메뉴 건너뛰기




Volumn 213, Issue 2, 2016, Pages 185-200

ZRF1 mediates remodeling of E3 ligases at DNA lesion sites during nucleotide excision repair

Author keywords

[No Author keywords available]

Indexed keywords

BINDING PROTEIN; GENOMIC DNA; HISTONE H2A; UBIQUITIN PROTEIN LIGASE E3; UNCLASSIFIED DRUG; ZRF 1 PROTEIN; BMI1 PROTEIN; CUL4B PROTEIN, HUMAN; CULLIN; DDB1 PROTEIN, HUMAN; DDB2 PROTEIN, HUMAN; DNA BINDING PROTEIN; DNAJC2 PROTEIN, HUMAN; HISTONE; ONCOPROTEIN; RNF2 PROTEIN, HUMAN; UBIQUITIN PROTEIN LIGASE;

EID: 84969179604     PISSN: 00219525     EISSN: 15408140     Source Type: Journal    
DOI: 10.1083/jcb.201506099     Document Type: Article
Times cited : (32)

References (54)
  • 2
    • 33749535905 scopus 로고    scopus 로고
    • Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery
    • Angers, S., T. Li, X. Yi, M.J. MacCoss, R.T. Moon, and N. Zheng. 2006. Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature. 443:590-593.
    • (2006) Nature. , vol.443 , pp. 590-593
    • Angers, S.1    Li, T.2    Yi, X.3    MacCoss, M.J.4    Moon, R.T.5    Zheng, N.6
  • 3
    • 0035374836 scopus 로고    scopus 로고
    • Centrosome protein centrin 2/ caltractin 1 is part of the xeroderma pigmentosum group C complex that initiates global genome nucleotide excision repair
    • Araki, M., C. Masutani, M. Takemura, A. Uchida, K. Sugasawa, J. Kondoh, Y. Ohkuma, and F. Hanaoka. 2001. Centrosome protein centrin 2/ caltractin 1 is part of the xeroderma pigmentosum group C complex that initiates global genome nucleotide excision repair. J. Biol. Chem. 276:18665-18672. http://dx.doi.org/10.1074/jbc.M100855200
    • (2001) J. Biol. Chem. , vol.276 , pp. 18665-18672
    • Araki, M.1    Masutani, C.2    Takemura, M.3    Uchida, A.4    Sugasawa, K.5    Kondoh, J.6    Ohkuma, Y.7    Hanaoka, F.8
  • 6
    • 84958039755 scopus 로고    scopus 로고
    • Reader interactome of epigenetic histone marks in birds
    • Bluhm, A., N. Casas-Vila, M. Scheibe, and F. Butter. 2016. Reader interactome of epigenetic histone marks in birds. Proteomics. 6:427-436. http://dx.doi.org/10.1002/pmic.201500217
    • (2016) Proteomics. , vol.6 , pp. 427-436
    • Bluhm, A.1    Casas-Vila, N.2    Scheibe, M.3    Butter, F.4
  • 7
    • 0022444466 scopus 로고
    • Survival of UV-irradiated mammalian cells correlates with efficient DNA repair in an essential gene
    • Bohr, V.A., D.S. Okumoto, and P.C. Hanawalt. 1986. Survival of UV-irradiated mammalian cells correlates with efficient DNA repair in an essential gene. Proc. Natl. Acad. Sci. USA. 83:3830-3833. http://dx.doi.org/10.1073/pnas.83.11.3830
    • (1986) Proc. Natl. Acad. Sci. USA. , vol.83 , pp. 3830-3833
    • Bohr, V.A.1    Okumoto, D.S.2    Hanawalt, P.C.3
  • 8
    • 79955076992 scopus 로고    scopus 로고
    • An anticlastogenic function for the Polycomb Group gene Bmi1
    • Chagraoui, J., J. Hébert, S. Girard, and G. Sauvageau. 2011. An anticlastogenic function for the Polycomb Group gene Bmi1. Proc. Natl. Acad. Sci. USA. 108:5284-5289. http://dx.doi.org/10.1073/pnas.1014263108
    • (2011) Proc. Natl. Acad. Sci. USA. , vol.108 , pp. 5284-5289
    • Chagraoui, J.1    Hébert, J.2    Girard, S.3    Sauvageau, G.4
  • 9
    • 84855471671 scopus 로고    scopus 로고
    • Methods for studying the DNA damage response in the Caenorhabdatis elegans germ line
    • Craig, A.L., S.C. Moser, A.P. Bailly, and A. Gartner. 2012. Methods for studying the DNA damage response in the Caenorhabdatis elegans germ line. Methods Cell Biol. 107:321-352. http://dx.doi.org/10.1016/B978-0-12-394620-1.00011-4
    • (2012) Methods Cell Biol. , vol.107 , pp. 321-352
    • Craig, A.L.1    Moser, S.C.2    Bailly, A.P.3    Gartner, A.4
  • 10
    • 33645731673 scopus 로고    scopus 로고
    • A dynamic ubiquitin equilibrium couples proteasomal activity to chromatin remodeling
    • Dantuma, N.P., T.A. Groothuis, F.A. Salomons, and J. Neefjes. 2006. A dynamic ubiquitin equilibrium couples proteasomal activity to chromatin remodeling. J. Cell Biol. 173:19-26. http://dx.doi.org/10.1083/jcb.200510071
    • (2006) J. Cell Biol. , vol.173 , pp. 19-26
    • Dantuma, N.P.1    Groothuis, T.A.2    Salomons, F.A.3    Neefjes, J.4
  • 11
    • 0033118354 scopus 로고    scopus 로고
    • Molecular mechanism of nucleotide excision repair
    • de Laat, W.L., N.G. Jaspers, and J.H. Hoeijmakers. 1999. Molecular mechanism of nucleotide excision repair. Genes Dev. 13:768-785. http://dx.doi.org/10.1101/gad.13.7.768
    • (1999) Genes Dev. , vol.13 , pp. 768-785
    • de Laat, W.L.1    Jaspers, N.G.2    Hoeijmakers, J.H.3
  • 12
  • 13
    • 0345306615 scopus 로고    scopus 로고
    • In vivo recruitment of XPC to UV-induced cyclobutane pyrimidine dimers by the DDB2 gene product
    • Fitch, M.E., S. Nakajima, A. Yasui, and J.M. Ford. 2003. In vivo recruitment of XPC to UV-induced cyclobutane pyrimidine dimers by the DDB2 gene product. J. Biol. Chem. 278:46906-46910. http://dx.doi.org/10.1074/jbc.M307254200
    • (2003) J. Biol. Chem. , vol.278 , pp. 46906-46910
    • Fitch, M.E.1    Nakajima, S.2    Yasui, A.3    Ford, J.M.4
  • 14
    • 38049178545 scopus 로고    scopus 로고
    • Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects
    • Fousteri, M., and L.H. Mullenders. 2008. Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects. Cell Res. 18:73-84. http://dx.doi.org/10.1038/cr.2008.6
    • (2008) Cell Res. , vol.18 , pp. 73-84
    • Fousteri, M.1    Mullenders, L.H.2
  • 15
    • 0035495386 scopus 로고    scopus 로고
    • How nucleotide excision repair protects against cancer
    • Friedberg, E.C. 2001. How nucleotide excision repair protects against cancer. Nat. Rev. Cancer. 1:22-33. http://dx.doi.org/10.1038/35094000
    • (2001) Nat. Rev. Cancer. , vol.1 , pp. 22-33
    • Friedberg, E.C.1
  • 17
    • 0037509859 scopus 로고    scopus 로고
    • The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage
    • Groisman, R., J. Polanowska, I. Kuraoka, J. Sawada, M. Saijo, R. Drapkin, A.F. Kisselev, K. Tanaka, and Y. Nakatani. 2003. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell. 113:357-367. http://dx.doi.org/10.1016/S0092-8674(03)00316-7
    • (2003) Cell. , vol.113 , pp. 357-367
    • Groisman, R.1    Polanowska, J.2    Kuraoka, I.3    Sawada, J.4    Saijo, M.5    Drapkin, R.6    Kisselev, A.F.7    Tanaka, K.8    Nakatani, Y.9
  • 18
    • 48549085044 scopus 로고    scopus 로고
    • The cullin 4B-based UV-damaged DNA-binding protein ligase binds to UV-damaged chromatin and ubiquitinates histone H2A
    • Guerrero-Santoro, J., M.G. Kapetanaki, C.L. Hsieh, I. Gorbachinsky, A.S. Levine, and V. Rapic-Otrin. 2008. The cullin 4B-based UV-damaged DNA-binding protein ligase binds to UV-damaged chromatin and ubiquitinates histone H2A. Cancer Res. 68:5014-5022. http://dx.doi.org/10.1158/0008-5472.CAN-07-6162
    • (2008) Cancer Res. , vol.68 , pp. 5014-5022
    • Guerrero-Santoro, J.1    Kapetanaki, M.G.2    Hsieh, C.L.3    Gorbachinsky, I.4    Levine, A.S.5    Rapic-Otrin, V.6
  • 20
    • 77957748289 scopus 로고    scopus 로고
    • BMI1-mediated histone ubiquitylation promotes DNA double-strand break repair
    • Ismail, I.H., C. Andrin, D. McDonald, and M.J. Hendzel. 2010. BMI1-mediated histone ubiquitylation promotes DNA double-strand break repair. J. Cell Biol. 191:45-60. http://dx.doi.org/10.1083/jcb.201003034
    • (2010) J. Cell Biol. , vol.191 , pp. 45-60
    • Ismail, I.H.1    Andrin, C.2    McDonald, D.3    Hendzel, M.J.4
  • 21
    • 84884201421 scopus 로고    scopus 로고
    • A small molecule inhibitor of polycomb repressive complex 1 inhibits ubiquitin signaling at DNA double-strand breaks
    • Ismail, I.H., D. McDonald, H. Strickfaden, Z. Xu, and M.J. Hendzel. 2013. A small molecule inhibitor of polycomb repressive complex 1 inhibits ubiquitin signaling at DNA double-strand breaks. J. Biol. Chem. 288:26944-26954. http://dx.doi.org/10.1074/jbc.M113.461699
    • (2013) J. Biol. Chem. , vol.288 , pp. 26944-26954
    • Ismail, I.H.1    McDonald, D.2    Strickfaden, H.3    Xu, Z.4    Hendzel, M.J.5
  • 22
    • 79952273669 scopus 로고    scopus 로고
    • The chaperone network connected to human ribosome-associated complex
    • Jaiswal, H., C. Conz, H. Otto, T. Wölfle, E. Fitzke, M.P. Mayer, and S. Rospert. 2011. The chaperone network connected to human ribosome-associated complex. Mol. Cell. Biol. 31:1160-1173. http://dx.doi.org/10.1128/MCB.00986-10
    • (2011) Mol. Cell. Biol. , vol.31 , pp. 1160-1173
    • Jaiswal, H.1    Conz, C.2    Otto, H.3    Wölfle, T.4    Fitzke, E.5    Mayer, M.P.6    Rospert, S.7
  • 23
    • 84925962048 scopus 로고    scopus 로고
    • A rapid, comprehensive system for assaying DNA repair activity and cytotoxic effects of DNA-damaging reagents
    • Jia, N., Y. Nakazawa, C. Guo, M. Shimada, M. Sethi, Y. Takahashi, H. Ueda, Y. Nagayama, and T. Ogi. 2015. A rapid, comprehensive system for assaying DNA repair activity and cytotoxic effects of DNA-damaging reagents. Nat. Protoc. 10:12-24. http://dx.doi.org/10.1038/nprot.2014.194
    • (2015) Nat. Protoc. , vol.10 , pp. 12-24
    • Jia, N.1    Nakazawa, Y.2    Guo, C.3    Shimada, M.4    Sethi, M.5    Takahashi, Y.6    Ueda, H.7    Nagayama, Y.8    Ogi, T.9
  • 24
    • 33644536070 scopus 로고    scopus 로고
    • The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites
    • Kapetanaki, M.G., J. Guerrero-Santoro, D.C. Bisi, C.L. Hsieh, V. Rapic-Otrin, and A.S. Levine. 2006. The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites. Proc. Natl. Acad. Sci. USA. 103:2588-2593. http://dx.doi.org/10.1073/pnas.0511160103
    • (2006) Proc. Natl. Acad. Sci. USA. , vol.103 , pp. 2588-2593
    • Kapetanaki, M.G.1    Guerrero-Santoro, J.2    Bisi, D.C.3    Hsieh, C.L.4    Rapic-Otrin, V.5    Levine, A.S.6
  • 25
    • 66149144786 scopus 로고    scopus 로고
    • MIG-32 and SPAT-3A are PRC1 homologs that control neuronal migration in Caenorhabditis elegans
    • Karakuzu, O., D.P. Wang, and S. Cameron. 2009. MIG-32 and SPAT-3A are PRC1 homologs that control neuronal migration in Caenorhabditis elegans. Development. 136:943-953. http://dx.doi.org/10.1242/dev.029363
    • (2009) Development. , vol.136 , pp. 943-953
    • Karakuzu, O.1    Wang, D.P.2    Cameron, S.3
  • 27
    • 84868196565 scopus 로고    scopus 로고
    • Nucleotide excision repair in Caenorhabditis elegans
    • Lans, H., and W. Vermeulen. 2011. Nucleotide excision repair in Caenorhabditis elegans. Mol. Biol. Int. 2011:542795. http://dx.doi.org/10.4061/2011/542795
    • (2011) Mol. Biol. Int. , vol.2011 , pp. 542795
    • Lans, H.1    Vermeulen, W.2
  • 29
    • 36248966246 scopus 로고    scopus 로고
    • RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins
    • Mailand, N., S. Bekker-Jensen, H. Faustrup, F. Melander, J. Bartek, C. Lukas, and J. Lukas. 2007. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell. 131:887-900. http://dx.doi.org/10.1016/j.cell.2007.09.040
    • (2007) Cell. , vol.131 , pp. 887-900
    • Mailand, N.1    Bekker-Jensen, S.2    Faustrup, H.3    Melander, F.4    Bartek, J.5    Lukas, C.6    Lukas, J.7
  • 30
    • 70349944658 scopus 로고    scopus 로고
    • Nucleotide excision repair-induced H2A ubiquitination is dependent on MDC1 and RNF8 and reveals a universal DNA damage response
    • Marteijn, J.A., S. Bekker-Jensen, N. Mailand, H. Lans, P. Schwertman, A.M. Gourdin, N.P. Dantuma, J. Lukas, and W. Vermeulen. 2009. Nucleotide excision repair-induced H2A ubiquitination is dependent on MDC1 and RNF8 and reveals a universal DNA damage response. J. Cell Biol. 186:835-847. http://dx.doi.org/10.1083/jcb.200902150
    • (2009) J. Cell Biol. , vol.186 , pp. 835-847
    • Marteijn, J.A.1    Bekker-Jensen, S.2    Mailand, N.3    Lans, H.4    Schwertman, P.5    Gourdin, A.M.6    Dantuma, N.P.7    Lukas, J.8    Vermeulen, W.9
  • 31
    • 84904642416 scopus 로고    scopus 로고
    • Understanding nucleotide excision repair and its roles in cancer and ageing
    • Marteijn, J.A., H. Lans, W. Vermeulen, and J.H. Hoeijmakers. 2014. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat. Rev. Mol. Cell Biol. 15:465-481. http://dx.doi.org/10.1038/nrm3822
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 465-481
    • Marteijn, J.A.1    Lans, H.2    Vermeulen, W.3    Hoeijmakers, J.H.4
  • 32
    • 0028269240 scopus 로고
    • Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23
    • Masutani, C., K. Sugasawa, J. Yanagisawa, T. Sonoyama, M. Ui, T. Enomoto, K. Takio, K. Tanaka, P.J. van der Spek, D. Bootsma, et al. 1994. Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23. EMBO J. 13:1831-1843.
    • (1994) EMBO J. , vol.13 , pp. 1831-1843
    • Masutani, C.1    Sugasawa, K.2    Yanagisawa, J.3    Sonoyama, T.4    Ui, M.5    Enomoto, T.6    Takio, K.7    Tanaka, K.8    van der Spek, P.J.9    Bootsma, D.10
  • 33
    • 0008585058 scopus 로고
    • Disappearance of a structural chromatin protein A24 in mitosis: implications for molecular basis of chromatin condensation
    • Matsui, S.I., B.K. Seon, and A.A. Sandberg. 1979. Disappearance of a structural chromatin protein A24 in mitosis: implications for molecular basis of chromatin condensation. Proc. Natl. Acad. Sci. USA. 76:6386-6390. http://dx.doi.org/10.1073/pnas.76.12.6386
    • (1979) Proc. Natl. Acad. Sci. USA. , vol.76 , pp. 6386-6390
    • Matsui, S.I.1    Seon, B.K.2    Sandberg, A.A.3
  • 35
    • 77954758157 scopus 로고    scopus 로고
    • Polycomb group protein-mediated repression of transcription
    • Morey, L., and K. Helin. 2010. Polycomb group protein-mediated repression of transcription. Trends Biochem. Sci. 35:323-332. http://dx.doi.org/10.1016/j.tibs.2010.02.009
    • (2010) Trends Biochem. Sci. , vol.35 , pp. 323-332
    • Morey, L.1    Helin, K.2
  • 36
    • 16244423719 scopus 로고    scopus 로고
    • The UV-damaged DNA binding protein mediates efficient targeting of the nucleotide excision repair complex to UV-induced photo lesions
    • Moser, J., M. Volker, H. Kool, S. Alekseev, H. Vrieling, A. Yasui, A.A. van Zeeland, and L.H. Mullenders. 2005. The UV-damaged DNA binding protein mediates efficient targeting of the nucleotide excision repair complex to UV-induced photo lesions. DNA Repair (Amst.). 4:571-582. http://dx.doi.org/10.1016/j.dnarep.2005.01.001
    • (2005) DNA Repair (Amst.). , vol.4 , pp. 571-582
    • Moser, J.1    Volker, M.2    Kool, H.3    Alekseev, S.4    Vrieling, H.5    Yasui, A.6    van Zeeland, A.A.7    Mullenders, L.H.8
  • 38
    • 80051494784 scopus 로고    scopus 로고
    • Monoubiquitination of H2AX protein regulates DNA damage response signaling
    • Pan, M.R., G. Peng, W.C. Hung, and S.Y. Lin. 2011. Monoubiquitination of H2AX protein regulates DNA damage response signaling. J. Biol. Chem. 286:28599-28607. http://dx.doi.org/10.1074/jbc.M111.256297
    • (2011) J. Biol. Chem. , vol.286 , pp. 28599-28607
    • Pan, M.R.1    Peng, G.2    Hung, W.C.3    Lin, S.Y.4
  • 39
    • 11244351579 scopus 로고    scopus 로고
    • Function and regulation of cullin-RING ubiquitin ligases
    • Petroski, M.D., and R.J. Deshaies. 2005. Function and regulation of cullin-RING ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 6:9-20. http://dx.doi.org/10.1038/nrm1547
    • (2005) Nat. Rev. Mol. Cell Biol. , vol.6 , pp. 9-20
    • Petroski, M.D.1    Deshaies, R.J.2
  • 41
    • 33751265748 scopus 로고    scopus 로고
    • The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones
    • Qiu, X.B., Y.M. Shao, S. Miao, and L. Wang. 2006. The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell. Mol. Life Sci. 63:2560-2570. http://dx.doi.org/10.1007/s00018-006-6192-6
    • (2006) Cell. Mol. Life Sci. , vol.63 , pp. 2560-2570
    • Qiu, X.B.1    Shao, Y.M.2    Miao, S.3    Wang, L.4
  • 42
    • 0038105065 scopus 로고    scopus 로고
    • True XP group E patients have a defective UV-damaged DNA binding protein complex and mutations in DDB2 which reveal the functional domains of its p48 product
    • Rapić-Otrin, V., V. Navazza, T. Nardo, E. Botta, M. McLenigan, D.C. Bisi, A.S. Levine, and M. Stefanini. 2003. True XP group E patients have a defective UV-damaged DNA binding protein complex and mutations in DDB2 which reveal the functional domains of its p48 product. Hum. Mol. Genet. 12:1507-1522. http://dx.doi.org/10.1093/hmg/ddg174
    • (2003) Hum. Mol. Genet. , vol.12 , pp. 1507-1522
    • Rapić-Otrin, V.1    Navazza, V.2    Nardo, T.3    Botta, E.4    McLenigan, M.5    Bisi, D.C.6    Levine, A.S.7    Stefanini, M.8
  • 44
    • 0141753120 scopus 로고    scopus 로고
    • The comings and goings of nucleotide excision repair factors on damaged DNA
    • Riedl, T., F. Hanaoka, and J.M. Egly. 2003. The comings and goings of nucleotide excision repair factors on damaged DNA. EMBO J. 22:5293-5303. http://dx.doi.org/10.1093/emboj/cdg489
    • (2003) EMBO J. , vol.22 , pp. 5293-5303
    • Riedl, T.1    Hanaoka, F.2    Egly, J.M.3
  • 45
    • 0033544942 scopus 로고    scopus 로고
    • Cullin 4A associates with the UV-damaged DNA-binding protein DDB
    • Shiyanov, P., A. Nag, and P. Raychaudhuri. 1999. Cullin 4A associates with the UV-damaged DNA-binding protein DDB. J. Biol. Chem. 274:35309-35312. http://dx.doi.org/10.1074/jbc.274.50.35309
    • (1999) J. Biol. Chem. , vol.274 , pp. 35309-35312
    • Shiyanov, P.1    Nag, A.2    Raychaudhuri, P.3
  • 47
    • 0035282109 scopus 로고    scopus 로고
    • A multistep damage recognition mechanism for global genomic nucleotide excision repair
    • Sugasawa, K., T. Okamoto, Y. Shimizu, C. Masutani, S. Iwai, and F. Hanaoka. 2001. A multistep damage recognition mechanism for global genomic nucleotide excision repair. Genes Dev. 15:507-521. http://dx.doi.org/10.1101/gad.866301
    • (2001) Genes Dev. , vol.15 , pp. 507-521
    • Sugasawa, K.1    Okamoto, T.2    Shimizu, Y.3    Masutani, C.4    Iwai, S.5    Hanaoka, F.6
  • 49
    • 0033636515 scopus 로고    scopus 로고
    • Xeroderma pigmentosum p48 gene enhances global genomic repair and suppresses UV-induced mutagenesis
    • Tang, J.Y., B.J. Hwang, J.M. Ford, P.C. Hanawalt, and G. Chu. 2000. Xeroderma pigmentosum p48 gene enhances global genomic repair and suppresses UV-induced mutagenesis. Mol. Cell. 5:737-744. http://dx.doi.org/10.1016/S1097-2765(00)80252-X
    • (2000) Mol. Cell. , vol.5 , pp. 737-744
    • Tang, J.Y.1    Hwang, B.J.2    Ford, J.M.3    Hanawalt, P.C.4    Chu, G.5
  • 51
    • 84928907539 scopus 로고    scopus 로고
    • Transcriptional elongation factor ENL phosphorylated by ATM recruits polycomb and switches off transcription for DSB repair
    • Ui, A., Y. Nagaura, and A. Yasui. 2015. Transcriptional elongation factor ENL phosphorylated by ATM recruits polycomb and switches off transcription for DSB repair. Mol. Cell. 58:468-482. http://dx.doi.org/10.1016/j.molcel.2015.03.023
    • (2015) Mol. Cell. , vol.58 , pp. 468-482
    • Ui, A.1    Nagaura, Y.2    Yasui, A.3
  • 52
    • 0033603338 scopus 로고    scopus 로고
    • Order of assembly of human DNA repair excision nuclease
    • Wakasugi, M., and A. Sancar. 1999. Order of assembly of human DNA repair excision nuclease. J. Biol. Chem. 274:18759-18768. http://dx.doi.org/10.1074/jbc.274.26.18759
    • (1999) J. Biol. Chem. , vol.274 , pp. 18759-18768
    • Wakasugi, M.1    Sancar, A.2
  • 54
    • 33744781568 scopus 로고    scopus 로고
    • Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage
    • Wang, H., L. Zhai, J. Xu, H.Y. Joo, S. Jackson, H. Erdjument-Bromage, P. Tempst, Y. Xiong, and Y. Zhang. 2006. Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol. Cell. 22:383-394. http://dx.doi.org/10.1016/j.molcel.2006.03.035
    • (2006) Mol. Cell. , vol.22 , pp. 383-394
    • Wang, H.1    Zhai, L.2    Xu, J.3    Joo, H.Y.4    Jackson, S.5    Erdjument-Bromage, H.6    Tempst, P.7    Xiong, Y.8    Zhang, Y.9


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.