-
1
-
-
84880706152
-
Oncology meets immunology: the cancer-immunity cycle
-
1 Chen, D.S., Mellman, I., Oncology meets immunology: the cancer-immunity cycle. Immunity 39 (2013), 1–10.
-
(2013)
Immunity
, vol.39
, pp. 1-10
-
-
Chen, D.S.1
Mellman, I.2
-
2
-
-
84946882340
-
Localized signals that regulate transendothelial migration
-
2 Muller, W.A., Localized signals that regulate transendothelial migration. Curr. Opin. Immunol. 38 (2016), 24–29.
-
(2016)
Curr. Opin. Immunol.
, vol.38
, pp. 24-29
-
-
Muller, W.A.1
-
3
-
-
84918567280
-
Trafficking of T cells into tumors
-
3 Slaney, C.Y., et al. Trafficking of T cells into tumors. Cancer Res. 74 (2014), 7168–7174.
-
(2014)
Cancer Res.
, vol.74
, pp. 7168-7174
-
-
Slaney, C.Y.1
-
4
-
-
84875463042
-
Molecular mechanisms of T cell co-stimulation and co-inhibition
-
4 Chen, L., Flies, D.B., Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol. 13 (2013), 227–242.
-
(2013)
Nat. Rev. Immunol.
, vol.13
, pp. 227-242
-
-
Chen, L.1
Flies, D.B.2
-
5
-
-
84924274467
-
The path to reactivation of antitumor immunity and checkpoint immunotherapy
-
5 Kim, H.J., Cantor, H., The path to reactivation of antitumor immunity and checkpoint immunotherapy. Cancer Immunol. Res. 2 (2014), 926–936.
-
(2014)
Cancer Immunol. Res.
, vol.2
, pp. 926-936
-
-
Kim, H.J.1
Cantor, H.2
-
6
-
-
84925625990
-
On being less tolerant: enhanced cancer immunosurveillance enabled by targeting checkpoints and agonists of T cell activation
-
6 Lesokhin, A.M., et al. On being less tolerant: enhanced cancer immunosurveillance enabled by targeting checkpoints and agonists of T cell activation. Sci. Trans. Med., 7, 2015, 280sr281.
-
(2015)
Sci. Trans. Med.
, vol.7
, pp. 280sr281
-
-
Lesokhin, A.M.1
-
7
-
-
84928774156
-
The future of immune checkpoint therapy
-
7 Sharma, P., Allison, J.P., The future of immune checkpoint therapy. Science 348 (2015), 56–61.
-
(2015)
Science
, vol.348
, pp. 56-61
-
-
Sharma, P.1
Allison, J.P.2
-
8
-
-
84921448324
-
The evolution of checkpoint blockade as a cancer therapy: what's here, what's next?
-
8 Shin, D.S., Ribas, A., The evolution of checkpoint blockade as a cancer therapy: what's here, what's next?. Curr. Opin. Immunol. 33 (2015), 23–35.
-
(2015)
Curr. Opin. Immunol.
, vol.33
, pp. 23-35
-
-
Shin, D.S.1
Ribas, A.2
-
9
-
-
84928062583
-
Immune checkpoint blockade: a common denominator approach to cancer therapy
-
9 Topalian, S.L., et al. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27 (2015), 450–461.
-
(2015)
Cancer Cell
, vol.27
, pp. 450-461
-
-
Topalian, S.L.1
-
10
-
-
0035056017
-
CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy
-
10 Chambers, C.A., et al. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu. Rev. Immunol. 19 (2001), 565–594.
-
(2001)
Annu. Rev. Immunol.
, vol.19
, pp. 565-594
-
-
Chambers, C.A.1
-
11
-
-
33646205150
-
A molecular perspective of CTLA-4 function
-
11 Teft, W.A., et al. A molecular perspective of CTLA-4 function. Annu. Rev. Immunol. 24 (2006), 65–97.
-
(2006)
Annu. Rev. Immunol.
, vol.24
, pp. 65-97
-
-
Teft, W.A.1
-
12
-
-
77954801079
-
Improved survival with ipilimumab in patients with metastatic melanoma
-
12 Hodi, F.S., et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363 (2010), 711–723.
-
(2010)
N. Engl. J. Med.
, vol.363
, pp. 711-723
-
-
Hodi, F.S.1
-
13
-
-
79959772576
-
Ipilimumab plus dacarbazine for previously untreated metastatic melanoma
-
13 Robert, C., et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 364 (2011), 2517–2526.
-
(2011)
N. Engl. J. Med.
, vol.364
, pp. 2517-2526
-
-
Robert, C.1
-
14
-
-
84928917822
-
Pooled analysis of long-term survival data from Phase II and Phase III trials of ipilimumab in unresectable or metastatic melanoma
-
14 Schadendorf, D., et al. Pooled analysis of long-term survival data from Phase II and Phase III trials of ipilimumab in unresectable or metastatic melanoma. J. Clin. Oncol. 33 (2015), 1889–1894.
-
(2015)
J. Clin. Oncol.
, vol.33
, pp. 1889-1894
-
-
Schadendorf, D.1
-
15
-
-
84918828514
-
Genetic basis for clinical response to CTLA-4 blockade in melanoma
-
15 Snyder, A., et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371 (2014), 2189–2199.
-
(2014)
N. Engl. J. Med.
, vol.371
, pp. 2189-2199
-
-
Snyder, A.1
-
16
-
-
84943516465
-
Genomic correlates of response to CTLA-4 blockade in metastatic melanoma
-
16 Van Allen, E.M., et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350 (2015), 207–211.
-
(2015)
Science
, vol.350
, pp. 207-211
-
-
Van Allen, E.M.1
-
17
-
-
80053648839
-
Integrated NY-ESO-1 antibody and CD8+ T-cell responses correlate with clinical benefit in advanced melanoma patients treated with ipilimumab
-
17 Yuan, J., et al. Integrated NY-ESO-1 antibody and CD8+ T-cell responses correlate with clinical benefit in advanced melanoma patients treated with ipilimumab. Proc. Natl. Acad. Sci. U.S.A. 108 (2011), 16723–16728.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 16723-16728
-
-
Yuan, J.1
-
18
-
-
84862769116
-
An immune-active tumor microenvironment favors clinical response to ipilimumab
-
18 Ji, R.R., et al. An immune-active tumor microenvironment favors clinical response to ipilimumab. Cancer Immunol. Immunother. 61 (2012), 1019–1031.
-
(2012)
Cancer Immunol. Immunother.
, vol.61
, pp. 1019-1031
-
-
Ji, R.R.1
-
19
-
-
84941711371
-
Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future
-
19 Chen, L., Han, X., Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J. Clin. Invest. 125 (2015), 3384–3391.
-
(2015)
J. Clin. Invest.
, vol.125
, pp. 3384-3391
-
-
Chen, L.1
Han, X.2
-
20
-
-
42649125225
-
PD-1 and its ligands in tolerance and immunity
-
20 Keir, M.E., et al. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 26 (2008), 677–704.
-
(2008)
Annu. Rev. Immunol.
, vol.26
, pp. 677-704
-
-
Keir, M.E.1
-
21
-
-
84926528302
-
Overcoming T cell exhaustion in infection and cancer
-
21 Pauken, K.E., Wherry, E.J., Overcoming T cell exhaustion in infection and cancer. Trends Immunol. 36 (2015), 265–276.
-
(2015)
Trends Immunol.
, vol.36
, pp. 265-276
-
-
Pauken, K.E.1
Wherry, E.J.2
-
22
-
-
84964220678
-
The PD-1 pathway as a therapeutic target to overcome immune escape mechanisms in cancer
-
22 Henick, B.S., et al. The PD-1 pathway as a therapeutic target to overcome immune escape mechanisms in cancer. Expert Opin. Ther. Targets 18 (2014), 1407–1420.
-
(2014)
Expert Opin. Ther. Targets
, vol.18
, pp. 1407-1420
-
-
Henick, B.S.1
-
23
-
-
84925529257
-
Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway
-
23 Ohaegbulam, K.C., et al. Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends Mol. Med. 21 (2015), 24–33.
-
(2015)
Trends Mol. Med.
, vol.21
, pp. 24-33
-
-
Ohaegbulam, K.C.1
-
26
-
-
84928761118
-
Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer
-
26 Rizvi, N.A., et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348 (2015), 124–128.
-
(2015)
Science
, vol.348
, pp. 124-128
-
-
Rizvi, N.A.1
-
27
-
-
84920956735
-
Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients
-
27 Herbst, R.S., et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515 (2014), 563–567.
-
(2014)
Nature
, vol.515
, pp. 563-567
-
-
Herbst, R.S.1
-
28
-
-
84935474357
-
PD-L1 expression as a predictive biomarker in cancer immunotherapy
-
28 Patel, S.P., Kurzrock, R., PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol. Cancer Therapeutics 14 (2015), 847–856.
-
(2015)
Mol. Cancer Therapeutics
, vol.14
, pp. 847-856
-
-
Patel, S.P.1
Kurzrock, R.2
-
29
-
-
84904024273
-
Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy
-
29 Taube, J.M., et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin. Cancer Res. 20 (2014), 5064–5074.
-
(2014)
Clin. Cancer Res.
, vol.20
, pp. 5064-5074
-
-
Taube, J.M.1
-
30
-
-
84920956732
-
PD-1 blockade induces responses by inhibiting adaptive immune resistance
-
30 Tumeh, P.C., et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515 (2014), 568–571.
-
(2014)
Nature
, vol.515
, pp. 568-571
-
-
Tumeh, P.C.1
-
31
-
-
18444374405
-
Mutations of the BRAF gene in human cancer
-
31 Davies, H., et al. Mutations of the BRAF gene in human cancer. Nature 417 (2002), 949–954.
-
(2002)
Nature
, vol.417
, pp. 949-954
-
-
Davies, H.1
-
32
-
-
12144289677
-
Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF
-
32 Wan, P.T., et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116 (2004), 855–867.
-
(2004)
Cell
, vol.116
, pp. 855-867
-
-
Wan, P.T.1
-
33
-
-
84891648456
-
Phase II trial (BREAK-2) of the BRAF inhibitor dabrafenib (GSK2118436) in patients with metastatic melanoma
-
33 Ascierto, P.A., et al. Phase II trial (BREAK-2) of the BRAF inhibitor dabrafenib (GSK2118436) in patients with metastatic melanoma. J. Clin. Oncol. 31 (2013), 3205–3211.
-
(2013)
J. Clin. Oncol.
, vol.31
, pp. 3205-3211
-
-
Ascierto, P.A.1
-
34
-
-
79959795786
-
Improved survival with vemurafenib in melanoma with BRAF V600E mutation
-
34 Chapman, P.B., et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364 (2011), 2507–2516.
-
(2011)
N. Engl. J. Med.
, vol.364
, pp. 2507-2516
-
-
Chapman, P.B.1
-
35
-
-
84864285704
-
Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial
-
35 Hauschild, A., et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380 (2012), 358–365.
-
(2012)
Lancet
, vol.380
, pp. 358-365
-
-
Hauschild, A.1
-
36
-
-
83455254767
-
RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E)
-
36 Poulikakos, P.I., et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480 (2011), 387–390.
-
(2011)
Nature
, vol.480
, pp. 387-390
-
-
Poulikakos, P.I.1
-
37
-
-
84891898344
-
Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy
-
37 Shi, H., et al. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov. 4 (2014), 80–93.
-
(2014)
Cancer Discov.
, vol.4
, pp. 80-93
-
-
Shi, H.1
-
38
-
-
84891894051
-
The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma
-
38 Van Allen, E.M., et al. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov. 4 (2014), 94–109.
-
(2014)
Cancer Discov.
, vol.4
, pp. 94-109
-
-
Van Allen, E.M.1
-
39
-
-
84908245075
-
Combined vemurafenib and cobimetinib in BRAF-mutated melanoma
-
39 Larkin, J., et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N. Engl. J. Med. 371 (2014), 1867–1876.
-
(2014)
N. Engl. J. Med.
, vol.371
, pp. 1867-1876
-
-
Larkin, J.1
-
40
-
-
84920394727
-
Improved overall survival in melanoma with combined dabrafenib and trametinib
-
40 Robert, C., et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N. Engl. J. Med. 372 (2015), 30–39.
-
(2015)
N. Engl. J. Med.
, vol.372
, pp. 30-39
-
-
Robert, C.1
-
41
-
-
84923341318
-
Increased MAPK reactivation in early resistance to dabrafenib/trametinib combination therapy of BRAF-mutant metastatic melanoma
-
41 Long, G.V., et al. Increased MAPK reactivation in early resistance to dabrafenib/trametinib combination therapy of BRAF-mutant metastatic melanoma. Nat. Commun., 5, 2014, 5694.
-
(2014)
Nat. Commun.
, vol.5
, pp. 5694
-
-
Long, G.V.1
-
42
-
-
33750598863
-
Role of the mitogen-activated protein kinase signaling pathway in the regulation of human melanocytic antigen expression
-
42 Kono, M., et al. Role of the mitogen-activated protein kinase signaling pathway in the regulation of human melanocytic antigen expression. Mol. Cancer Res. 4 (2006), 779–792.
-
(2006)
Mol. Cancer Res.
, vol.4
, pp. 779-792
-
-
Kono, M.1
-
43
-
-
77954373338
-
Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function
-
43 Boni, A., et al. Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res. 70 (2010), 5213–5219.
-
(2010)
Cancer Res.
, vol.70
, pp. 5213-5219
-
-
Boni, A.1
-
44
-
-
84874872137
-
BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma
-
44 Frederick, D.T., et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin. Cancer Res. 19 (2013), 1225–1231.
-
(2013)
Clin. Cancer Res.
, vol.19
, pp. 1225-1231
-
-
Frederick, D.T.1
-
45
-
-
84875552922
-
Immunogenic cell death in cancer therapy
-
45 Kroemer, G., et al. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 31 (2013), 51–72.
-
(2013)
Annu. Rev. Immunol.
, vol.31
, pp. 51-72
-
-
Kroemer, G.1
-
46
-
-
84937629331
-
PD-L1 expression and tumor-infiltrating lymphocytes define different subsets of MAPK inhibitor-treated melanoma patients
-
46 Kakavand, H., et al. PD-L1 expression and tumor-infiltrating lymphocytes define different subsets of MAPK inhibitor-treated melanoma patients. Clin. Cancer Res. 21 (2015), 3140–3148.
-
(2015)
Clin. Cancer Res.
, vol.21
, pp. 3140-3148
-
-
Kakavand, H.1
-
47
-
-
84872514398
-
BRAF inhibition increases tumor infiltration by T cells and enhances the antitumor activity of adoptive immunotherapy in mice
-
47 Liu, C., et al. BRAF inhibition increases tumor infiltration by T cells and enhances the antitumor activity of adoptive immunotherapy in mice. Clin. Cancer Res. 19 (2013), 393–403.
-
(2013)
Clin. Cancer Res.
, vol.19
, pp. 393-403
-
-
Liu, C.1
-
48
-
-
84960450202
-
MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade
-
48 Ebert, P.J., et al. MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity 44 (2016), 609–621.
-
(2016)
Immunity
, vol.44
, pp. 609-621
-
-
Ebert, P.J.1
-
49
-
-
0032080849
-
Inhibition of mitogen-activated protein kinase kinase blocks T cell proliferation but does not induce or prevent anergy
-
49 DeSilva, D.R., et al. Inhibition of mitogen-activated protein kinase kinase blocks T cell proliferation but does not induce or prevent anergy. J. Immunol. 160 (1998), 4175–4181.
-
(1998)
J. Immunol.
, vol.160
, pp. 4175-4181
-
-
DeSilva, D.R.1
-
50
-
-
78650391890
-
The oncogenic BRAF kinase inhibitor PLX4032/RG7204 does not affect the viability or function of human lymphocytes across a wide range of concentrations
-
50 Comin-Anduix, B., et al. The oncogenic BRAF kinase inhibitor PLX4032/RG7204 does not affect the viability or function of human lymphocytes across a wide range of concentrations. Clin. Cancer Res. 16 (2010), 6040–6048.
-
(2010)
Clin. Cancer Res.
, vol.16
, pp. 6040-6048
-
-
Comin-Anduix, B.1
-
51
-
-
84859807701
-
BRAF(V600) inhibitor GSK2118436 targeted inhibition of mutant BRAF in cancer patients does not impair overall immune competency
-
51 Hong, D.S., et al. BRAF(V600) inhibitor GSK2118436 targeted inhibition of mutant BRAF in cancer patients does not impair overall immune competency. Clin. Cancer Res. 18 (2012), 2326–2335.
-
(2012)
Clin. Cancer Res.
, vol.18
, pp. 2326-2335
-
-
Hong, D.S.1
-
52
-
-
84902596389
-
Paradoxical activation of T cells via augmented ERK signaling mediated by a RAF inhibitor
-
52 Callahan, M.K., et al. Paradoxical activation of T cells via augmented ERK signaling mediated by a RAF inhibitor. Cancer Immunol. Res. 2 (2014), 70–79.
-
(2014)
Cancer Immunol. Res.
, vol.2
, pp. 70-79
-
-
Callahan, M.K.1
-
53
-
-
84873336707
-
The activation of MAPK in melanoma cells resistant to BRAF inhibition promotes PD-L1 expression that is reversible by MEK and PI3K inhibition
-
53 Jiang, X., et al. The activation of MAPK in melanoma cells resistant to BRAF inhibition promotes PD-L1 expression that is reversible by MEK and PI3K inhibition. Clin. Cancer Res. 19 (2013), 598–609.
-
(2013)
Clin. Cancer Res.
, vol.19
, pp. 598-609
-
-
Jiang, X.1
-
54
-
-
84927666190
-
The BRAF and MEK inhibitors dabrafenib and trametinib: effects on immune function and in combination with immunomodulatory antibodies targeting PD-1, PD-L1, and CTLA-4
-
54 Liu, L., et al. The BRAF and MEK inhibitors dabrafenib and trametinib: effects on immune function and in combination with immunomodulatory antibodies targeting PD-1, PD-L1, and CTLA-4. Clin. Cancer Res. 21 (2015), 1639–1651.
-
(2015)
Clin. Cancer Res.
, vol.21
, pp. 1639-1651
-
-
Liu, L.1
-
55
-
-
84903831602
-
Effects of MAPK and PI3K pathways on PD-L1 expression in melanoma
-
55 Atefi, M., et al. Effects of MAPK and PI3K pathways on PD-L1 expression in melanoma. Clin. Cancer Res. 20 (2014), 3446–3457.
-
(2014)
Clin. Cancer Res.
, vol.20
, pp. 3446-3457
-
-
Atefi, M.1
-
56
-
-
84912135461
-
Phase 1 study of the BRAF inhibitor dabrafenib (D) with or without the MEK inhibitor trametinib (T) in combination of ipilimumab (Ipi) for V600E/K mutation-positive unresectable or metastatic melanoma (MM)
-
Abstr 2511
-
56 Puzanov, I., et al. Phase 1 study of the BRAF inhibitor dabrafenib (D) with or without the MEK inhibitor trametinib (T) in combination of ipilimumab (Ipi) for V600E/K mutation-positive unresectable or metastatic melanoma (MM). J. Clin. Oncol., 32, 2014 Abstr 2511.
-
(2014)
J. Clin. Oncol.
, vol.32
-
-
Puzanov, I.1
-
57
-
-
0031039243
-
The biology of vascular endothelial growth factor
-
57 Ferrara, N., Davis-Smyth, T., The biology of vascular endothelial growth factor. Endocr. Rev. 18 (1997), 4–25.
-
(1997)
Endocr. Rev.
, vol.18
, pp. 4-25
-
-
Ferrara, N.1
Davis-Smyth, T.2
-
58
-
-
47949089077
-
VEGF-targeted therapy: mechanisms of anti-tumour activity
-
58 Ellis, L.M., Hicklin, D.J., VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat. Rev. Cancer 8 (2008), 579–591.
-
(2008)
Nat. Rev. Cancer
, vol.8
, pp. 579-591
-
-
Ellis, L.M.1
Hicklin, D.J.2
-
59
-
-
84867591232
-
Anti-VEGF therapies in the clinic
-
59 Meadows, K.L., Hurwitz, H.I., Anti-VEGF therapies in the clinic. Cold Spring Harb. Perspect. Med., 2, 2012, a006577.
-
(2012)
Cold Spring Harb. Perspect. Med.
, vol.2
, pp. a006577
-
-
Meadows, K.L.1
Hurwitz, H.I.2
-
60
-
-
0037699015
-
Tumor angiogenesis modulates leukocyte-vessel wall interactions in vivo by reducing endothelial adhesion molecule expression
-
60 Dirkx, A.E., et al. Tumor angiogenesis modulates leukocyte-vessel wall interactions in vivo by reducing endothelial adhesion molecule expression. Cancer Res. 63 (2003), 2322–2329.
-
(2003)
Cancer Res.
, vol.63
, pp. 2322-2329
-
-
Dirkx, A.E.1
-
61
-
-
0029943319
-
Tumor angiogenesis is accompanied by a decreased inflammatory response of tumor-associated endothelium
-
61 Griffioen, A.W., et al. Tumor angiogenesis is accompanied by a decreased inflammatory response of tumor-associated endothelium. Blood 88 (1996), 667–673.
-
(1996)
Blood
, vol.88
, pp. 667-673
-
-
Griffioen, A.W.1
-
62
-
-
36048982445
-
Tumor blood vessels, a difficult hurdle for infiltrating leukocytes
-
62 Castermans, K., Griffioen, A.W., Tumor blood vessels, a difficult hurdle for infiltrating leukocytes. Biochim. et Biophys. Acta 1776 (2007), 160–174.
-
(2007)
Biochim. et Biophys. Acta
, vol.1776
, pp. 160-174
-
-
Castermans, K.1
Griffioen, A.W.2
-
63
-
-
84877870613
-
Vascular normalization as an emerging strategy to enhance cancer immunotherapy
-
63 Huang, Y., et al. Vascular normalization as an emerging strategy to enhance cancer immunotherapy. Cancer Res. 73 (2013), 2943–2948.
-
(2013)
Cancer Res.
, vol.73
, pp. 2943-2948
-
-
Huang, Y.1
-
64
-
-
84922369778
-
Targeting the tumor vasculature to enhance T cell activity
-
64 Lanitis, E., et al. Targeting the tumor vasculature to enhance T cell activity. Curr. Opin. Immunol. 33 (2015), 55–63.
-
(2015)
Curr. Opin. Immunol.
, vol.33
, pp. 55-63
-
-
Lanitis, E.1
-
65
-
-
84952863049
-
Control of CD8 T-cell infiltration into tumors by vasculature and microenvironment
-
65 Peske, J.D., et al. Control of CD8 T-cell infiltration into tumors by vasculature and microenvironment. Adv. Cancer Res. 128 (2015), 263–307.
-
(2015)
Adv. Cancer Res.
, vol.128
, pp. 263-307
-
-
Peske, J.D.1
-
66
-
-
8444222651
-
Angiogenic profile of breast carcinoma determines leukocyte infiltration
-
66 Bouma-ter Steege, J.C., et al. Angiogenic profile of breast carcinoma determines leukocyte infiltration. Clin. Cancer Res. 10 (2004), 7171–7178.
-
(2004)
Clin. Cancer Res.
, vol.10
, pp. 7171-7178
-
-
Bouma-ter Steege, J.C.1
-
67
-
-
0037448353
-
Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer
-
67 Zhang, L., et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med. 348 (2003), 203–213.
-
(2003)
N. Engl. J. Med.
, vol.348
, pp. 203-213
-
-
Zhang, L.1
-
68
-
-
84996525854
-
Pretreatment serum VEGF is associated with clinical response and overall survival in advanced melanoma patients treated with ipilimumab
-
68 Yuan, J., et al. Pretreatment serum VEGF is associated with clinical response and overall survival in advanced melanoma patients treated with ipilimumab. Cancer Immunol. Res. 2 (2014), 127–132.
-
(2014)
Cancer Immunol. Res.
, vol.2
, pp. 127-132
-
-
Yuan, J.1
-
69
-
-
33646231504
-
Anti-angiogenesis therapy can overcome endothelial cell anergy and promote leukocyte-endothelium interactions and infiltration in tumors
-
69 Dirkx, A.E., et al. Anti-angiogenesis therapy can overcome endothelial cell anergy and promote leukocyte-endothelium interactions and infiltration in tumors. FASEB J 20 (2006), 621–630.
-
(2006)
FASEB J
, vol.20
, pp. 621-630
-
-
Dirkx, A.E.1
-
70
-
-
43749112760
-
Vascular normalization in Rgs5-deficient tumours promotes immune destruction
-
70 Hamzah, J., et al. Vascular normalization in Rgs5-deficient tumours promotes immune destruction. Nature 453 (2008), 410–414.
-
(2008)
Nature
, vol.453
, pp. 410-414
-
-
Hamzah, J.1
-
71
-
-
84867902940
-
Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy
-
71 Huang, Y., et al. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 17561–17566.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 17561-17566
-
-
Huang, Y.1
-
72
-
-
34447117552
-
A vascular endothelial growth factor receptor-2 inhibitor enhances antitumor immunity through an immune-based mechanism
-
72 Manning, E.A., et al. A vascular endothelial growth factor receptor-2 inhibitor enhances antitumor immunity through an immune-based mechanism. Clin. Cancer Res. 13 (2007), 3951–3959.
-
(2007)
Clin. Cancer Res.
, vol.13
, pp. 3951-3959
-
-
Manning, E.A.1
-
73
-
-
77955406159
-
Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer
-
73 Shrimali, R.K., et al. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res. 70 (2010), 6171–6180.
-
(2010)
Cancer Res.
, vol.70
, pp. 6171-6180
-
-
Shrimali, R.K.1
-
74
-
-
84876717683
-
Simultaneous blockade of programmed death 1 and vascular endothelial growth factor receptor 2 (VEGFR2) induces synergistic anti-tumour effect in vivo
-
74 Yasuda, S., et al. Simultaneous blockade of programmed death 1 and vascular endothelial growth factor receptor 2 (VEGFR2) induces synergistic anti-tumour effect in vivo. Clin. Exp. Immunol. 172 (2013), 500–506.
-
(2013)
Clin. Exp. Immunol.
, vol.172
, pp. 500-506
-
-
Yasuda, S.1
-
75
-
-
63949087054
-
Influence of bevacizumab, sunitinib and sorafenib as single agents or in combination on the inhibitory effects of VEGF on human dendritic cell differentiation from monocytes
-
75 Alfaro, C., et al. Influence of bevacizumab, sunitinib and sorafenib as single agents or in combination on the inhibitory effects of VEGF on human dendritic cell differentiation from monocytes. Br. J. Cancer 100 (2009), 1111–1119.
-
(2009)
Br. J. Cancer
, vol.100
, pp. 1111-1119
-
-
Alfaro, C.1
-
76
-
-
0029842830
-
Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells
-
76 Gabrilovich, D.I., et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat. Med. 2 (1996), 1096–1103.
-
(1996)
Nat. Med.
, vol.2
, pp. 1096-1103
-
-
Gabrilovich, D.I.1
-
77
-
-
0032741283
-
Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function
-
77 Gabrilovich, D.I., et al. Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin. Cancer Res. 5 (1999), 2963–2970.
-
(1999)
Clin. Cancer Res.
, vol.5
, pp. 2963-2970
-
-
Gabrilovich, D.I.1
-
78
-
-
84922713971
-
VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors
-
78 Voron, T., et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J. Exp. Med. 212 (2015), 139–148.
-
(2015)
J. Exp. Med.
, vol.212
, pp. 139-148
-
-
Voron, T.1
-
79
-
-
84872593848
-
VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer
-
79 Terme, M., et al. VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer. Cancer Res. 73 (2013), 539–549.
-
(2013)
Cancer Res.
, vol.73
, pp. 539-549
-
-
Terme, M.1
-
80
-
-
84940720838
-
Sunitinib pretreatment improves tumor-infiltrating lymphocyte expansion by reduction in intratumoral content of myeloid-derived suppressor cells in human renal cell carcinoma
-
80 Guislain, A., et al. Sunitinib pretreatment improves tumor-infiltrating lymphocyte expansion by reduction in intratumoral content of myeloid-derived suppressor cells in human renal cell carcinoma. Cancer Immunol. Immunother. 64 (2015), 1241–1250.
-
(2015)
Cancer Immunol. Immunother.
, vol.64
, pp. 1241-1250
-
-
Guislain, A.1
-
81
-
-
84962013731
-
Resistance to antiangiogenic therapy is associated with an immunosuppressive tumor microenvironment in metastatic renal cell carcinoma
-
81 Liu, X.D., et al. Resistance to antiangiogenic therapy is associated with an immunosuppressive tumor microenvironment in metastatic renal cell carcinoma. Cancer Immunol. Res. 3 (2015), 1017–1029.
-
(2015)
Cancer Immunol. Res.
, vol.3
, pp. 1017-1029
-
-
Liu, X.D.1
-
82
-
-
44249093051
-
The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients
-
82 Osada, T., et al. The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunol. Immunother. 57 (2008), 1115–1124.
-
(2008)
Cancer Immunol. Immunother.
, vol.57
, pp. 1115-1124
-
-
Osada, T.1
-
83
-
-
79961125367
-
Sorafenib reduces the percentage of tumour infiltrating regulatory T cells in renal cell carcinoma patients
-
83 Desar, I.M., et al. Sorafenib reduces the percentage of tumour infiltrating regulatory T cells in renal cell carcinoma patients. Int. J. Cancer 129 (2011), 507–512.
-
(2011)
Int. J. Cancer
, vol.129
, pp. 507-512
-
-
Desar, I.M.1
-
84
-
-
84964313298
-
Bevacizumab plus ipilimumab in patients with metastatic melanoma
-
84 Hodi, F.S., et al. Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunol. Res. 2 (2014), 632–642.
-
(2014)
Cancer Immunol. Res.
, vol.2
, pp. 632-642
-
-
Hodi, F.S.1
-
85
-
-
84914176528
-
Nivolumab (anti-PD1; BMS-936558, ONO-4538) in combination with sunitinib or pazopanib in patients (pts) with metastatic renal cell carcinoma (mRCC)
-
Abstr 5010
-
85 Amin, A., et al. Nivolumab (anti-PD1; BMS-936558, ONO-4538) in combination with sunitinib or pazopanib in patients (pts) with metastatic renal cell carcinoma (mRCC). J. Clin. Oncol., 32, 2014 Abstr 5010.
-
(2014)
J. Clin. Oncol.
, vol.32
-
-
Amin, A.1
-
86
-
-
84938313517
-
Safety and efficacy of MPDL3280A (anti–PDL1) in combination with bevacizumab (BEV) and/or chemotherapy (chemo) in patients (PTS) with locally advanced or metastatic solid tumors
-
86 Lieu, C., et al. Safety and efficacy of MPDL3280A (anti–PDL1) in combination with bevacizumab (BEV) and/or chemotherapy (chemo) in patients (PTS) with locally advanced or metastatic solid tumors. Ann. Oncol., 25, 2014, iv361.
-
(2014)
Ann. Oncol.
, vol.25
, pp. iv361
-
-
Lieu, C.1
-
87
-
-
84949959569
-
Phase Ib evaluation of MPDL3280A (anti–PDL1) in combination with bevacizumab (bev) in patients (pts) with metastatic renal cell carcinoma (mRCC)
-
Abstr 410
-
87 Sznol, M., et al. Phase Ib evaluation of MPDL3280A (anti–PDL1) in combination with bevacizumab (bev) in patients (pts) with metastatic renal cell carcinoma (mRCC). J. Clin. Oncol., 33, 2015 Abstr 410.
-
(2015)
J. Clin. Oncol.
, vol.33
-
-
Sznol, M.1
-
88
-
-
60749096085
-
Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system
-
88 Augustin, H.G., et al. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat. Rev. Mol. Cell Biol. 10 (2009), 165–177.
-
(2009)
Nat. Rev. Mol. Cell Biol.
, vol.10
, pp. 165-177
-
-
Augustin, H.G.1
-
89
-
-
33751225092
-
Angiopoietins: a link between angiogenesis and inflammation
-
89 Fiedler, U., Augustin, H.G., Angiopoietins: a link between angiogenesis and inflammation. Trends Immunol. 27 (2006), 552–558.
-
(2006)
Trends Immunol.
, vol.27
, pp. 552-558
-
-
Fiedler, U.1
Augustin, H.G.2
-
90
-
-
84937485299
-
Immunotherapy or molecularly targeted therapy: what is the best initial treatment for stage IV BRAF-mutant melanoma?
-
90 Gibney, G.T., Atkins, M.B., Immunotherapy or molecularly targeted therapy: what is the best initial treatment for stage IV BRAF-mutant melanoma?. Clin. Adv. Hematol. Oncol. 13 (2015), 451–458.
-
(2015)
Clin. Adv. Hematol. Oncol.
, vol.13
, pp. 451-458
-
-
Gibney, G.T.1
Atkins, M.B.2
-
91
-
-
84901340078
-
Outcomes of patients with metastatic melanoma treated with immunotherapy prior to or after BRAF inhibitors
-
91 Ackerman, A., et al. Outcomes of patients with metastatic melanoma treated with immunotherapy prior to or after BRAF inhibitors. Cancer 120 (2014), 1695–1701.
-
(2014)
Cancer
, vol.120
, pp. 1695-1701
-
-
Ackerman, A.1
-
92
-
-
84875785905
-
Hepatotoxicity with combination of vemurafenib and ipilimumab
-
92 Ribas, A., et al. Hepatotoxicity with combination of vemurafenib and ipilimumab. N. Engl. J. Med. 368 (2013), 1365–1366.
-
(2013)
N. Engl. J. Med.
, vol.368
, pp. 1365-1366
-
-
Ribas, A.1
-
93
-
-
84921975013
-
Combining targeted therapy and immune checkpoint inhibitors in the treatment of metastatic melanoma
-
93 Kim, T., et al. Combining targeted therapy and immune checkpoint inhibitors in the treatment of metastatic melanoma. Cancer Biol. Med. 11 (2014), 237–246.
-
(2014)
Cancer Biol. Med.
, vol.11
, pp. 237-246
-
-
Kim, T.1
-
94
-
-
84915750492
-
Universes collide: combining immunotherapy with targeted therapy for cancer
-
94 Wargo, J.A., et al. Universes collide: combining immunotherapy with targeted therapy for cancer. Cancer Discov. 4 (2014), 1377–1386.
-
(2014)
Cancer Discov.
, vol.4
, pp. 1377-1386
-
-
Wargo, J.A.1
-
95
-
-
84947248057
-
Pseudoprogression and immune-related response in solid tumors
-
95 Chiou, V.L., Burotto, M., Pseudoprogression and immune-related response in solid tumors. J. Clin. Oncol. 33 (2015), 3541–3543.
-
(2015)
J. Clin. Oncol.
, vol.33
, pp. 3541-3543
-
-
Chiou, V.L.1
Burotto, M.2
-
96
-
-
67349182592
-
Therapeutic efficacy of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with metastatic melanoma unresponsive to prior systemic treatments: clinical and immunological evidence from three patient cases
-
96 Di Giacomo, A.M., et al. Therapeutic efficacy of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with metastatic melanoma unresponsive to prior systemic treatments: clinical and immunological evidence from three patient cases. Cancer Immunol. Immunother. 58 (2009), 1297–1306.
-
(2009)
Cancer Immunol. Immunother.
, vol.58
, pp. 1297-1306
-
-
Di Giacomo, A.M.1
-
97
-
-
73149092567
-
Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria
-
97 Wolchok, J.D., et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin. Cancer Res. 15 (2009), 7412–7420.
-
(2009)
Clin. Cancer Res.
, vol.15
, pp. 7412-7420
-
-
Wolchok, J.D.1
-
98
-
-
84921456279
-
Combination therapy with anti-CTLA-4 and anti-PD-1 leads to distinct immunologic changes in vivo
-
98 Das, R., et al. Combination therapy with anti-CTLA-4 and anti-PD-1 leads to distinct immunologic changes in vivo. J. Immunol. 194 (2015), 950–959.
-
(2015)
J. Immunol.
, vol.194
, pp. 950-959
-
-
Das, R.1
-
99
-
-
84936147067
-
Combined nivolumab and ipilimumab or monotherapy in untreated melanoma
-
99 Larkin, J., et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373 (2015), 23–34.
-
(2015)
N. Engl. J. Med.
, vol.373
, pp. 23-34
-
-
Larkin, J.1
-
100
-
-
84890020587
-
Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors
-
100 Akbay, E.A., et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov. 3 (2013), 1355–1363.
-
(2013)
Cancer Discov.
, vol.3
, pp. 1355-1363
-
-
Akbay, E.A.1
-
101
-
-
84942849158
-
Induction of PD-l1 Expression by the EML4-ALK oncoprotein and downstream signaling pathways in non-small cell lung cancer
-
101 Ota, K., et al. Induction of PD-l1 Expression by the EML4-ALK oncoprotein and downstream signaling pathways in non-small cell lung cancer. Clin. Cancer Res. 21 (2015), 4014–4021.
-
(2015)
Clin. Cancer Res.
, vol.21
, pp. 4014-4021
-
-
Ota, K.1
-
102
-
-
84937541453
-
Clinical correlation and frequency of programmed death ligand-1 (PD-L1) expression in EGFR-mutant and ALK-rearranged non-small cell lung cancer
-
Abstr 8012
-
102 Gainor, J.F., et al. Clinical correlation and frequency of programmed death ligand-1 (PD-L1) expression in EGFR-mutant and ALK-rearranged non-small cell lung cancer. J. Clinical Oncol., 33, 2015 Abstr 8012.
-
(2015)
J. Clinical Oncol.
, vol.33
-
-
Gainor, J.F.1
-
103
-
-
84905029258
-
Comprehensive molecular profiling of lung adenocarcinoma
-
103 Cancer Genome Atlas Research. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511 (2014), 543–550.
-
(2014)
Nature
, vol.511
, pp. 543-550
-
-
-
104
-
-
84960158712
-
Immunotherapy and stereotactic ablative radiotherapy (ISABR): a curative approach?
-
Published online March 8, 2016
-
104 Bernstein, M.B., et al. Immunotherapy and stereotactic ablative radiotherapy (ISABR): a curative approach?. Nat. Rev. Clin. Oncol., 2016, 10.1038/nrclinonc.2016.30 Published online March 8, 2016.
-
(2016)
Nat. Rev. Clin. Oncol.
-
-
Bernstein, M.B.1
-
105
-
-
84879645728
-
Radiation and immunotherapy: a synergistic combination
-
105 Kalbasi, A., et al. Radiation and immunotherapy: a synergistic combination. J. Clin. Invest. 123 (2013), 2756–2763.
-
(2013)
J. Clin. Invest.
, vol.123
, pp. 2756-2763
-
-
Kalbasi, A.1
-
106
-
-
84956607773
-
Immunological effects of conventional chemotherapy and targeted anticancer agents
-
106 Galluzzi, L., et al. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 28 (2015), 690–714.
-
(2015)
Cancer Cell
, vol.28
, pp. 690-714
-
-
Galluzzi, L.1
-
107
-
-
84936953099
-
Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity
-
107 Spranger, S., et al. Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature 523 (2015), 231–235.
-
(2015)
Nature
, vol.523
, pp. 231-235
-
-
Spranger, S.1
-
108
-
-
84957093642
-
Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy
-
108 Peng, W., et al. Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy. Cancer Discov. 6 (2016), 202–216.
-
(2016)
Cancer Discov.
, vol.6
, pp. 202-216
-
-
Peng, W.1
-
109
-
-
85015786021
-
Molecular driver of the non-T cell-inflamed tumor microenvironment in urothelial bladder cancer
-
Abstr 4511
-
109 Sweis, R.F., et al. Molecular driver of the non-T cell-inflamed tumor microenvironment in urothelial bladder cancer. J. Clin. Oncol., 33, 2015 Abstr 4511.
-
(2015)
J. Clin. Oncol.
, vol.33
-
-
Sweis, R.F.1
-
110
-
-
84963612049
-
Combining epigenetic and immunotherapy to combat cancer
-
110 Chiappinelli, K.B., et al. Combining epigenetic and immunotherapy to combat cancer. Cancer Res., 76, 2016, 1683.
-
(2016)
Cancer Res.
, vol.76
, pp. 1683
-
-
Chiappinelli, K.B.1
-
111
-
-
84958981871
-
PRC2 epigenetically silences Th1-type chemokines to suppress effector T-cell trafficking in colon cancer
-
111 Nagarsheth, N., et al. PRC2 epigenetically silences Th1-type chemokines to suppress effector T-cell trafficking in colon cancer. Cancer Res. 76 (2016), 275–282.
-
(2016)
Cancer Res.
, vol.76
, pp. 275-282
-
-
Nagarsheth, N.1
-
112
-
-
84946912433
-
Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy
-
112 Peng, D., et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527 (2015), 249–253.
-
(2015)
Nature
, vol.527
, pp. 249-253
-
-
Peng, D.1
|