메뉴 건너뛰기




Volumn , Issue , 2015, Pages 721-731

The Web as a jungle: Non-linear dynamical systems for co-evolving online activities

Author keywords

Ecosystem; Non linear; Parameter free; Time series

Indexed keywords

DYNAMICAL SYSTEMS; ECOLOGY; ECOSYSTEMS; IMAGE SEGMENTATION; LINEAR CONTROL SYSTEMS; TIME SERIES; WORLD WIDE WEB;

EID: 84968718764     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2736277.2741092     Document Type: Conference Paper
Times cited : (48)

References (57)
  • 1
    • 84907022384 scopus 로고    scopus 로고
    • The setwise stream classification problem
    • C. C. Aggarwal. The setwise stream classification problem. In KDD, pages 432-441, 2014.
    • (2014) KDD , pp. 432-441
    • Aggarwal, C.C.1
  • 3
    • 84866045435 scopus 로고    scopus 로고
    • Interacting viruses in networks: Can both survive?
    • A. Beutel, B. A. Prakash, R. Rosenfeld, and C. Faloutsos. Interacting viruses in networks: can both survive? In KDD, pages 426-434, 2012.
    • (2012) KDD , pp. 426-434
    • Beutel, A.1    Prakash, B.A.2    Rosenfeld, R.3    Faloutsos, C.4
  • 4
    • 37049038390 scopus 로고    scopus 로고
    • Ric: Parameter-free noise-robust clustering
    • C. Böhm, C. Faloutsos, J.-Y. Pan, and C. Plant. Ric: Parameter-free noise-robust clustering. TKDD, 1(3), 2007.
    • (2007) TKDD , vol.1 , pp. 3
    • Böhm, C.1    Faloutsos, C.2    Pan, J.-Y.3    Plant, C.4
  • 5
    • 57149146298 scopus 로고    scopus 로고
    • Outlier-robust clustering using independent components
    • C. Böhm, C. Faloutsos, and C. Plant. Outlier-robust clustering using independent components. In SIGMOD, pages 185-198, 2008.
    • (2008) SIGMOD , pp. 185-198
    • Böhm, C.1    Faloutsos, C.2    Plant, C.3
  • 8
    • 84862835806 scopus 로고    scopus 로고
    • Predicting the present with google trends
    • H. Choi and H. R. Varian. Predicting the present with google trends. The Economic Record, 88(s1):2-9, 2012.
    • (2012) The Economic Record , vol.88 , Issue.1 , pp. 2-9
    • Choi, H.1    Varian, H.R.2
  • 9
    • 85018832771 scopus 로고    scopus 로고
    • Network discovery via constrained tensor analysis of fMRI data
    • I. N. Davidson, S. Gilpin, O. T. Carmichael, and P. B. Walker. Network discovery via constrained tensor analysis of fmri data. In KDD, pages 194-202, 2013.
    • (2013) KDD , pp. 194-202
    • Davidson, I.N.1    Gilpin, S.2    Carmichael, O.T.3    Walker, P.B.4
  • 12
    • 84907010358 scopus 로고    scopus 로고
    • Revisit behavior in social media: The phoenix-r model and discoveries
    • F. Figueiredo, J. M. Almeida, Y. Matsubara, B. Ribeiro, and C. Faloutsos. Revisit behavior in social media: The phoenix-r model and discoveries. In PKDD, pages 386-401, 2014.
    • (2014) PKDD , pp. 386-401
    • Figueiredo, F.1    Almeida, J.M.2    Matsubara, Y.3    Ribeiro, B.4    Faloutsos, C.5
  • 15
  • 16
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: Algorithms and applications
    • A. Hyvärinen and E. Oja. Independent component analysis: Algorithms and applications. Neural Netw., 13(4-5):411-430, 2000.
    • (2000) Neural Netw , vol.13 , Issue.4-5 , pp. 411-430
    • Hyvärinen, A.1    Oja, E.2
  • 18
    • 3142770653 scopus 로고    scopus 로고
    • Adaptive stream resource management using kalman filters
    • A. Jain, E. Y. Chang, and Y.-F. Wang. Adaptive stream resource management using kalman filters. In SIGMOD, pages 11-22, 2004.
    • (2004) SIGMOD , pp. 11-22
    • Jain, A.1    Chang, E.Y.2    Wang, Y.-F.3
  • 20
  • 21
    • 33845594450 scopus 로고    scopus 로고
    • An online algorithm for segmenting time series
    • E. J. Keogh, S. Chu, D. Hart, and M. J. Pazzani. An online algorithm for segmenting time series. In ICDM, pages 289-296, 2001.
    • (2001) ICDM , pp. 289-296
    • Keogh, E.J.1    Chu, S.2    Hart, D.3    Pazzani, M.J.4
  • 22
    • 65449121157 scopus 로고    scopus 로고
    • Factorization meets the neighborhood: A multifaceted collaborative filtering model
    • Y. Koren. Factorization meets the neighborhood: A multifaceted collaborative filtering model. In KDD, pages 426-434, 2008.
    • (2008) KDD , pp. 426-434
    • Koren, Y.1
  • 23
    • 0031166708 scopus 로고    scopus 로고
    • Efficiently supporting ad hoc queries in large datasets of time sequences
    • F. Korn, H. V. Jagadish, and C. Faloutsos. Efficiently supporting ad hoc queries in large datasets of time sequences. In SIGMOD 1997, pages 289-300, 1997.
    • (1997) SIGMOD , vol.1997 , pp. 289-300
    • Korn, F.1    Jagadish, H.V.2    Faloutsos, C.3
  • 24
    • 77956195646 scopus 로고    scopus 로고
    • Dynamics of conversations
    • R. Kumar, M. Mahdian, and M. McGlohon. Dynamics of conversations. In KDD, pages 553-562, 2010.
    • (2010) KDD , pp. 553-562
    • Kumar, R.1    Mahdian, M.2    McGlohon, M.3
  • 25
    • 35449007737 scopus 로고    scopus 로고
    • Trajectory clustering: A partition-And-group framework
    • J.-G. Lee, J. Han, and K.-Y. Whang. Trajectory clustering: A partition-And-group framework. In SIGMOD, pages 593-604, 2007.
    • (2007) SIGMOD , pp. 593-604
    • Lee, J.-G.1    Han, J.2    Whang, K.-Y.3
  • 27
    • 71049177089 scopus 로고    scopus 로고
    • Meme-Tracking and the dynamics of the news cycle
    • J. Leskovec, L. Backstrom, and J. M. Kleinberg. Meme-Tracking and the dynamics of the news cycle. In KDD, pages 497-506, 2009.
    • (2009) KDD , pp. 497-506
    • Leskovec, J.1    Backstrom, L.2    Kleinberg, J.M.3
  • 28
    • 65449171667 scopus 로고    scopus 로고
    • Microscopic evolution of social networks
    • J. Leskovec, L. Backstrom, R. Kumar, and A. Tomkins. Microscopic evolution of social networks. In KDD, pages 462-470, 2008.
    • (2008) KDD , pp. 462-470
    • Leskovec, J.1    Backstrom, L.2    Kumar, R.3    Tomkins, A.4
  • 29
    • 0000873069 scopus 로고
    • A method for the solution of certain non-linear problems in least squares
    • K. Levenberg. A method for the solution of certain non-linear problems in least squares. Quarterly Journal of Applied Mathmatics, II(2):164-168, 1944.
    • (1944) Quarterly Journal of Applied Mathmatics, II , vol.2 , pp. 164-168
    • Levenberg, K.1
  • 30
    • 80052675972 scopus 로고    scopus 로고
    • Parsimonious linear fingerprinting for time series
    • L. Li, B. A. Prakash, and C. Faloutsos. Parsimonious linear fingerprinting for time series. PVLDB, 3(1):385-396, 2010.
    • (2010) PVLDB , vol.3 , Issue.1 , pp. 385-396
    • Li, L.1    Prakash, B.A.2    Faloutsos, C.3
  • 32
    • 84904362626 scopus 로고    scopus 로고
    • Autoplait: Automatic mining of co-evolving time sequences
    • Y. Matsubara, Y. Sakurai, and C. Faloutsos. Autoplait: Automatic mining of co-evolving time sequences. In SIGMOD, 2014.
    • (2014) SIGMOD
    • Matsubara, Y.1    Sakurai, Y.2    Faloutsos, C.3
  • 33
    • 84866042606 scopus 로고    scopus 로고
    • Fast mining and forecasting of complex time-stamped events
    • Y. Matsubara, Y. Sakurai, C. Faloutsos, T. Iwata, and M. Yoshikawa. Fast mining and forecasting of complex time-stamped events. In KDD, pages 271-279, 2012.
    • (2012) KDD , pp. 271-279
    • Matsubara, Y.1    Sakurai, Y.2    Faloutsos, C.3    Iwata, T.4    Yoshikawa, M.5
  • 34
    • 84866023367 scopus 로고    scopus 로고
    • Rise and fall patterns of information diffusion: Model and implications
    • Y. Matsubara, Y. Sakurai, B. A. Prakash, L. Li, and C. Faloutsos. Rise and fall patterns of information diffusion: model and implications. In KDD, pages 6-14, 2012.
    • (2012) KDD , pp. 6-14
    • Matsubara, Y.1    Sakurai, Y.2    Prakash, B.A.3    Li, L.4    Faloutsos, C.5
  • 35
    • 84907019176 scopus 로고    scopus 로고
    • FUNNEL: Automatic mining of spatially coevolving epidemics
    • Y. Matsubara, Y. Sakurai, W. G. van Panhuis, and C. Faloutsos. FUNNEL: Automatic mining of spatially coevolving epidemics. In KDD, pages 105-114, 2014.
    • (2014) KDD , pp. 105-114
    • Matsubara, Y.1    Sakurai, Y.2    Van Panhuis, W.G.3    Faloutsos, C.4
  • 36
    • 0037888145 scopus 로고
    • Qualitative stability in model ecosystems
    • R. M. May. Qualitative stability in model ecosystems. Ecology, 54(3):638-641, 1973.
    • (1973) Ecology , vol.54 , Issue.3 , pp. 638-641
    • May, R.M.1
  • 41
    • 33745631543 scopus 로고    scopus 로고
    • Streaming pattern discovery in multiple time-series
    • S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming pattern discovery in multiple time-series. In VLDB, pages 697-708, 2005.
    • (2005) VLDB , pp. 697-708
    • Papadimitriou, S.1    Sun, J.2    Faloutsos, C.3
  • 42
    • 34250753732 scopus 로고    scopus 로고
    • Optimal multi-scale patterns in time series streams
    • S. Papadimitriou and P. S. Yu. Optimal multi-scale patterns in time series streams. In SIGMOD, pages 647-658, 2006.
    • (2006) SIGMOD , pp. 647-658
    • Papadimitriou, S.1    Yu, P.S.2
  • 44
    • 84857150102 scopus 로고    scopus 로고
    • Threshold conditions for arbitrary cascade models on arbitrary networks
    • B. A. Prakash, D. Chakrabarti, M. Faloutsos, N. Valler, and C. Faloutsos. Threshold conditions for arbitrary cascade models on arbitrary networks. In ICDM, pages 537-546, 2011.
    • (2011) ICDM , pp. 537-546
    • Prakash, B.A.1    Chakrabarti, D.2    Faloutsos, M.3    Valler, N.4    Faloutsos, C.5
  • 45
    • 84877731107 scopus 로고    scopus 로고
    • Quantifying trading behavior in financial markets using google trends
    • T. Preis, H. S. Moat, and H. E. Stanley. Quantifying trading behavior in financial markets using google trends. Sci. Rep., 3, 04 2013.
    • (2013) Sci. Rep , vol.3 , pp. 04
    • Preis, T.1    Moat, H.S.2    Stanley, H.E.3
  • 48
    • 29844444109 scopus 로고    scopus 로고
    • Braid: Stream mining through group lag correlations
    • Y. Sakurai, S. Papadimitriou, and C. Faloutsos. Braid: Stream mining through group lag correlations. In SIGMOD, pages 599-610, 2005.
    • (2005) SIGMOD , pp. 599-610
    • Sakurai, Y.1    Papadimitriou, S.2    Faloutsos, C.3
  • 50
    • 33749583360 scopus 로고    scopus 로고
    • Beyond streams and graphs: Dynamic tensor analysis
    • J. Sun, D. Tao, and C. Faloutsos. Beyond streams and graphs: dynamic tensor analysis. In KDD, pages 374-383, 2006.
    • (2006) KDD , pp. 374-383
    • Sun, J.1    Tao, D.2    Faloutsos, C.3
  • 51
    • 3142713119 scopus 로고    scopus 로고
    • Prediction and indexing of moving objects with unknown motion patterns
    • Y. Tao, C. Faloutsos, D. Papadias, and B. Liu. Prediction and indexing of moving objects with unknown motion patterns. In SIGMOD, pages 611-622, 2004.
    • (2004) SIGMOD , pp. 611-622
    • Tao, Y.1    Faloutsos, C.2    Papadias, D.3    Liu, B.4
  • 52
    • 0036211177 scopus 로고    scopus 로고
    • Discovering similar multidimensional trajectories
    • M. Vlachos, D. Gunopulos, and G. Kollios. Discovering similar multidimensional trajectories. In ICDE, pages 673-684, 2002.
    • (2002) ICDE , pp. 673-684
    • Vlachos, M.1    Gunopulos, D.2    Kollios, G.3
  • 53
    • 33749559199 scopus 로고    scopus 로고
    • Suppressing model overfitting in mining concept-drifting data streams
    • H. Wang, J. Yin, J. Pei, P. S. Yu, and J. X. Yu. Suppressing model overfitting in mining concept-drifting data streams. In KDD, pages 736-741, 2006.
    • (2006) KDD , pp. 736-741
    • Wang, H.1    Yin, J.2    Pei, J.3    Yu, P.S.4    Yu, J.X.5
  • 54
    • 79959970432 scopus 로고    scopus 로고
    • Finding semantics in time series
    • P. Wang, H. Wang, and W. Wang. Finding semantics in time series. In SIGMOD Conference, pages 385-396, 2011.
    • (2011) SIGMOD Conference , pp. 385-396
    • Wang, P.1    Wang, H.2    Wang, W.3
  • 56
    • 85016927243 scopus 로고    scopus 로고
    • Connecting users across social media sites: A behavioral-modeling approach
    • R. Zafarani and H. Liu. Connecting users across social media sites: A behavioral-modeling approach. In KDD, pages 41-49, 2013.
    • (2013) KDD , pp. 41-49
    • Zafarani, R.1    Liu, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.