-
2
-
-
0032090765
-
Automatic subspace clustering of high dimensional data for data mining applications
-
AGRAWAL, R., GEHRKE, J., GUNOPULOS, D., AND RAGHAVAN, P. 1998. Automatic subspace clustering of high dimensional data for data mining applications. In Proceedings of the ACM International SIGMOD Conference on Management of Data, 94-105.
-
(1998)
Proceedings of the ACM International SIGMOD Conference on Management of Data
, pp. 94-105
-
-
AGRAWAL, R.1
GEHRKE, J.2
GUNOPULOS, D.3
RAGHAVAN, P.4
-
3
-
-
0347172110
-
OPTICS: Ordering points to identify the clustering structure
-
ANKERST, M., BREUNIG, M. M., KRIEGEL, H.-P., AND SANDER, J. 1999. OPTICS: Ordering points to identify the clustering structure. In Proceedings of the ACM International SIGMOD Conference on Management of Data.
-
(1999)
Proceedings of the ACM International SIGMOD Conference on Management of Data
-
-
ANKERST, M.1
BREUNIG, M.M.2
KRIEGEL, H.-P.3
SANDER, J.4
-
4
-
-
0027453616
-
Model-based Gaussian and non-Gaussian clustering
-
BANFIELD, J. D. AND RAFTERY, A. E. 1993. Model-based Gaussian and non-Gaussian clustering. Biometrics 49, 3, 803-821.
-
(1993)
Biometrics
, vol.49
, Issue.3
, pp. 803-821
-
-
BANFIELD, J.D.1
RAFTERY, A.E.2
-
5
-
-
34548572523
-
ViVo: Visual vocabulary construction for mining biomedical images
-
BHATTACHARYA, A., LJOSA, V., PAN, J.-Y., VERARDO, M. R., YANG, H., FALOUTSOS, C., AND SINGH, A. K. 2005. ViVo: Visual vocabulary construction for mining biomedical images. In Proceedings of the 5th IEEE International Conference on Data Mining (ICDM).
-
(2005)
Proceedings of the 5th IEEE International Conference on Data Mining (ICDM)
-
-
BHATTACHARYA, A.1
LJOSA, V.2
PAN, J.-Y.3
VERARDO, M.R.4
YANG, H.5
FALOUTSOS, C.6
SINGH, A.K.7
-
6
-
-
14544300820
-
Computing clusters of correlation connected objects
-
BÖHM, C., KAILING, K., KRÖGER, P., AND ZIMEK, A. 2004. Computing clusters of correlation connected objects. In Proceedings of the ACM International SIGMOD Conference on Management of Data, 455-466.
-
(2004)
Proceedings of the ACM International SIGMOD Conference on Management of Data
, pp. 455-466
-
-
BÖHM, C.1
KAILING, K.2
KRÖGER, P.3
ZIMEK, A.4
-
7
-
-
12244296737
-
Fully automatic cross-associations
-
CHAKRABARTI, D., PAPADIMITRIOU, S., MODHA, D. S., AND FALOUTSOS, C. 2004. Fully automatic cross-associations. In Proceedings of the ACM SIGKDD Conference on International Knowledge Discovery and Data Mining. 79-88.
-
(2004)
Proceedings of the ACM SIGKDD Conference on International Knowledge Discovery and Data Mining
, pp. 79-88
-
-
CHAKRABARTI, D.1
PAPADIMITRIOU, S.2
MODHA, D.S.3
FALOUTSOS, C.4
-
8
-
-
0000550189
-
A density-based algorithm for discovering clusters in large spatial databases with noise
-
ESTER, M., KRIEGEL, H.-P., SANDER, J., AND XU, X. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the ACM SIGKDD Conference on International Knowledge Discovery and Data Mining.
-
(1996)
Proceedings of the ACM SIGKDD Conference on International Knowledge Discovery and Data Mining
-
-
ESTER, M.1
KRIEGEL, H.-P.2
SANDER, J.3
XU, X.4
-
10
-
-
0032091595
-
CURE: An efficient clustering algorithm for large databases
-
GUHA, S., RASTOGI, R., AND SHIM, K. 1998. CURE: An efficient clustering algorithm for large databases. In Proceedings of the ACM International SIGMOD Conference on Management of Data, 73-84.
-
(1998)
Proceedings of the ACM International SIGMOD Conference on Management of Data
, pp. 73-84
-
-
GUHA, S.1
RASTOGI, R.2
SHIM, K.3
-
14
-
-
0020848951
-
A survey of recent advances in hierarchical clustering algorithms
-
MURTAGH, F. 1983. A survey of recent advances in hierarchical clustering algorithms. Comput. J. 26, 4, 354-359.
-
(1983)
Comput. J
, vol.26
, Issue.4
, pp. 354-359
-
-
MURTAGH, F.1
-
19
-
-
10044254422
-
How many clusters? An information theoretic perspective
-
STILL, S. AND BIALEK, W. 2004. How many clusters? An information theoretic perspective. Neural Comput. 16, 2483-2506.
-
(2004)
Neural Comput
, vol.16
, pp. 2483-2506
-
-
STILL, S.1
BIALEK, W.2
-
20
-
-
0003414440
-
Estimating the number of clusters in a dataset via the gap statistic
-
Tech. Rep, Stanford University
-
TIBSHIRANI, R., WALTHER, G., AND HASTIE, T. 2000. Estimating the number of clusters in a dataset via the gap statistic. Tech. Rep., Stanford University.
-
(2000)
-
-
TIBSHIRANI, R.1
WALTHER, G.2
HASTIE, T.3
-
21
-
-
0001808038
-
The information bottleneck method
-
TISHBY, N., PEREIRA, F. C., AND BIALEK, W. 2000. The information bottleneck method. In Proceedings of the 37th Allerton Conference on Communication, Control and Computing.
-
(2000)
Proceedings of the 37th Allerton Conference on Communication, Control and Computing
-
-
TISHBY, N.1
PEREIRA, F.C.2
BIALEK, W.3
-
22
-
-
29844449492
-
CURLER: Finding and visualizing nonlinear correlation clusters
-
TUNG, A. K., XU, X., AND OOI, B. C. 2005. CURLER: Finding and visualizing nonlinear correlation clusters. In Proceedings of the ACM International SIGMOD Conference on Management of Data, 467-478.
-
(2005)
Proceedings of the ACM International SIGMOD Conference on Management of Data
, pp. 467-478
-
-
TUNG, A.K.1
XU, X.2
OOI, B.C.3
-
24
-
-
84945263084
-
K-harmonic means - A spatial clustering algorithm with boosting
-
ZHANG, B., HSU, M., AND DAYAL, U. 2000. K-harmonic means - A spatial clustering algorithm with boosting. In Proceedings of the 1st International Workshop on Temporal, Spatial, and Spatio-Temporal Data Mining-Revised Papers (TSDM), 31-45.
-
(2000)
Proceedings of the 1st International Workshop on Temporal, Spatial, and Spatio-Temporal Data Mining-Revised Papers (TSDM)
, pp. 31-45
-
-
ZHANG, B.1
HSU, M.2
DAYAL, U.3
-
25
-
-
0030157145
-
BIRCH: An efficient data clustering method for very large databases
-
ZHANG, T., RAMAKRISHNAN, R., AND LIVNY, M. 1996. BIRCH: An efficient data clustering method for very large databases. In Proceedings of the ACM International SIGMOD Conference on Management of Data, 103-114.
-
(1996)
Proceedings of the ACM International SIGMOD Conference on Management of Data
, pp. 103-114
-
-
ZHANG, T.1
RAMAKRISHNAN, R.2
LIVNY, M.3
|