-
1
-
-
47949100550
-
A comprehensive survey of numeric and symbolic outlier mining techniques
-
M. Agyemang, K. Barker, and R. Alhajj. A comprehensive survey of numeric and symbolic outlier mining techniques. Intelligent Data Analysis, 6:521-538, 2006
-
(2006)
Intelligent Data Analysis
, vol.6
, pp. 521-538
-
-
Agyemang, M.1
Barker, K.2
Alhajj, R.3
-
2
-
-
34547706430
-
Fast learning rates for plug-in classifiers under the margin condition
-
J. Audibert and A. Tsybakov. Fast learning rates for plug-in classifiers under the margin condition. Annals of Statistics, 35:608-633, 2007
-
(2007)
Annals of Statistics
, vol.35
, pp. 608-633
-
-
Audibert, J.1
Tsybakov, A.2
-
5
-
-
0038045155
-
Radial basis function neural networks for nonlinear Fisher discrimination and Neyman-Pearson classification
-
DOI 10.1016/S0893-6080(03)00086-8
-
D. Casasent and X. Chen. Radial basis function neural networks for nonlinear fisher discrimination and neyman-pearson classification. Neural Networks, 16(5-6):529-535, 2003 (Pubitemid 36794324)
-
(2003)
Neural Networks
, vol.16
, Issue.5-6
, pp. 529-535
-
-
Casasent, D.1
Chen, X.-W.2
-
8
-
-
5644227769
-
Kernel density estimators: Convergence in distribution for weighted sup-norms
-
DOI 10.1007/s00440-004-0339-x
-
E. Gine, V. Koltchinskii, and L. Sakhanenko. Kernel density estimators: convergence in distribution for weighted sup norms. Probability Theory and Related Fields, 130:167-198, 2004 (Pubitemid 39374503)
-
(2004)
Probability Theory and Related Fields
, vol.130
, Issue.2
, pp. 167-198
-
-
Gine, E.1
Koltchinskii, V.2
Sakhanenko, L.3
-
9
-
-
48249090119
-
Pearson classification with convex loss function
-
M. Han, D. Chen, and Z. Sun. Analysis to Neyman-Pearson classification with convex loss function. Analysis in Theory and Applications, 24(1):18-28, 2008
-
(2008)
Analysis in Theory and Applications
, vol.24
, Issue.1
, pp. 18-28
-
-
Han, M.1
Chen, D.2
Sun, Z.3
-
10
-
-
7544223741
-
A survey of outlier detection methodologies
-
V. Hodge and J. Austin. A survey of outlier detection methodologies. Artificial Intelligence Rivew, 2:85-126, 2004
-
(2004)
Artificial Intelligence Rivew
, vol.2
, pp. 85-126
-
-
Hodge, V.1
Austin, J.2
-
11
-
-
0004143760
-
-
Springer Texts in Statistics. Springer, New York, third edition ISBN 0-387-98864-5.
-
E. L. Lehmann and J. P. Romano. Testing Statistical Hypotheses. Springer Texts in Statistics. Springer, New York, third edition, 2005 ISBN 0-387-98864-5.
-
(2005)
Testing Statistical Hypotheses
-
-
Lehmann, E.L.1
Romano, J.P.2
-
13
-
-
84879167061
-
Multivariate density estimation under sup-norm loss: Oracle approach, adaptation and independence structure
-
O. Lepski. Multivariate density estimation under sup-norm loss: oracle approach, adaptation and independence structure. Annals of Statistics, 41(2):1005-1034, 2013
-
(2013)
Annals of Statistics
, vol.41
, Issue.2
, pp. 1005-1034
-
-
Lepski, O.1
-
15
-
-
0142063407
-
Novelty detection: A review-part 1: Statistical approahces
-
M. Markou and S. Singh. Novelty detection: a review-part 1: statistical approahces. Signal Processing, 12:2481-2497, 2003
-
(2003)
Signal Processing
, vol.12
, pp. 2481-2497
-
-
Markou, M.1
Singh, S.2
-
16
-
-
0142126712
-
Novelty detection: A review-part 2: Network-based approaches
-
M. Markou and S. Singh. Novelty detection: a review-part 2: network-based approahces. Signal Processing, 12:2499-2521, 2003
-
(2003)
Signal Processing
, vol.12
, pp. 2499-2521
-
-
Markou, M.1
Singh, S.2
-
17
-
-
34250315640
-
An overview of anomaly detection techniques: Existing solutions and latest technological trends
-
DOI 10.1016/j.comnet.2007.02.001, PII S138912860700062X
-
A. Patcha and J.M. Park. An overview of anomaly detection techniques: Existing solutions and latest technological trends. Computer Networks, 12:3448-3470, 2007 (Pubitemid 46921030)
-
(2007)
Computer Networks
, vol.51
, Issue.12
, pp. 3448-3470
-
-
Patcha, A.1
Park, J.-M.2
-
18
-
-
0001030653
-
Measuring mass concentrations and estimating density contour clusters-an excess mass approach
-
W. Polonik. Measuring mass concentrations and estimating density contour clusters-an excess mass approach. Annals of Statistics, 23:855-881, 1995
-
(1995)
Annals of Statistics
, vol.23
, pp. 855-881
-
-
Polonik, W.1
-
19
-
-
80555154412
-
Neyman-pearson classification, convexity and stochastic constraints
-
P. Rigollet and X. Tong. Neyman-pearson classification, convexity and stochastic constraints. Journal of Machine Learning Research, 12:2831-2855, 2011
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 2831-2855
-
-
Rigollet, P.1
Tong, X.2
-
20
-
-
77649197099
-
Optimal rates for plug-in estimators of density level sets
-
P. Rigollet and R. Vert. Optimal rates for plug-in estimators of density level sets. Bernoulli, 15(4): 1154-1178, 2009
-
(2009)
Bernoulli
, vol.15
, Issue.4
, pp. 1154-1178
-
-
Rigollet, P.1
Vert, R.2
-
22
-
-
34547917144
-
Performance measures for Neyman-Pearson classification
-
DOI 10.1109/TIT.2007.901152
-
C. Scott. Performance measures for Neyman-Pearson classification. IEEE Transactions on Information Theory, 53(8):2852-2863, 2007 (Pubitemid 47249851)
-
(2007)
IEEE Transactions on Information Theory
, vol.53
, Issue.8
, pp. 2852-2863
-
-
Scott, C.1
-
23
-
-
27744553952
-
A Neyman-Pearson approach to statistical learning
-
DOI 10.1109/TIT.2005.856955
-
C. Scott and R. Nowak. A neyman-pearson approach to statistical learning. IEEE Transactions on Information Theory, 51(11):3806-3819, 2005 (Pubitemid 41622582)
-
(2005)
IEEE Transactions on Information Theory
, vol.51
, Issue.11
, pp. 3806-3819
-
-
Scott, C.1
Nowak, R.2
-
24
-
-
34250697375
-
Classifiers of support vector machine type with l1 complexity regularization
-
B. Tarigan and S. van de Geer. Classifiers of support vector machine type with l1 complexity regularization. Bernoulli, 12:1045-1076, 2006
-
(2006)
Bernoulli
, vol.12
, pp. 1045-1076
-
-
Tarigan, B.1
Van De, G.S.2
-
25
-
-
3142725508
-
Optimal aggregation of classifiers in statistical learning
-
DOI 10.1214/aos/1079120131
-
A. Tsybakov. Optimal aggregation of classifiers in statistical learning. Annals of Statistics, 32: 135-166, 2004 (Pubitemid 41449306)
-
(2004)
Annals of Statistics
, vol.32
, Issue.1
, pp. 135-166
-
-
Tsybakov, A.B.1
-
27
-
-
23744505130
-
Square root penalty: Adaptation to the margin in classification and in edge estimation
-
DOI 10.1214/009053604000001066
-
A. Tsybakov and S. van de Geer. Square root penalty: Adaptation to the margin in classification and in edge estimation. Annals of Statistics, 33:1203-1224, 2005 (Pubitemid 41137880)
-
(2005)
Annals of Statistics
, vol.33
, Issue.3
, pp. 1203-1224
-
-
Tsybakov, A.B.1
Van Geer, S.A.D.E.2
-
28
-
-
84856104232
-
Consistency of the kernel density estimator: A survey
-
D.Wied and R.Weibbach. Consistency of the kernel density estimator: a survey. Statistical Papers, 53(1):1-21, 2010
-
(2010)
Statistical Papers
, vol.53
, Issue.1
, pp. 1-21
-
-
Wied, D.1
Weibbach, R.2
-
29
-
-
0033321586
-
Minimax nonparametric classification - Part I: Rates of convergence
-
DOI 10.1109/18.796368
-
Y. Yang. Minimax nonparametric classification-part i: rates of convergence. IEEE Transaction Information Theory, 45:2271-2284, 1999 (Pubitemid 30514188)
-
(1999)
IEEE Transactions on Information Theory
, vol.45
, Issue.7
, pp. 2271-2284
-
-
Yang, Y.1
|