메뉴 건너뛰기




Volumn 111, Issue 513, 2016, Pages 275-287

Feature Augmentation via Nonparametrics and Selection (FANS) in High-Dimensional Classification

Author keywords

Classification; Density estimation; Feature augmentation; Feature selection; High dimensional space; Nonlinear decision boundary; Parallel computing

Indexed keywords


EID: 84969895621     PISSN: 01621459     EISSN: 1537274X     Source Type: Journal    
DOI: 10.1080/01621459.2015.1005212     Document Type: Article
Times cited : (35)

References (41)
  • 1
    • 63449107173 scopus 로고    scopus 로고
    • A General Modular Framework for Gene Set Enrichment Analysis
    • M.Ackermann,, and K.Strimmer, (2009), “A General Modular Framework for Gene Set Enrichment Analysis,” BMC Bioinformatics, 10, 1471–2105.
    • (2009) BMC Bioinformatics , vol.10 , pp. 1471-2105
    • Ackermann, M.1    Strimmer, K.2
  • 2
    • 0037461021 scopus 로고    scopus 로고
    • Effective Dimension Reduction Methods for Tumor Classification Using Gene Expression Data
    • A.Antoniadis,, S.Lambert-Lacroix,, and F.Leblanc, (2003), “Effective Dimension Reduction Methods for Tumor Classification Using Gene Expression Data,” Bioinformatics, 19, 563–570.
    • (2003) Bioinformatics , vol.19 , pp. 563-570
    • Antoniadis, A.1    Lambert-Lacroix, S.2    Leblanc, F.3
  • 4
    • 33745156863 scopus 로고    scopus 로고
    • Some Theory for Fisher’s Linear Discriminant Function, ‘naive Bayes’, and Some Alternatives When There are Many More Variables Than Observations
    • P.J.Bickel,, and E.Levina, (2004), “Some Theory for Fisher’s Linear Discriminant Function, ‘naive Bayes’, and Some Alternatives When There are Many More Variables Than Observations,” Bernoulli, 10, 989–1010.
    • (2004) Bernoulli , vol.10 , pp. 989-1010
    • Bickel, P.J.1    Levina, E.2
  • 6
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • L.Breiman, (2001), “Random Forests,” Machine Learning, 45, 5–32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 8
    • 84862957781 scopus 로고    scopus 로고
    • A Direct Estimation Approach to Sparse Linear Discriminant Analysis
    • T.Cai,, and W.Liu, (2011), “A Direct Estimation Approach to Sparse Linear Discriminant Analysis,” Journal of American Statistical Association, 106, 1566–1577.
    • (2011) Journal of American Statistical Association , vol.106 , pp. 1566-1577
    • Cai, T.1    Liu, W.2
  • 10
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data
    • S.Dudoit,, J.Fridlyand,, and T.P.Speed, (2002), “Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data,” Journal of American Statistical Association, 97, 77–87.
    • (2002) Journal of American Statistical Association , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 11
    • 53849089038 scopus 로고    scopus 로고
    • High-Dimensional Classification Using Features Annealed Independence Rules
    • J.Fan,, and Y.Fan, (2008), “High-Dimensional Classification Using Features Annealed Independence Rules,” Annals of Statistics, 36, 2605–2637.
    • (2008) Annals of Statistics , vol.36 , pp. 2605-2637
    • Fan, J.1    Fan, Y.2
  • 12
    • 79960138168 scopus 로고    scopus 로고
    • Nonparametric Independence Screening in Sparse Ultra-High Dimensional Additive Models
    • J.Fan,, Y.Feng,, and R.Song, (2011), “Nonparametric Independence Screening in Sparse Ultra-High Dimensional Additive Models,” Journal of American Statistical Association, 106, 544–557.
    • (2011) Journal of American Statistical Association , vol.106 , pp. 544-557
    • Fan, J.1    Feng, Y.2    Song, R.3
  • 13
    • 84865137728 scopus 로고    scopus 로고
    • A Road to Classification in High Dimensional Space: The Regularized Optimal Affine Discriminant
    • J.Fan,, Y.Feng,, and X.Tong, (2012), “A Road to Classification in High Dimensional Space: The Regularized Optimal Affine Discriminant,” Journal of the Royal Statistical Society, Series B, 74, 745–771.
    • (2012) Journal of the Royal Statistical Society, Series B , vol.74 , pp. 745-771
    • Fan, J.1    Feng, Y.2    Tong, X.3
  • 14
    • 1542784498 scopus 로고    scopus 로고
    • Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties
    • J.Fan,, and R.Li, (2001), “Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties,” Journal of American Statistical Association, 96, 1348–1360.
    • (2001) Journal of American Statistical Association , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 15
    • 53849086824 scopus 로고    scopus 로고
    • Sure Independence Screening for Ultrahigh Dimensional Feature Space
    • with discussion
    • J.Fan,, and J.Lv, (2008), “Sure Independence Screening for Ultrahigh Dimensional Feature Space” (with discussion), Journal of the Royal Statistical Society, Series B, 70, 849–911.
    • (2008) Journal of the Royal Statistical Society, Series B , vol.70 , pp. 849-911
    • Fan, J.1    Lv, J.2
  • 17
    • 77950537175 scopus 로고    scopus 로고
    • Regularization Paths for Generalized Linear Models via Coordinate Descent
    • J.Friedman,, T.Hastie,, and R.Tibshirani, (2010), “Regularization Paths for Generalized Linear Models via Coordinate Descent,” Journal of Statistical Software, 33, 1–22.
    • (2010) Journal of Statistical Software , vol.33 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 18
    • 18744413287 scopus 로고    scopus 로고
    • Estimating Misclassification Error With Small Samples via Bootstrap Cross-Validation
    • W.J.Fu,, R.J.Carroll,, and S.Wang, (2005), “Estimating Misclassification Error With Small Samples via Bootstrap Cross-Validation,” Bioinformatics, 21, 1979–1986.
    • (2005) Bioinformatics , vol.21 , pp. 1979-1986
    • Fu, W.J.1    Carroll, R.J.2    Wang, S.3
  • 20
    • 33845413755 scopus 로고    scopus 로고
    • Regularized Linear Discriminant Analysis and its Application in Microarrays
    • Y.Guo,, T.Hastie,, and R.Tibshirani, (2007), “Regularized Linear Discriminant Analysis and its Application in Microarrays,” Biostatistics, 8, 86–100.
    • (2007) Biostatistics , vol.8 , pp. 86-100
    • Guo, Y.1    Hastie, T.2    Tibshirani, R.3
  • 23
    • 0242559063 scopus 로고    scopus 로고
    • Linear Regression and Two-Class Classification With Gene Expression Data
    • P.W.X.Huang, (2003), “Linear Regression and Two-Class Classification With Gene Expression Data,” Bioinformatics, 19, 2072–2978.
    • (2003) Bioinformatics , vol.19 , pp. 2072-2978
    • Huang, P.W.X.1
  • 24
    • 84945116550 scopus 로고
    • Sliced Inverse Regression for Dimension Reduction
    • with discussion
    • K.-C.Li, (1991), “Sliced Inverse Regression for Dimension Reduction” (with discussion), Journal of American Statistical Association, 86, 316–342
    • (1991) Journal of American Statistical Association , vol.86 , pp. 316-342
    • Li, K.-C.1
  • 25
    • 84857556385 scopus 로고    scopus 로고
    • A Direct Approach to Sparse Discriminant Analysis in Ultra-High Dimensions
    • Q.Mai,, H.Zou,, and M.Yuan, (2012), “A Direct Approach to Sparse Discriminant Analysis in Ultra-High Dimensions,” Biometrika, 99, 29–42.
    • (2012) Biometrika , vol.99 , pp. 29-42
    • Mai, Q.1    Zou, H.2    Yuan, M.3
  • 26
    • 73949083829 scopus 로고    scopus 로고
    • High-Dimensional Additive Modeling
    • L.Meier,, V.Geer,, and P.Bühlmann, (2009), “High-Dimensional Additive Modeling,” Annals of Statistics, 37, 3779–3821.
    • (2009) Annals of Statistics , vol.37 , pp. 3779-3821
    • Meier, L.1    Geer, V.2    Bühlmann, P.3
  • 27
    • 0036166439 scopus 로고    scopus 로고
    • Tumor Classification by Partial Least Squares Using Microarray Gene Expression Data
    • D.V.Nguyen,, and D.M.Rocke, (2002), “Tumor Classification by Partial Least Squares Using Microarray Gene Expression Data,” Bioinformatics, 18, 39–50.
    • (2002) Bioinformatics , vol.18 , pp. 39-50
    • Nguyen, D.V.1    Rocke, D.M.2
  • 28
    • 0001030653 scopus 로고
    • Measuring Mass Concentrations and Estimating Density Contour Clusters-An Excess Mass Approach
    • W.Polonik, (1995), “Measuring Mass Concentrations and Estimating Density Contour Clusters-An Excess Mass Approach,” Annals of Statistics, 23, 855–881.
    • (1995) Annals of Statistics , vol.23 , pp. 855-881
    • Polonik, W.1
  • 30
    • 80054725919 scopus 로고    scopus 로고
    • Sparse Linear Discriminant Analysis by Thresholding for High Dimensional Data
    • J.Shao,, Y.Wang,, X.Deng,, and S.Wang, (2011), “Sparse Linear Discriminant Analysis by Thresholding for High Dimensional Data,” Annals of Statistics, 39, 1241–1265.
    • (2011) Annals of Statistics , vol.39 , pp. 1241-1265
    • Shao, J.1    Wang, Y.2    Deng, X.3    Wang, S.4
  • 32
    • 84887469287 scopus 로고    scopus 로고
    • A Plug-in Approach to Anomaly Detection
    • X.Tong, (2013), “A Plug-in Approach to Anomaly Detection,” Journal of Machine Learning Research, 14, 3011–3040.
    • (2013) Journal of Machine Learning Research , vol.14 , pp. 3011-3040
    • Tong, X.1
  • 33
    • 3142725508 scopus 로고    scopus 로고
    • Optimal Aggregation of Classifiers in Statistical Learning
    • A.Tsybakov, (2004), “Optimal Aggregation of Classifiers in Statistical Learning,” Annals of Statistics, 32, 135–166.
    • (2004) Annals of Statistics , vol.32 , pp. 135-166
    • Tsybakov, A.1
  • 34
    • 51049121146 scopus 로고    scopus 로고
    • High-Dimensional Generalized Linear Models and the Lasso
    • S.Geer, (2008), “High-Dimensional Generalized Linear Models and the Lasso,” Annals of Statistics, 36, 614–645.
    • (2008) Annals of Statistics , vol.36 , pp. 614-645
    • Geer, S.1
  • 36
    • 65449167549 scopus 로고    scopus 로고
    • Sparse Linear Discriminant Analysis for Simultaneous Testing for the Significance of a Gene Set/Pathway and Gene Selection
    • M.C.Wu,, L.Zhang,, Z.Wang,, D.C.Christiani,, and X.Lin, (2009), “Sparse Linear Discriminant Analysis for Simultaneous Testing for the Significance of a Gene Set/Pathway and Gene Selection,” Bioinformatics, 25, 1145–1151.
    • (2009) Bioinformatics , vol.25 , pp. 1145-1151
    • Wu, M.C.1    Zhang, L.2    Wang, Z.3    Christiani, D.C.4    Lin, X.5
  • 37
    • 77649284492 scopus 로고    scopus 로고
    • Nearly Unbiased Variable Selection Under Minimax Concave Penalty
    • C.-H.Zhang, (2010), “Nearly Unbiased Variable Selection Under Minimax Concave Penalty,” Annals of Statistics, 38, 894–942
    • (2010) Annals of Statistics , vol.38 , pp. 894-942
    • Zhang, C.-H.1
  • 38
    • 50949096321 scopus 로고    scopus 로고
    • The Sparsity and Bias of the LASSO Selection in High-Dimensional Linear Regression
    • C.-H.Zhang,, and J.Huang, (2008), “The Sparsity and Bias of the LASSO Selection in High-Dimensional Linear Regression,” Annals of Statistics, 36, 1567–1594.
    • (2008) Annals of Statistics , vol.36 , pp. 1567-1594
    • Zhang, C.-H.1    Huang, J.2
  • 39
    • 33845263263 scopus 로고    scopus 로고
    • On Model Selection Consistency of Lasso
    • P.Zhao,, and B.Yu, (2006), “On Model Selection Consistency of Lasso,” Journal of Machine Learning Research, 7, 2541–2563
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2
  • 40
    • 33846114377 scopus 로고    scopus 로고
    • The Adaptive Lasso and its Oracle Properties
    • H.Zou, (2006), “The Adaptive Lasso and its Oracle Properties,” Journal of American Statistical Association, 101, 1418–1429
    • (2006) Journal of American Statistical Association , vol.101 , pp. 1418-1429
    • Zou, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.