메뉴 건너뛰기




Volumn , Issue , 2012, Pages 895-903

Robust multi-task feature learning

Author keywords

feature selection; multi task learning; outlier tasks detection

Indexed keywords

EMPIRICAL STUDIES; FEATURE LEARNING; GRADIENT DESCENT; HIGH DIMENSIONAL DATA; MULTITASK LEARNING; NOISE LEVELS; OPTIMIZATION PROBLEMS; REAL WORLD DATA; REAL-WORLD APPLICATION; SPARSITY PATTERNS; THEORETICAL BOUNDS; THEORETICAL RESULT; TWO-COMPONENT;

EID: 84866007553     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2339530.2339672     Document Type: Conference Paper
Times cited : (275)

References (44)
  • 1
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • R. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks and unlabeled data. JMLR, 6:1817-1853, 2005.
    • (2005) JMLR , vol.6 , pp. 1817-1853
    • Ando, R.1    Zhang, T.2
  • 2
    • 55149088329 scopus 로고    scopus 로고
    • Convex multi-task feature learning
    • A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Machine Learning, 73(3):243-272, 2008.
    • (2008) Machine Learning , vol.73 , Issue.3 , pp. 243-272
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 4
    • 0346238931 scopus 로고    scopus 로고
    • Task clustering and gating for bayesian multitask learning
    • B. Bakker and T. Heskes. Task clustering and gating for bayesian multitask learning. JMLR, 4:83-99, 2003.
    • (2003) JMLR , vol.4 , pp. 83-99
    • Bakker, B.1    Heskes, T.2
  • 6
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183-202, 2009.
    • (2009) SIAM Journal on Imaging Sciences , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 7
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of lasso and dantzig selector
    • P. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous analysis of lasso and dantzig selector. The Annals of Statistics, 37(4):1705-1732, 2009.
    • (2009) The Annals of Statistics , vol.37 , Issue.4 , pp. 1705-1732
    • Bickel, P.1    Ritov, Y.2    Tsybakov, A.3
  • 8
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • R. Caruana. Multitask learning. Machine Learning, 28(1):41-75, 1997.
    • (1997) Machine Learning , vol.28 , Issue.1 , pp. 41-75
    • Caruana, R.1
  • 9
    • 77956208061 scopus 로고    scopus 로고
    • Learning incoherent sparse and low-rank patterns from multiple tasks
    • J. Chen, J. Liu, and J. Ye. Learning incoherent sparse and low-rank patterns from multiple tasks. In SIGKDD, pages 1179-1188, 2010.
    • (2010) SIGKDD , pp. 1179-1188
    • Chen, J.1    Liu, J.2    Ye, J.3
  • 10
    • 80052677096 scopus 로고    scopus 로고
    • Integrating low-rank and group-sparse structures for robust multi-task learning
    • J. Chen, J. Zhou, and J. Ye. Integrating low-rank and group-sparse structures for robust multi-task learning. In SIGKDD, pages 42-50, 2011.
    • (2011) SIGKDD , pp. 42-50
    • Chen, J.1    Zhou, J.2    Ye, J.3
  • 11
    • 12244250351 scopus 로고    scopus 로고
    • Regularized multi-task learning
    • T. Evgeniou and M. Pontil. Regularized multi-task learning. In SIGKDD, pages 109-117, 2004.
    • (2004) SIGKDD , pp. 109-117
    • Evgeniou, T.1    Pontil, M.2
  • 12
    • 80052946258 scopus 로고    scopus 로고
    • Efficient euclidean projections via piecewise root finding and its application in gradient projection
    • P. Gong, K. Gai, and C. Zhang. Efficient euclidean projections via piecewise root finding and its application in gradient projection. Neurocomputing, pages 2754-2766, 2011.
    • (2011) Neurocomputing , pp. 2754-2766
    • Gong, P.1    Gai, K.2    Zhang, C.3
  • 14
    • 70049084979 scopus 로고    scopus 로고
    • Clustered multi-task learning: A convex formulation
    • L. Jacob, F. Bach, and J. Vert. Clustered multi-task learning: A convex formulation. NIPS, 2008.
    • (2008) NIPS
    • Jacob, L.1    Bach, F.2    Vert, J.3
  • 16
    • 80053435765 scopus 로고    scopus 로고
    • Learning with whom to share in multi-task feature learning
    • Z. Kang, K. Grauman, and F. Sha. Learning with whom to share in multi-task feature learning. In ICML, 2011.
    • (2011) ICML
    • Kang, Z.1    Grauman, K.2    Sha, F.3
  • 17
    • 77956548668 scopus 로고    scopus 로고
    • Tree-guided group lasso for multi-task regression with structured sparsity
    • S. Kim and E. Xing. Tree-guided group lasso for multi-task regression with structured sparsity. In ICML, 2009.
    • (2009) ICML
    • Kim, S.1    Xing, E.2
  • 18
    • 14344249890 scopus 로고    scopus 로고
    • Learning to learn with the informative vector machine
    • N. Lawrence and J. Platt. Learning to learn with the informative vector machine. In ICML, 2004.
    • (2004) ICML
    • Lawrence, N.1    Platt, J.2
  • 19
    • 80053145416 scopus 로고    scopus 로고
    • 2,1-norm minimization
    • 2,1-norm minimization. In UAI, pages 339-348, 2009.
    • (2009) UAI , pp. 339-348
    • Liu, J.1    Ji, S.2    Ye, J.3
  • 21
    • 77956206508 scopus 로고    scopus 로고
    • An efficient algorithm for a class of fused lasso problems
    • J. Liu, L. Yuan, and J. Ye. An efficient algorithm for a class of fused lasso problems. In SIGKDD, pages 323-332, 2010.
    • (2010) SIGKDD , pp. 323-332
    • Liu, J.1    Yuan, L.2    Ye, J.3
  • 24
    • 79952934740 scopus 로고    scopus 로고
    • Estimation of (near) low-rank matrices with noise and high-dimensional scaling
    • S. Negahban and M. Wainwright. Estimation of (near) low-rank matrices with noise and high-dimensional scaling. The Annals of Statistics, 39(2):1069-1097, 2011.
    • (2011) The Annals of Statistics , vol.39 , Issue.2 , pp. 1069-1097
    • Negahban, S.1    Wainwright, M.2
  • 26
    • 67651063011 scopus 로고    scopus 로고
    • Center for Operations Research and Econometrics (CORE), Catholic University of Louvain, Tech. Rep, 76
    • Y. Nesterov. Gradient methods for minimizing composite objective function. Center for Operations Research and Econometrics (CORE), Catholic University of Louvain, Tech. Rep, 76, 2007.
    • (2007) Gradient Methods for Minimizing Composite Objective Function
    • Nesterov, Y.1
  • 28
    • 85162530133 scopus 로고    scopus 로고
    • Large margin multi-task metric learning
    • S. Parameswaran and K. Weinberger. Large margin multi-task metric learning. NIPS, 23:1867-1875, 2010.
    • (2010) NIPS , vol.23 , pp. 1867-1875
    • Parameswaran, S.1    Weinberger, K.2
  • 29
    • 79251515185 scopus 로고    scopus 로고
    • Trace norm regularization: Reformulations, algorithms, and multi-task learning
    • T. Pong, P. Tseng, S. Ji, and J. Ye. Trace norm regularization: Reformulations, algorithms, and multi-task learning. SIAM Journal on Optimization, 20(6):3465-3489, 2010.
    • (2010) SIAM Journal on Optimization , vol.20 , Issue.6 , pp. 3465-3489
    • Pong, T.1    Tseng, P.2    Ji, S.3    Ye, J.4
  • 31
    • 84899006514 scopus 로고    scopus 로고
    • Learning gaussian process kernels via hierarchical bayes
    • A. Schwaighofer, V. Tresp, and K. Yu. Learning gaussian process kernels via hierarchical bayes. NIPS, 17:1209-1216, 2005.
    • (2005) NIPS , vol.17 , pp. 1209-1216
    • Schwaighofer, A.1    Tresp, V.2    Yu, K.3
  • 32
    • 0042496037 scopus 로고    scopus 로고
    • Discovering structure in multiple learning tasks: The tc algorithm
    • S. Thrun and J. O'Sullivan. Discovering structure in multiple learning tasks: The tc algorithm. In ICML, pages 489-497, 1996.
    • (1996) ICML , pp. 489-497
    • Thrun, S.1    O'Sullivan, J.2
  • 33
    • 0041911836 scopus 로고
    • Bounds on normal approximations to student's and the chi-square distributions
    • D. Wallace. Bounds on normal approximations to student's and the chi-square distributions. The Annals of Mathematical Statistics, pages 1121-1130, 1959.
    • (1959) The Annals of Mathematical Statistics , pp. 1121-1130
    • Wallace, D.1
  • 34
    • 33846487387 scopus 로고    scopus 로고
    • Multi-task learning for classification with dirichlet process priors
    • Y. Xue, X. Liao, L. Carin, and B. Krishnapuram. Multi-task learning for classification with dirichlet process priors. JMLR, 8:35-63, 2007.
    • (2007) JMLR , vol.8 , pp. 35-63
    • Xue, Y.1    Liao, X.2    Carin, L.3    Krishnapuram, B.4
  • 35
    • 84863338429 scopus 로고    scopus 로고
    • Heterogeneous multitask learning with joint sparsity constraints
    • X. Yang, S. Kim, and E. Xing. Heterogeneous multitask learning with joint sparsity constraints. NIPS, 23, 2009.
    • (2009) NIPS , vol.23
    • Yang, X.1    Kim, S.2    Xing, E.3
  • 36
    • 31844442664 scopus 로고    scopus 로고
    • Learning gaussian processes from multiple tasks
    • K. Yu, V. Tresp, and A. Schwaighofer. Learning gaussian processes from multiple tasks. In ICML, pages 1012-1019, 2005.
    • (2005) ICML , pp. 1012-1019
    • Yu, K.1    Tresp, V.2    Schwaighofer, A.3
  • 37
    • 85162375080 scopus 로고    scopus 로고
    • Efficient methods for overlapping group lasso
    • L. Yuan, J. Liu, and J. Ye. Efficient methods for overlapping group lasso. NIPS, 2011.
    • (2011) NIPS
    • Yuan, L.1    Liu, J.2    Ye, J.3
  • 38
    • 79951845184 scopus 로고    scopus 로고
    • Learning multiple related tasks using latent independent component analysis
    • J. Zhang, Z. Ghahramani, and Y. Yang. Learning multiple related tasks using latent independent component analysis. NIPS, 18:1585-1592, 2006.
    • (2006) NIPS , vol.18 , pp. 1585-1592
    • Zhang, J.1    Ghahramani, Z.2    Yang, Y.3
  • 39
    • 80052689284 scopus 로고    scopus 로고
    • Multi-task learning using generalized t process
    • Y. Zhang and D. Yeung. Multi-task learning using generalized t process. In AISTATS, 2010.
    • (2010) AISTATS
    • Zhang, Y.1    Yeung, D.2
  • 40
    • 77956213932 scopus 로고    scopus 로고
    • Transfer metric learning by learning task relationships
    • Y. Zhang and D. Yeung. Transfer metric learning by learning task relationships. In SIGKDD, pages 1199-1208, 2010.
    • (2010) SIGKDD , pp. 1199-1208
    • Zhang, Y.1    Yeung, D.2
  • 41
    • 85162027638 scopus 로고    scopus 로고
    • Probabilistic multi-task feature selection
    • Y. Zhang, D. Yeung, and Q. Xu. Probabilistic multi-task feature selection. NIPS, 2010.
    • (2010) NIPS
    • Zhang, Y.1    Yeung, D.2    Xu, Q.3
  • 42
    • 85162400077 scopus 로고    scopus 로고
    • Clustered multi-task learning via alternating structure optimization
    • J. Zhou, J. Chen, and J. Ye. Clustered multi-task learning via alternating structure optimization. NIPS, 2011.
    • (2011) NIPS
    • Zhou, J.1    Chen, J.2    Ye, J.3
  • 44
    • 80052666240 scopus 로고    scopus 로고
    • A multi-task learning formulation for predicting disease progression
    • J. Zhou, L. Yuan, J. Liu, and J. Ye. A multi-task learning formulation for predicting disease progression. In SIGKDD, pages 814-822, 2011.
    • (2011) SIGKDD , pp. 814-822
    • Zhou, J.1    Yuan, L.2    Liu, J.3    Ye, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.