-
1
-
-
27844439373
-
A framework for learning predictive structures from multiple tasks and unlabeled data
-
R. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks and unlabeled data. JMLR, 6:1817-1853, 2005.
-
(2005)
JMLR
, vol.6
, pp. 1817-1853
-
-
Ando, R.1
Zhang, T.2
-
2
-
-
55149088329
-
Convex multi-task feature learning
-
A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Machine Learning, 73(3):243-272, 2008.
-
(2008)
Machine Learning
, vol.73
, Issue.3
, pp. 243-272
-
-
Argyriou, A.1
Evgeniou, T.2
Pontil, M.3
-
4
-
-
0346238931
-
Task clustering and gating for bayesian multitask learning
-
B. Bakker and T. Heskes. Task clustering and gating for bayesian multitask learning. JMLR, 4:83-99, 2003.
-
(2003)
JMLR
, vol.4
, pp. 83-99
-
-
Bakker, B.1
Heskes, T.2
-
6
-
-
85014561619
-
A fast iterative shrinkage-thresholding algorithm for linear inverse problems
-
A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183-202, 2009.
-
(2009)
SIAM Journal on Imaging Sciences
, vol.2
, Issue.1
, pp. 183-202
-
-
Beck, A.1
Teboulle, M.2
-
7
-
-
68649086910
-
Simultaneous analysis of lasso and dantzig selector
-
P. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous analysis of lasso and dantzig selector. The Annals of Statistics, 37(4):1705-1732, 2009.
-
(2009)
The Annals of Statistics
, vol.37
, Issue.4
, pp. 1705-1732
-
-
Bickel, P.1
Ritov, Y.2
Tsybakov, A.3
-
8
-
-
0031189914
-
Multitask learning
-
R. Caruana. Multitask learning. Machine Learning, 28(1):41-75, 1997.
-
(1997)
Machine Learning
, vol.28
, Issue.1
, pp. 41-75
-
-
Caruana, R.1
-
9
-
-
77956208061
-
Learning incoherent sparse and low-rank patterns from multiple tasks
-
J. Chen, J. Liu, and J. Ye. Learning incoherent sparse and low-rank patterns from multiple tasks. In SIGKDD, pages 1179-1188, 2010.
-
(2010)
SIGKDD
, pp. 1179-1188
-
-
Chen, J.1
Liu, J.2
Ye, J.3
-
10
-
-
80052677096
-
Integrating low-rank and group-sparse structures for robust multi-task learning
-
J. Chen, J. Zhou, and J. Ye. Integrating low-rank and group-sparse structures for robust multi-task learning. In SIGKDD, pages 42-50, 2011.
-
(2011)
SIGKDD
, pp. 42-50
-
-
Chen, J.1
Zhou, J.2
Ye, J.3
-
11
-
-
12244250351
-
Regularized multi-task learning
-
T. Evgeniou and M. Pontil. Regularized multi-task learning. In SIGKDD, pages 109-117, 2004.
-
(2004)
SIGKDD
, pp. 109-117
-
-
Evgeniou, T.1
Pontil, M.2
-
12
-
-
80052946258
-
Efficient euclidean projections via piecewise root finding and its application in gradient projection
-
P. Gong, K. Gai, and C. Zhang. Efficient euclidean projections via piecewise root finding and its application in gradient projection. Neurocomputing, pages 2754-2766, 2011.
-
(2011)
Neurocomputing
, pp. 2754-2766
-
-
Gong, P.1
Gai, K.2
Zhang, C.3
-
14
-
-
70049084979
-
Clustered multi-task learning: A convex formulation
-
L. Jacob, F. Bach, and J. Vert. Clustered multi-task learning: A convex formulation. NIPS, 2008.
-
(2008)
NIPS
-
-
Jacob, L.1
Bach, F.2
Vert, J.3
-
16
-
-
80053435765
-
Learning with whom to share in multi-task feature learning
-
Z. Kang, K. Grauman, and F. Sha. Learning with whom to share in multi-task feature learning. In ICML, 2011.
-
(2011)
ICML
-
-
Kang, Z.1
Grauman, K.2
Sha, F.3
-
17
-
-
77956548668
-
Tree-guided group lasso for multi-task regression with structured sparsity
-
S. Kim and E. Xing. Tree-guided group lasso for multi-task regression with structured sparsity. In ICML, 2009.
-
(2009)
ICML
-
-
Kim, S.1
Xing, E.2
-
18
-
-
14344249890
-
Learning to learn with the informative vector machine
-
N. Lawrence and J. Platt. Learning to learn with the informative vector machine. In ICML, 2004.
-
(2004)
ICML
-
-
Lawrence, N.1
Platt, J.2
-
19
-
-
80053145416
-
2,1-norm minimization
-
2,1-norm minimization. In UAI, pages 339-348, 2009.
-
(2009)
UAI
, pp. 339-348
-
-
Liu, J.1
Ji, S.2
Ye, J.3
-
21
-
-
77956206508
-
An efficient algorithm for a class of fused lasso problems
-
J. Liu, L. Yuan, and J. Ye. An efficient algorithm for a class of fused lasso problems. In SIGKDD, pages 323-332, 2010.
-
(2010)
SIGKDD
, pp. 323-332
-
-
Liu, J.1
Yuan, L.2
Ye, J.3
-
24
-
-
79952934740
-
Estimation of (near) low-rank matrices with noise and high-dimensional scaling
-
S. Negahban and M. Wainwright. Estimation of (near) low-rank matrices with noise and high-dimensional scaling. The Annals of Statistics, 39(2):1069-1097, 2011.
-
(2011)
The Annals of Statistics
, vol.39
, Issue.2
, pp. 1069-1097
-
-
Negahban, S.1
Wainwright, M.2
-
26
-
-
67651063011
-
-
Center for Operations Research and Econometrics (CORE), Catholic University of Louvain, Tech. Rep, 76
-
Y. Nesterov. Gradient methods for minimizing composite objective function. Center for Operations Research and Econometrics (CORE), Catholic University of Louvain, Tech. Rep, 76, 2007.
-
(2007)
Gradient Methods for Minimizing Composite Objective Function
-
-
Nesterov, Y.1
-
27
-
-
34948865158
-
-
Statistics Department, UC Berkeley, Tech. Rep
-
G. Obozinski, B. Taskar, and M. Jordan. Multi-task feature selection. Statistics Department, UC Berkeley, Tech. Rep, 2006.
-
(2006)
Multi-task Feature Selection
-
-
Obozinski, G.1
Taskar, B.2
Jordan, M.3
-
28
-
-
85162530133
-
Large margin multi-task metric learning
-
S. Parameswaran and K. Weinberger. Large margin multi-task metric learning. NIPS, 23:1867-1875, 2010.
-
(2010)
NIPS
, vol.23
, pp. 1867-1875
-
-
Parameswaran, S.1
Weinberger, K.2
-
29
-
-
79251515185
-
Trace norm regularization: Reformulations, algorithms, and multi-task learning
-
T. Pong, P. Tseng, S. Ji, and J. Ye. Trace norm regularization: Reformulations, algorithms, and multi-task learning. SIAM Journal on Optimization, 20(6):3465-3489, 2010.
-
(2010)
SIAM Journal on Optimization
, vol.20
, Issue.6
, pp. 3465-3489
-
-
Pong, T.1
Tseng, P.2
Ji, S.3
Ye, J.4
-
30
-
-
85162067125
-
Multitask learning without label correspondences
-
N. Quadrianto, A. Smola, T. Caetano, S. Vishwanathan, and J. Petterson. Multitask learning without label correspondences. NIPS, 2010.
-
(2010)
NIPS
-
-
Quadrianto, N.1
Smola, A.2
Caetano, T.3
Vishwanathan, S.4
Petterson, J.5
-
31
-
-
84899006514
-
Learning gaussian process kernels via hierarchical bayes
-
A. Schwaighofer, V. Tresp, and K. Yu. Learning gaussian process kernels via hierarchical bayes. NIPS, 17:1209-1216, 2005.
-
(2005)
NIPS
, vol.17
, pp. 1209-1216
-
-
Schwaighofer, A.1
Tresp, V.2
Yu, K.3
-
32
-
-
0042496037
-
Discovering structure in multiple learning tasks: The tc algorithm
-
S. Thrun and J. O'Sullivan. Discovering structure in multiple learning tasks: The tc algorithm. In ICML, pages 489-497, 1996.
-
(1996)
ICML
, pp. 489-497
-
-
Thrun, S.1
O'Sullivan, J.2
-
33
-
-
0041911836
-
Bounds on normal approximations to student's and the chi-square distributions
-
D. Wallace. Bounds on normal approximations to student's and the chi-square distributions. The Annals of Mathematical Statistics, pages 1121-1130, 1959.
-
(1959)
The Annals of Mathematical Statistics
, pp. 1121-1130
-
-
Wallace, D.1
-
34
-
-
33846487387
-
Multi-task learning for classification with dirichlet process priors
-
Y. Xue, X. Liao, L. Carin, and B. Krishnapuram. Multi-task learning for classification with dirichlet process priors. JMLR, 8:35-63, 2007.
-
(2007)
JMLR
, vol.8
, pp. 35-63
-
-
Xue, Y.1
Liao, X.2
Carin, L.3
Krishnapuram, B.4
-
35
-
-
84863338429
-
Heterogeneous multitask learning with joint sparsity constraints
-
X. Yang, S. Kim, and E. Xing. Heterogeneous multitask learning with joint sparsity constraints. NIPS, 23, 2009.
-
(2009)
NIPS
, vol.23
-
-
Yang, X.1
Kim, S.2
Xing, E.3
-
36
-
-
31844442664
-
Learning gaussian processes from multiple tasks
-
K. Yu, V. Tresp, and A. Schwaighofer. Learning gaussian processes from multiple tasks. In ICML, pages 1012-1019, 2005.
-
(2005)
ICML
, pp. 1012-1019
-
-
Yu, K.1
Tresp, V.2
Schwaighofer, A.3
-
37
-
-
85162375080
-
Efficient methods for overlapping group lasso
-
L. Yuan, J. Liu, and J. Ye. Efficient methods for overlapping group lasso. NIPS, 2011.
-
(2011)
NIPS
-
-
Yuan, L.1
Liu, J.2
Ye, J.3
-
38
-
-
79951845184
-
Learning multiple related tasks using latent independent component analysis
-
J. Zhang, Z. Ghahramani, and Y. Yang. Learning multiple related tasks using latent independent component analysis. NIPS, 18:1585-1592, 2006.
-
(2006)
NIPS
, vol.18
, pp. 1585-1592
-
-
Zhang, J.1
Ghahramani, Z.2
Yang, Y.3
-
39
-
-
80052689284
-
Multi-task learning using generalized t process
-
Y. Zhang and D. Yeung. Multi-task learning using generalized t process. In AISTATS, 2010.
-
(2010)
AISTATS
-
-
Zhang, Y.1
Yeung, D.2
-
40
-
-
77956213932
-
Transfer metric learning by learning task relationships
-
Y. Zhang and D. Yeung. Transfer metric learning by learning task relationships. In SIGKDD, pages 1199-1208, 2010.
-
(2010)
SIGKDD
, pp. 1199-1208
-
-
Zhang, Y.1
Yeung, D.2
-
41
-
-
85162027638
-
Probabilistic multi-task feature selection
-
Y. Zhang, D. Yeung, and Q. Xu. Probabilistic multi-task feature selection. NIPS, 2010.
-
(2010)
NIPS
-
-
Zhang, Y.1
Yeung, D.2
Xu, Q.3
-
42
-
-
85162400077
-
Clustered multi-task learning via alternating structure optimization
-
J. Zhou, J. Chen, and J. Ye. Clustered multi-task learning via alternating structure optimization. NIPS, 2011.
-
(2011)
NIPS
-
-
Zhou, J.1
Chen, J.2
Ye, J.3
-
44
-
-
80052666240
-
A multi-task learning formulation for predicting disease progression
-
J. Zhou, L. Yuan, J. Liu, and J. Ye. A multi-task learning formulation for predicting disease progression. In SIGKDD, pages 814-822, 2011.
-
(2011)
SIGKDD
, pp. 814-822
-
-
Zhou, J.1
Yuan, L.2
Liu, J.3
Ye, J.4
|