
Pérez-Rueda, E.3
Collado-Vides, J.4
-
52
-
-
85194972808
-
Regression shrinkage and selection via the Lasso
-
Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society B, 58(1), 267–288.
-
(1996)
Journal of the Royal Statistical Society B
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
53
-
-
84939938001
-
Fast marginal likelihood maximisation for sparse Bayesian models. In C. M. Bishop & B. J
-
Eds.: Proceedings of the ninth international workshop on artificial intelligence and statistics
-
Tipping, M. E., & Faul, A. (2003). Fast marginal likelihood maximisation for sparse Bayesian models. In C. M. Bishop & B. J. Frey (Eds.), Proceedings of the ninth international workshop on artificial intelligence and statistics.
-
(2003)
Frey
-
-
Tipping, M.E.1
Faul, A.2
-
54
-
-
0001224048
-
Sparse Bayesian learning and the relevance vector machine
-
Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector machine. The Journal of Machine Learning Research, 1, 211–244.
-
(2001)
The Journal of Machine Learning Research
, vol.1
, pp. 211-244
-
-
Tipping, M.E.1
-
56
-
-
78049353036
-
Bayesian source localization with the multivariate Laplace prior. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, & A. Culotta (Eds.), Advances in neural information processing systems (Vol. 22, pp
-
van Gerven, M., Cseke, B., Oostenveld, R., & Heskes, T. (2009). Bayesian source localization with the multivariate Laplace prior. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, & A. Culotta (Eds.), Advances in neural information processing systems (Vol. 22, pp. 1901–1909).
-
(2009)
1901–1909)
-
-
van Gerven, M.1
Cseke, B.2
Oostenveld, R.3
Heskes, T.4
-
57
-
-
33748908922
-
Perspectives on sparse Bayesian learning
-
Thrun S, Saul L, Schölkopf B, (eds), 16, MIT Press, Cambridge, MA
-
Wipf, D., Palmer, J., & Rao, B. (2004). Perspectives on sparse Bayesian learning. In S. Thrun, L. Saul, & B. Schölkopf (Eds.), Advances in neural information processing systems (Vol. 16). Cambridge, MA: MIT Press.
-
(2004)
Advances in neural information processing systems
-
-
Wipf, D.1
Palmer, J.2
Rao, B.3
-
58
-
-
0041095137
-
Bayesian invariant measurements of generalization
-
Zhu, H., & Rohwer, R. (1995). Bayesian invariant measurements of generalization. Neural Processing Letters, 2(6), 28–31.
-
(1995)
Neural Processing Letters
, vol.2
, Issue.6
, pp. 28-31
-
-
Zhu, H.1
Rohwer, R.2
|