메뉴 건너뛰기




Volumn 99, Issue 1, 2012, Pages 29-42

A direct approach to sparse discriminant analysis in ultra-high dimensions

Author keywords

Discriminant analysis; Features annealed independence rule; Lasso; Nearest shrunken centroids classifier; Nonpolynomial dimension asymptotics

Indexed keywords


EID: 84857556385     PISSN: 00063444     EISSN: 14643510     Source Type: Journal    
DOI: 10.1093/biomet/asr066     Document Type: Article
Times cited : (198)

References (30)
  • 2
    • 33745156863 scopus 로고    scopus 로고
    • Some theory for Fisher's linear discriminant function, 'naive Bayes', and some alternatives when there are many more variables than observations
    • DOI 10.3150/bj/1106314847
    • BICKEL, P. J. & LEVINA, E. (2004). Some theory for Fisher's linear discriminant function, 'naive Bayes', and some alternatives when there are many more variables than observations. Bernoulli 10, 989-1010. (Pubitemid 44242745)
    • (2004) Bernoulli , vol.10 , Issue.6 , pp. 989-1010
    • Bickel, P.J.1    Levina, E.2
  • 3
    • 41549106844 scopus 로고    scopus 로고
    • Regularized estimation of large covariance matrices
    • BICKEL, P. J. & LEVINA, E. (2008). Regularized estimation of large covariance matrices. Ann. Statist. 36, 199-227.
    • (2008) Ann. Statist. , vol.36 , pp. 199-227
    • Bickel, P.J.1    Levina, E.2
  • 4
    • 77955132618 scopus 로고    scopus 로고
    • Optimal rates of convergence for covariancematrix estimation
    • CAI, T., ZHANG, C. H. & ZHOU, H. (2010). Optimal rates of convergence for covariancematrix estimation. Ann. Statist. 38, 2118-44.
    • (2010) Ann. Statist. , vol.38 , pp. 2118-2144
    • Cai, T.1    Zhang, C.H.2    Zhou, H.3
  • 5
    • 12344294601 scopus 로고    scopus 로고
    • BagBoosting for tumor classification with gene expression data
    • DOI 10.1093/bioinformatics/bth447
    • DETTLING, M. (2004). Bagboosting for tumor classification with gene expression data. Bioinformatics 20, 3583-93. (Pubitemid 40136794)
    • (2004) Bioinformatics , vol.20 , Issue.18 , pp. 3583-3593
    • Dettling, M.1
  • 8
    • 53849089038 scopus 로고    scopus 로고
    • High dimensional classification using features annealed independence rules
    • FAN, J. & FAN, Y. (2008). High dimensional classification using features annealed independence rules. Ann. Statist. 36, 2605-37.
    • (2008) Ann. Statist. , vol.36 , pp. 2605-2637
    • Fan, J.1    Fan, Y.2
  • 9
    • 1542784498 scopus 로고    scopus 로고
    • Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties
    • FAN, J. & LI, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Statist. Assoc. 96, 1348-60. (Pubitemid 33695585)
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.456 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 10
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • FRIEDMAN, J. H., HASTIE, T. J. & TIBSHIRANI, R. J. (2010). Regularization paths for generalized linear models via coordinate descent. J. Statist. Software 33, 1-22.
    • (2010) J. Statist. Software , vol.33 , pp. 1-22
    • Friedman, J.H.1    Hastie, T.J.2    Tibshirani, R.J.3
  • 12
    • 33745886270 scopus 로고    scopus 로고
    • Classifier technology and the illusion of progress
    • DOI 10.1214/088342306000000060
    • HAND, D. J. (2006). Classifier technology and the illusion of progress. Statist. Sci. 21, 1-14. (Pubitemid 44046906)
    • (2006) Statistical Science , vol.21 , Issue.1 , pp. 1-14
    • Hand, D.J.1
  • 14
    • 62349114549 scopus 로고    scopus 로고
    • Sparse estimation of large covariance matrices via a nested lasso penalty
    • LEVINA, E., ROTHMAN, A. J. & ZHU, J. (2008). Sparse estimation of large covariance matrices via a nested lasso penalty. Ann. Appl. Statist. 2, 245-63.
    • (2008) Ann. Appl. Statist. , vol.2 , pp. 245-263
    • Levina, E.1    Rothman, A.J.2    Zhu, J.3
  • 15
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the Lasso
    • DOI 10.1214/009053606000000281
    • MEINSHAUSEN, N. & B̈UHLMANN, P. (2006). High dimensional graphs and variable selection with the lasso. Ann. Statist. 34, 1436-62. (Pubitemid 44231168)
    • (2006) Annals of Statistics , vol.34 , Issue.3 , pp. 1436-1462
    • Meinshausen, N.1    Buhlmann, P.2
  • 19
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • TIBSHIRANI, R. J. (1996). Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B 58, 267-88.
    • (1996) J. R. Statist. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.J.1
  • 22
    • 33947616780 scopus 로고    scopus 로고
    • DALASS: Variable selection in discriminant analysis via the LASSO
    • DOI 10.1016/j.csda.2006.12.046, PII S0167947306005032
    • TRENDAFILOV, N. T. & JOLLIFFE, I. T. (2007). DALASS: Variable selection in discriminant analysis via the lasso. Comp. Statist. Data Anal. 51, 3718-36. (Pubitemid 46497496)
    • (2007) Computational Statistics and Data Analysis , vol.51 , Issue.8 , pp. 3718-3736
    • Trendafilov, N.T.1    Jolliffe, I.T.2
  • 23
    • 65749083666 scopus 로고    scopus 로고
    • Sharp thresholds for noisy and high-dimensional recovery of sparsity using 1-constrained quadratic programming (lasso)
    • WAINWRIGHT, M. J. (2009). Sharp thresholds for noisy and high-dimensional recovery of sparsity using 1-constrained quadratic programming (lasso). IEEE Trans. Info. Theory 55, 2183-202.
    • (2009) IEEE Trans. Info. Theory , vol.55 , pp. 2183-2202
    • Wainwright, M.J.1
  • 24
    • 80054768348 scopus 로고    scopus 로고
    • Penalized classification using Fisher's linear discriminant
    • WITTEN, D. M. & TIBSHIRANI, R. J. (2011). Penalized classification using Fisher's linear discriminant. J. R. Statist. Soc. B 73, 753-72.
    • (2011) J. R. Statist. Soc. B , vol.73 , pp. 753-772
    • Witten, D.M.1    Tibshirani, R.J.2
  • 25
    • 65449167549 scopus 로고    scopus 로고
    • Sparse linear discriminant analysis for simultaneous testing for the significance of a gene set/pathway and gene selection
    • WU, M. C., ZHANG, L., WANG, Z., CHRISTIANI, D. C. & LIN, X. (2009). Sparse linear discriminant analysis for simultaneous testing for the significance of a gene set/pathway and gene selection. Bioinformatics 25, 1145-51.
    • (2009) Bioinformatics , vol.25 , pp. 1145-1151
    • C, W.U.M.1    Zhang, L.2    Wang, Z.3    Christiani, D.C.4    Lin, X.5
  • 27
    • 77649284492 scopus 로고    scopus 로고
    • Nearly unbiased variable selection under minimax concave penalty
    • ZHANG, C. H. (2010). Nearly unbiased variable selection under minimax concave penalty. Ann. Statist. 38, 894-942.
    • (2010) Ann. Statist. , vol.38 , pp. 894-942
    • Zhang, C.H.1
  • 28
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of Lasso
    • ZHAO, P. & YU, B. (2006). On model selection consistency of lasso. J.Mach. Learn. Res. 7, 2541-63. (Pubitemid 44866738)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2
  • 29
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • ZOU, H. (2006). The adaptive lasso and its oracle properties. J. Am. Statist. Assoc. 101, 1418-29.
    • (2006) J. Am. Statist. Assoc. , vol.101 , pp. 1418-1429
    • Zou, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.