-
1
-
-
63449107173
-
A General Modular Framework for Gene Set Enrichment Analysis
-
M.Ackermann,, and K.Strimmer, (2009), “A General Modular Framework for Gene Set Enrichment Analysis,” BMC Bioinformatics, 10, 1471–2105.
-
(2009)
BMC Bioinformatics
, vol.10
, pp. 1471-2105
-
-
Ackermann, M.1
Strimmer, K.2
-
2
-
-
0037461021
-
Effective Dimension Reduction Methods for Tumor Classification Using Gene Expression Data
-
A.Antoniadis,, S.Lambert-Lacroix,, and F.Leblanc, (2003), “Effective Dimension Reduction Methods for Tumor Classification Using Gene Expression Data,” Bioinformatics, 19, 563–570.
-
(2003)
Bioinformatics
, vol.19
, pp. 563-570
-
-
Antoniadis, A.1
Lambert-Lacroix, S.2
Leblanc, F.3
-
3
-
-
33645527646
-
Prediction by Supervised Principal Components
-
E.Bair,, T.Hastie,, D.Paul,, and R.Tibshirani, (2006), “Prediction by Supervised Principal Components,” Journal of American Statistical Association, 101, 119–137.
-
(2006)
Journal of American Statistical Association
, vol.101
, pp. 119-137
-
-
Bair, E.1
Hastie, T.2
Paul, D.3
Tibshirani, R.4
-
4
-
-
33745156863
-
Some Theory for Fisher’s Linear Discriminant Function, ‘naive Bayes’, and Some Alternatives When There are Many More Variables Than Observations
-
P.J.Bickel,, and E.Levina, (2004), “Some Theory for Fisher’s Linear Discriminant Function, ‘naive Bayes’, and Some Alternatives When There are Many More Variables Than Observations,” Bernoulli, 10, 989–1010.
-
(2004)
Bernoulli
, vol.10
, pp. 989-1010
-
-
Bickel, P.J.1
Levina, E.2
-
6
-
-
0035478854
-
Random Forests
-
L.Breiman, (2001), “Random Forests,” Machine Learning, 45, 5–32.
-
(2001)
Machine Learning
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
8
-
-
84862957781
-
A Direct Estimation Approach to Sparse Linear Discriminant Analysis
-
T.Cai,, and W.Liu, (2011), “A Direct Estimation Approach to Sparse Linear Discriminant Analysis,” Journal of American Statistical Association, 106, 1566–1577.
-
(2011)
Journal of American Statistical Association
, vol.106
, pp. 1566-1577
-
-
Cai, T.1
Liu, W.2
-
9
-
-
81555213023
-
Sparse Discriminant Analysis
-
L.Clemmensen,, T.Hastie,, D.Witten,, and B.Ersboll, (2011), “Sparse Discriminant Analysis,” Technometrics, 53, 406–413.
-
(2011)
Technometrics
, vol.53
, pp. 406-413
-
-
Clemmensen, L.1
Hastie, T.2
Witten, D.3
Ersboll, B.4
-
10
-
-
0036489046
-
Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data
-
S.Dudoit,, J.Fridlyand,, and T.P.Speed, (2002), “Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data,” Journal of American Statistical Association, 97, 77–87.
-
(2002)
Journal of American Statistical Association
, vol.97
, pp. 77-87
-
-
Dudoit, S.1
Fridlyand, J.2
Speed, T.P.3
-
11
-
-
53849089038
-
High-Dimensional Classification Using Features Annealed Independence Rules
-
J.Fan,, and Y.Fan, (2008), “High-Dimensional Classification Using Features Annealed Independence Rules,” Annals of Statistics, 36, 2605–2637.
-
(2008)
Annals of Statistics
, vol.36
, pp. 2605-2637
-
-
Fan, J.1
Fan, Y.2
-
12
-
-
79960138168
-
Nonparametric Independence Screening in Sparse Ultra-High Dimensional Additive Models
-
J.Fan,, Y.Feng,, and R.Song, (2011), “Nonparametric Independence Screening in Sparse Ultra-High Dimensional Additive Models,” Journal of American Statistical Association, 106, 544–557.
-
(2011)
Journal of American Statistical Association
, vol.106
, pp. 544-557
-
-
Fan, J.1
Feng, Y.2
Song, R.3
-
13
-
-
84865137728
-
A Road to Classification in High Dimensional Space: The Regularized Optimal Affine Discriminant
-
J.Fan,, Y.Feng,, and X.Tong, (2012), “A Road to Classification in High Dimensional Space: The Regularized Optimal Affine Discriminant,” Journal of the Royal Statistical Society, Series B, 74, 745–771.
-
(2012)
Journal of the Royal Statistical Society, Series B
, vol.74
, pp. 745-771
-
-
Fan, J.1
Feng, Y.2
Tong, X.3
-
14
-
-
1542784498
-
Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties
-
J.Fan,, and R.Li, (2001), “Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties,” Journal of American Statistical Association, 96, 1348–1360.
-
(2001)
Journal of American Statistical Association
, vol.96
, pp. 1348-1360
-
-
Fan, J.1
Li, R.2
-
15
-
-
53849086824
-
Sure Independence Screening for Ultrahigh Dimensional Feature Space
-
with discussion
-
J.Fan,, and J.Lv, (2008), “Sure Independence Screening for Ultrahigh Dimensional Feature Space” (with discussion), Journal of the Royal Statistical Society, Series B, 70, 849–911.
-
(2008)
Journal of the Royal Statistical Society, Series B
, vol.70
, pp. 849-911
-
-
Fan, J.1
Lv, J.2
-
16
-
-
45849107328
-
Pathwise Coordinate Optimization
-
J.Friedman,, T.Hastie,, H.Höfling,, and R.Tibshirani, (2007), “Pathwise Coordinate Optimization,” Annals of Applied Statistics, 1, 302–332.
-
(2007)
Annals of Applied Statistics
, vol.1
, pp. 302-332
-
-
Friedman, J.1
Hastie, T.2
Höfling, H.3
Tibshirani, R.4
-
17
-
-
77950537175
-
Regularization Paths for Generalized Linear Models via Coordinate Descent
-
J.Friedman,, T.Hastie,, and R.Tibshirani, (2010), “Regularization Paths for Generalized Linear Models via Coordinate Descent,” Journal of Statistical Software, 33, 1–22.
-
(2010)
Journal of Statistical Software
, vol.33
, pp. 1-22
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
18
-
-
18744413287
-
Estimating Misclassification Error With Small Samples via Bootstrap Cross-Validation
-
W.J.Fu,, R.J.Carroll,, and S.Wang, (2005), “Estimating Misclassification Error With Small Samples via Bootstrap Cross-Validation,” Bioinformatics, 21, 1979–1986.
-
(2005)
Bioinformatics
, vol.21
, pp. 1979-1986
-
-
Fu, W.J.1
Carroll, R.J.2
Wang, S.3
-
19
-
-
0036735386
-
Translation of Microarray Data Into Clinically Relevant Cancer Diagnostic Tests Using Gene Expression Ratios in Lung Cancer and Mesothelioma
-
G.J.Gordon,, R.V.Jensen,, L.-L.Hsiao,, S.R.Gullans,, J.E.Blumenstock,, S.Ramaswamy,, W.G.Richards,, D.J.Sugarbaker,, and R.Bueno, (2002), “Translation of Microarray Data Into Clinically Relevant Cancer Diagnostic Tests Using Gene Expression Ratios in Lung Cancer and Mesothelioma,” Cancer Research, 62, 4963–4967.
-
(2002)
Cancer Research
, vol.62
, pp. 4963-4967
-
-
Gordon, G.J.1
Jensen, R.V.2
Hsiao, L.-L.3
Gullans, S.R.4
Blumenstock, J.E.5
Ramaswamy, S.6
Richards, W.G.7
Sugarbaker, D.J.8
Bueno, R.9
-
20
-
-
33845413755
-
Regularized Linear Discriminant Analysis and its Application in Microarrays
-
Y.Guo,, T.Hastie,, and R.Tibshirani, (2007), “Regularized Linear Discriminant Analysis and its Application in Microarrays,” Biostatistics, 8, 86–100.
-
(2007)
Biostatistics
, vol.8
, pp. 86-100
-
-
Guo, Y.1
Hastie, T.2
Tibshirani, R.3
-
22
-
-
0003684449
-
-
New York: Springer-Verlag Inc
-
T.Hastie,, R.Tibshirani,, and J.H.Friedman, (2009), The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd ed.), New York: Springer-Verlag Inc.
-
(2009)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.H.3
-
23
-
-
0242559063
-
Linear Regression and Two-Class Classification With Gene Expression Data
-
P.W.X.Huang, (2003), “Linear Regression and Two-Class Classification With Gene Expression Data,” Bioinformatics, 19, 2072–2978.
-
(2003)
Bioinformatics
, vol.19
, pp. 2072-2978
-
-
Huang, P.W.X.1
-
24
-
-
84945116550
-
Sliced Inverse Regression for Dimension Reduction
-
with discussion
-
K.-C.Li, (1991), “Sliced Inverse Regression for Dimension Reduction” (with discussion), Journal of American Statistical Association, 86, 316–342
-
(1991)
Journal of American Statistical Association
, vol.86
, pp. 316-342
-
-
Li, K.-C.1
-
25
-
-
84857556385
-
A Direct Approach to Sparse Discriminant Analysis in Ultra-High Dimensions
-
Q.Mai,, H.Zou,, and M.Yuan, (2012), “A Direct Approach to Sparse Discriminant Analysis in Ultra-High Dimensions,” Biometrika, 99, 29–42.
-
(2012)
Biometrika
, vol.99
, pp. 29-42
-
-
Mai, Q.1
Zou, H.2
Yuan, M.3
-
26
-
-
73949083829
-
High-Dimensional Additive Modeling
-
L.Meier,, V.Geer,, and P.Bühlmann, (2009), “High-Dimensional Additive Modeling,” Annals of Statistics, 37, 3779–3821.
-
(2009)
Annals of Statistics
, vol.37
, pp. 3779-3821
-
-
Meier, L.1
Geer, V.2
Bühlmann, P.3
-
27
-
-
0036166439
-
Tumor Classification by Partial Least Squares Using Microarray Gene Expression Data
-
D.V.Nguyen,, and D.M.Rocke, (2002), “Tumor Classification by Partial Least Squares Using Microarray Gene Expression Data,” Bioinformatics, 18, 39–50.
-
(2002)
Bioinformatics
, vol.18
, pp. 39-50
-
-
Nguyen, D.V.1
Rocke, D.M.2
-
28
-
-
0001030653
-
Measuring Mass Concentrations and Estimating Density Contour Clusters-An Excess Mass Approach
-
W.Polonik, (1995), “Measuring Mass Concentrations and Estimating Density Contour Clusters-An Excess Mass Approach,” Annals of Statistics, 23, 855–881.
-
(1995)
Annals of Statistics
, vol.23
, pp. 855-881
-
-
Polonik, W.1
-
29
-
-
77749280558
-
Fast Computation of Kernel Estimators
-
V.Raykar,, R.Duraiswami,, and L.Zhao, (2010), “Fast Computation of Kernel Estimators,” Journal of Computational and Graphical Statistics, 19, 205–220.
-
(2010)
Journal of Computational and Graphical Statistics
, vol.19
, pp. 205-220
-
-
Raykar, V.1
Duraiswami, R.2
Zhao, L.3
-
30
-
-
80054725919
-
Sparse Linear Discriminant Analysis by Thresholding for High Dimensional Data
-
J.Shao,, Y.Wang,, X.Deng,, and S.Wang, (2011), “Sparse Linear Discriminant Analysis by Thresholding for High Dimensional Data,” Annals of Statistics, 39, 1241–1265.
-
(2011)
Annals of Statistics
, vol.39
, pp. 1241-1265
-
-
Shao, J.1
Wang, Y.2
Deng, X.3
Wang, S.4
-
31
-
-
85194972808
-
Regression Shrinkage and Selection via the Lasso
-
R.Tibshirani, (1996), “Regression Shrinkage and Selection via the Lasso,” Journal of the Royal Statistical Society, Series B, 58, 267–288.
-
(1996)
Journal of the Royal Statistical Society, Series B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
32
-
-
84887469287
-
A Plug-in Approach to Anomaly Detection
-
X.Tong, (2013), “A Plug-in Approach to Anomaly Detection,” Journal of Machine Learning Research, 14, 3011–3040.
-
(2013)
Journal of Machine Learning Research
, vol.14
, pp. 3011-3040
-
-
Tong, X.1
-
33
-
-
3142725508
-
Optimal Aggregation of Classifiers in Statistical Learning
-
A.Tsybakov, (2004), “Optimal Aggregation of Classifiers in Statistical Learning,” Annals of Statistics, 32, 135–166.
-
(2004)
Annals of Statistics
, vol.32
, pp. 135-166
-
-
Tsybakov, A.1
-
34
-
-
51049121146
-
High-Dimensional Generalized Linear Models and the Lasso
-
S.Geer, (2008), “High-Dimensional Generalized Linear Models and the Lasso,” Annals of Statistics, 36, 614–645.
-
(2008)
Annals of Statistics
, vol.36
, pp. 614-645
-
-
Geer, S.1
-
35
-
-
80054768348
-
Penalized Classification Using Fisher’s Linear Discriminant
-
D.Witten,, and R.Tibshirani, (2012), “Penalized Classification Using Fisher’s Linear Discriminant,” Journal of the Royal Statistical Society, Series B, 73, 753–772.
-
(2012)
Journal of the Royal Statistical Society, Series B
, vol.73
, pp. 753-772
-
-
Witten, D.1
Tibshirani, R.2
-
36
-
-
65449167549
-
Sparse Linear Discriminant Analysis for Simultaneous Testing for the Significance of a Gene Set/Pathway and Gene Selection
-
M.C.Wu,, L.Zhang,, Z.Wang,, D.C.Christiani,, and X.Lin, (2009), “Sparse Linear Discriminant Analysis for Simultaneous Testing for the Significance of a Gene Set/Pathway and Gene Selection,” Bioinformatics, 25, 1145–1151.
-
(2009)
Bioinformatics
, vol.25
, pp. 1145-1151
-
-
Wu, M.C.1
Zhang, L.2
Wang, Z.3
Christiani, D.C.4
Lin, X.5
-
37
-
-
77649284492
-
Nearly Unbiased Variable Selection Under Minimax Concave Penalty
-
C.-H.Zhang, (2010), “Nearly Unbiased Variable Selection Under Minimax Concave Penalty,” Annals of Statistics, 38, 894–942
-
(2010)
Annals of Statistics
, vol.38
, pp. 894-942
-
-
Zhang, C.-H.1
-
38
-
-
50949096321
-
The Sparsity and Bias of the LASSO Selection in High-Dimensional Linear Regression
-
C.-H.Zhang,, and J.Huang, (2008), “The Sparsity and Bias of the LASSO Selection in High-Dimensional Linear Regression,” Annals of Statistics, 36, 1567–1594.
-
(2008)
Annals of Statistics
, vol.36
, pp. 1567-1594
-
-
Zhang, C.-H.1
Huang, J.2
-
39
-
-
33845263263
-
On Model Selection Consistency of Lasso
-
P.Zhao,, and B.Yu, (2006), “On Model Selection Consistency of Lasso,” Journal of Machine Learning Research, 7, 2541–2563
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2541-2563
-
-
Zhao, P.1
Yu, B.2
-
40
-
-
33846114377
-
The Adaptive Lasso and its Oracle Properties
-
H.Zou, (2006), “The Adaptive Lasso and its Oracle Properties,” Journal of American Statistical Association, 101, 1418–1429
-
(2006)
Journal of American Statistical Association
, vol.101
, pp. 1418-1429
-
-
Zou, H.1
-
41
-
-
33745309913
-
Sparse Principal Component Analysis
-
H.Zou,, T.Hastie,, and R.Tibshirani, (2006), “Sparse Principal Component Analysis,” Journal of Computational and Graphical Statistics, 15, 265–286.
-
(2006)
Journal of Computational and Graphical Statistics
, vol.15
, pp. 265-286
-
-
Zou, H.1
Hastie, T.2
Tibshirani, R.3
|