메뉴 건너뛰기




Volumn 14, Issue , 2013, Pages 3011-3040

A plug-in approach to neyman-pearson classification

Author keywords

Anomaly detection; Neyman Pearson paradigm; Nonparametric statistics; Oracle inequality; Plug in approach

Indexed keywords

ANOMALY DETECTION; NEYMAN-PEARSON; NON-PARAMETRIC STATISTICS; ORACLE INEQUALITIES; PLUG-INS;

EID: 84887469287     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (55)

References (30)
  • 1
    • 47949100550 scopus 로고    scopus 로고
    • A comprehensive survey of numeric and symbolic outlier mining techniques
    • M. Agyemang, K. Barker, and R. Alhajj. A comprehensive survey of numeric and symbolic outlier mining techniques. Intelligent Data Analysis, 6:521-538, 2006
    • (2006) Intelligent Data Analysis , vol.6 , pp. 521-538
    • Agyemang, M.1    Barker, K.2    Alhajj, R.3
  • 2
    • 34547706430 scopus 로고    scopus 로고
    • Fast learning rates for plug-in classifiers under the margin condition
    • J. Audibert and A. Tsybakov. Fast learning rates for plug-in classifiers under the margin condition. Annals of Statistics, 35:608-633, 2007
    • (2007) Annals of Statistics , vol.35 , pp. 608-633
    • Audibert, J.1    Tsybakov, A.2
  • 5
    • 0038045155 scopus 로고    scopus 로고
    • Radial basis function neural networks for nonlinear Fisher discrimination and Neyman-Pearson classification
    • DOI 10.1016/S0893-6080(03)00086-8
    • D. Casasent and X. Chen. Radial basis function neural networks for nonlinear fisher discrimination and neyman-pearson classification. Neural Networks, 16(5-6):529-535, 2003 (Pubitemid 36794324)
    • (2003) Neural Networks , vol.16 , Issue.5-6 , pp. 529-535
    • Casasent, D.1    Chen, X.-W.2
  • 8
    • 5644227769 scopus 로고    scopus 로고
    • Kernel density estimators: Convergence in distribution for weighted sup-norms
    • DOI 10.1007/s00440-004-0339-x
    • E. Gine, V. Koltchinskii, and L. Sakhanenko. Kernel density estimators: convergence in distribution for weighted sup norms. Probability Theory and Related Fields, 130:167-198, 2004 (Pubitemid 39374503)
    • (2004) Probability Theory and Related Fields , vol.130 , Issue.2 , pp. 167-198
    • Gine, E.1    Koltchinskii, V.2    Sakhanenko, L.3
  • 9
    • 48249090119 scopus 로고    scopus 로고
    • Pearson classification with convex loss function
    • M. Han, D. Chen, and Z. Sun. Analysis to Neyman-Pearson classification with convex loss function. Analysis in Theory and Applications, 24(1):18-28, 2008
    • (2008) Analysis in Theory and Applications , vol.24 , Issue.1 , pp. 18-28
    • Han, M.1    Chen, D.2    Sun, Z.3
  • 10
    • 7544223741 scopus 로고    scopus 로고
    • A survey of outlier detection methodologies
    • V. Hodge and J. Austin. A survey of outlier detection methodologies. Artificial Intelligence Rivew, 2:85-126, 2004
    • (2004) Artificial Intelligence Rivew , vol.2 , pp. 85-126
    • Hodge, V.1    Austin, J.2
  • 11
    • 0004143760 scopus 로고    scopus 로고
    • Springer Texts in Statistics. Springer, New York, third edition ISBN 0-387-98864-5.
    • E. L. Lehmann and J. P. Romano. Testing Statistical Hypotheses. Springer Texts in Statistics. Springer, New York, third edition, 2005 ISBN 0-387-98864-5.
    • (2005) Testing Statistical Hypotheses
    • Lehmann, E.L.1    Romano, J.P.2
  • 13
    • 84879167061 scopus 로고    scopus 로고
    • Multivariate density estimation under sup-norm loss: Oracle approach, adaptation and independence structure
    • O. Lepski. Multivariate density estimation under sup-norm loss: oracle approach, adaptation and independence structure. Annals of Statistics, 41(2):1005-1034, 2013
    • (2013) Annals of Statistics , vol.41 , Issue.2 , pp. 1005-1034
    • Lepski, O.1
  • 14
  • 15
    • 0142063407 scopus 로고    scopus 로고
    • Novelty detection: A review-part 1: Statistical approahces
    • M. Markou and S. Singh. Novelty detection: a review-part 1: statistical approahces. Signal Processing, 12:2481-2497, 2003
    • (2003) Signal Processing , vol.12 , pp. 2481-2497
    • Markou, M.1    Singh, S.2
  • 16
    • 0142126712 scopus 로고    scopus 로고
    • Novelty detection: A review-part 2: Network-based approaches
    • M. Markou and S. Singh. Novelty detection: a review-part 2: network-based approahces. Signal Processing, 12:2499-2521, 2003
    • (2003) Signal Processing , vol.12 , pp. 2499-2521
    • Markou, M.1    Singh, S.2
  • 17
    • 34250315640 scopus 로고    scopus 로고
    • An overview of anomaly detection techniques: Existing solutions and latest technological trends
    • DOI 10.1016/j.comnet.2007.02.001, PII S138912860700062X
    • A. Patcha and J.M. Park. An overview of anomaly detection techniques: Existing solutions and latest technological trends. Computer Networks, 12:3448-3470, 2007 (Pubitemid 46921030)
    • (2007) Computer Networks , vol.51 , Issue.12 , pp. 3448-3470
    • Patcha, A.1    Park, J.-M.2
  • 18
    • 0001030653 scopus 로고
    • Measuring mass concentrations and estimating density contour clusters-an excess mass approach
    • W. Polonik. Measuring mass concentrations and estimating density contour clusters-an excess mass approach. Annals of Statistics, 23:855-881, 1995
    • (1995) Annals of Statistics , vol.23 , pp. 855-881
    • Polonik, W.1
  • 19
    • 80555154412 scopus 로고    scopus 로고
    • Neyman-pearson classification, convexity and stochastic constraints
    • P. Rigollet and X. Tong. Neyman-pearson classification, convexity and stochastic constraints. Journal of Machine Learning Research, 12:2831-2855, 2011
    • (2011) Journal of Machine Learning Research , vol.12 , pp. 2831-2855
    • Rigollet, P.1    Tong, X.2
  • 20
    • 77649197099 scopus 로고    scopus 로고
    • Optimal rates for plug-in estimators of density level sets
    • P. Rigollet and R. Vert. Optimal rates for plug-in estimators of density level sets. Bernoulli, 15(4): 1154-1178, 2009
    • (2009) Bernoulli , vol.15 , Issue.4 , pp. 1154-1178
    • Rigollet, P.1    Vert, R.2
  • 22
    • 34547917144 scopus 로고    scopus 로고
    • Performance measures for Neyman-Pearson classification
    • DOI 10.1109/TIT.2007.901152
    • C. Scott. Performance measures for Neyman-Pearson classification. IEEE Transactions on Information Theory, 53(8):2852-2863, 2007 (Pubitemid 47249851)
    • (2007) IEEE Transactions on Information Theory , vol.53 , Issue.8 , pp. 2852-2863
    • Scott, C.1
  • 23
    • 27744553952 scopus 로고    scopus 로고
    • A Neyman-Pearson approach to statistical learning
    • DOI 10.1109/TIT.2005.856955
    • C. Scott and R. Nowak. A neyman-pearson approach to statistical learning. IEEE Transactions on Information Theory, 51(11):3806-3819, 2005 (Pubitemid 41622582)
    • (2005) IEEE Transactions on Information Theory , vol.51 , Issue.11 , pp. 3806-3819
    • Scott, C.1    Nowak, R.2
  • 24
    • 34250697375 scopus 로고    scopus 로고
    • Classifiers of support vector machine type with l1 complexity regularization
    • B. Tarigan and S. van de Geer. Classifiers of support vector machine type with l1 complexity regularization. Bernoulli, 12:1045-1076, 2006
    • (2006) Bernoulli , vol.12 , pp. 1045-1076
    • Tarigan, B.1    Van De, G.S.2
  • 25
    • 3142725508 scopus 로고    scopus 로고
    • Optimal aggregation of classifiers in statistical learning
    • DOI 10.1214/aos/1079120131
    • A. Tsybakov. Optimal aggregation of classifiers in statistical learning. Annals of Statistics, 32: 135-166, 2004 (Pubitemid 41449306)
    • (2004) Annals of Statistics , vol.32 , Issue.1 , pp. 135-166
    • Tsybakov, A.B.1
  • 27
    • 23744505130 scopus 로고    scopus 로고
    • Square root penalty: Adaptation to the margin in classification and in edge estimation
    • DOI 10.1214/009053604000001066
    • A. Tsybakov and S. van de Geer. Square root penalty: Adaptation to the margin in classification and in edge estimation. Annals of Statistics, 33:1203-1224, 2005 (Pubitemid 41137880)
    • (2005) Annals of Statistics , vol.33 , Issue.3 , pp. 1203-1224
    • Tsybakov, A.B.1    Van Geer, S.A.D.E.2
  • 28
    • 84856104232 scopus 로고    scopus 로고
    • Consistency of the kernel density estimator: A survey
    • D.Wied and R.Weibbach. Consistency of the kernel density estimator: a survey. Statistical Papers, 53(1):1-21, 2010
    • (2010) Statistical Papers , vol.53 , Issue.1 , pp. 1-21
    • Wied, D.1    Weibbach, R.2
  • 29
    • 0033321586 scopus 로고    scopus 로고
    • Minimax nonparametric classification - Part I: Rates of convergence
    • DOI 10.1109/18.796368
    • Y. Yang. Minimax nonparametric classification-part i: rates of convergence. IEEE Transaction Information Theory, 45:2271-2284, 1999 (Pubitemid 30514188)
    • (1999) IEEE Transactions on Information Theory , vol.45 , Issue.7 , pp. 2271-2284
    • Yang, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.