메뉴 건너뛰기




Volumn , Issue , 2014, Pages 193-204

AutoPlait: Automatic mining of co-evolving time sequences

Author keywords

Automatic mining; Time series data

Indexed keywords

DATABASE SYSTEMS;

EID: 84904362626     PISSN: 07308078     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2588555.2588556     Document Type: Conference Paper
Times cited : (148)

References (36)
  • 1
    • 77950884255 scopus 로고    scopus 로고
    • Spatio-temporal models for estimating click-through rate
    • D. Agarwal, B.-C. Chen, and P. Elango. Spatio-temporal models for estimating click-through rate. In WWW, pages 21-30, 2009.
    • (2009) WWW , pp. 21-30
    • Agarwal, D.1    Chen, B.-C.2    Elango, P.3
  • 3
    • 57149146298 scopus 로고    scopus 로고
    • Outlier-robust clustering using independent components
    • C. Böhm, C. Faloutsos, and C. Plant. Outlier-robust clustering using independent components. In SIGMOD, pages 185-198, 2008.
    • (2008) SIGMOD , pp. 185-198
    • Böhm, C.1    Faloutsos, C.2    Plant, C.3
  • 6
    • 77954756661 scopus 로고    scopus 로고
    • Leveraging spatio-temporal redundancy for rfid data cleansing
    • H. Chen, W.-S. Ku, H. Wang, and M.-T. Sun. Leveraging spatio-temporal redundancy for rfid data cleansing. In SIGMOD, pages 51-62, 2010.
    • (2010) SIGMOD , pp. 51-62
    • Chen, H.1    Ku, W.-S.2    Wang, H.3    Sun, M.-T.4
  • 7
    • 85135872226 scopus 로고    scopus 로고
    • On the marriage of lp-norms and edit distance
    • L. Chen and R. T. Ng. On the marriage of lp-norms and edit distance. In VLDB, pages 792-803, 2004.
    • (2004) VLDB , pp. 792-803
    • Chen, L.1    Ng, R.T.2
  • 9
    • 0032119668 scopus 로고    scopus 로고
    • The hierarchical hidden markov model: Analysis and applications
    • S. Fine, Y. Singer, and N. Tishby. The hierarchical hidden markov model: Analysis and applications. Machine Learning, 32(1):41-62, 1998.
    • (1998) Machine Learning , vol.32 , Issue.1 , pp. 41-62
    • Fine, S.1    Singer, Y.2    Tishby, N.3
  • 10
    • 85032752250 scopus 로고    scopus 로고
    • Bayesian nonparametric methods for learning markov switching processes
    • E. Fox, E. Sudderth, M. Jordan, and A. Willsky. Bayesian Nonparametric Methods for Learning Markov Switching Processes. Signal Processing Magazine, IEEE, 27(6):43-54, 2010.
    • (2010) Signal Processing Magazine, IEEE , vol.27 , Issue.6 , pp. 43-54
    • Fox, E.1    Sudderth, E.2    Jordan, M.3    Willsky, A.4
  • 11
    • 84858717210 scopus 로고    scopus 로고
    • Sharing features among dynamical systems with beta processes
    • E. B. Fox, E. B. Sudderth, M. I. Jordan, and A. S. Willsky. Sharing features among dynamical systems with beta processes. In NIPS, pages 549-557, 2009.
    • (2009) NIPS , pp. 549-557
    • Fox, E.B.1    Sudderth, E.B.2    Jordan, M.I.3    Willsky, A.S.4
  • 12
    • 65449116939 scopus 로고    scopus 로고
    • Spiral: Efficient and exact model identification for hidden markov models
    • Y. Fujiwara, Y. Sakurai, and M. Yamamuro. Spiral: efficient and exact model identification for hidden markov models. In KDD, pages 247-255, 2008.
    • (2008) KDD , pp. 247-255
    • Fujiwara, Y.1    Sakurai, Y.2    Yamamuro, M.3
  • 13
    • 3142770653 scopus 로고    scopus 로고
    • Adaptive stream resource management using kalman filters
    • A. Jain, E. Y. Chang, and Y.-F. Wang. Adaptive stream resource management using kalman filters. In SIGMOD, pages 11-22, 2004.
    • (2004) SIGMOD , pp. 11-22
    • Jain, A.1    Chang, E.Y.2    Wang, Y.-F.3
  • 14
    • 33845594450 scopus 로고    scopus 로고
    • An online algorithm for segmenting time series
    • E. J. Keogh, S. Chu, D. Hart, and M. J. Pazzani. An online algorithm for segmenting time series. In ICDM, pages 289-296, 2001.
    • (2001) ICDM , pp. 289-296
    • Keogh, E.J.1    Chu, S.2    Hart, D.3    Pazzani, M.J.4
  • 15
    • 35449007737 scopus 로고    scopus 로고
    • Trajectory clustering: A partition-and-group framework
    • J.-G. Lee, J. Han, and K.-Y. Whang. Trajectory clustering: a partition-and-group framework. In SIGMOD Conference, pages 593-604, 2007.
    • (2007) SIGMOD Conference , pp. 593-604
    • Lee, J.-G.1    Han, J.2    Whang, K.-Y.3
  • 18
    • 70350677089 scopus 로고    scopus 로고
    • Dynammo: Mining and summarization of coevolving sequences with missing values
    • L. Li, J. McCann, N. Pollard, and C. Faloutsos. Dynammo: Mining and summarization of coevolving sequences with missing values. In KDD, 2009.
    • (2009) KDD
    • Li, L.1    McCann, J.2    Pollard, N.3    Faloutsos, C.4
  • 19
    • 80052675972 scopus 로고    scopus 로고
    • Parsimonious linear fingerprinting for time series
    • L. Li, B. A. Prakash, and C. Faloutsos. Parsimonious linear fingerprinting for time series. PVLDB, 3(1):385-396, 2010.
    • (2010) PVLDB , vol.3 , Issue.1 , pp. 385-396
    • Li, L.1    Prakash, B.A.2    Faloutsos, C.3
  • 20
    • 84866042606 scopus 로고    scopus 로고
    • Fast mining and forecasting of complex time-stamped events
    • Y. Matsubara, Y. Sakurai, C. Faloutsos, T. Iwata, and M. Yoshikawa. Fast mining and forecasting of complex time-stamped events. In KDD, pages 271-279, 2012.
    • (2012) KDD , pp. 271-279
    • Matsubara, Y.1    Sakurai, Y.2    Faloutsos, C.3    Iwata, T.4    Yoshikawa, M.5
  • 21
    • 84866023367 scopus 로고    scopus 로고
    • Rise and fall patterns of information diffusion: Model and implications
    • Y. Matsubara, Y. Sakurai, B. A. Prakash, L. Li, and C. Faloutsos. Rise and fall patterns of information diffusion: model and implications. In KDD, pages 6-14, 2012.
    • (2012) KDD , pp. 6-14
    • Matsubara, Y.1    Sakurai, Y.2    Prakash, B.A.3    Li, L.4    Faloutsos, C.5
  • 22
    • 77956199047 scopus 로고    scopus 로고
    • Online discovery and maintenance of time series motifs
    • A. Mueen and E. J. Keogh. Online discovery and maintenance of time series motifs. In KDD, pages 1089-1098, 2010.
    • (2010) KDD , pp. 1089-1098
    • Mueen, A.1    Keogh, E.J.2
  • 23
    • 0036709106 scopus 로고    scopus 로고
    • Clarans: A method for clustering objects for spatial data mining
    • R. T. Ng and J. Han. Clarans: A method for clustering objects for spatial data mining. IEEE Trans. Knowl. Data Eng., 14(5):1003-1016, 2002.
    • (2002) IEEE Trans. Knowl. Data Eng. , vol.14 , Issue.5 , pp. 1003-1016
    • Ng, R.T.1    Han, J.2
  • 25
    • 33745631543 scopus 로고    scopus 로고
    • Streaming pattern discovery in multiple time-series
    • Trondheim, Norway, August-September
    • S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming pattern discovery in multiple time-series. In Proceedings of VLDB, pages 697-708, Trondheim, Norway, August-September 2005.
    • (2005) Proceedings of VLDB , pp. 697-708
    • Papadimitriou, S.1    Sun, J.2    Faloutsos, C.3
  • 27
    • 0001098776 scopus 로고
    • A universal prior for integers and estimation by minimum description length
    • J. Rissanen. A Universal Prior for Integers and Estimation by Minimum Description Length. Ann. of Statist., 11(2):416-431, 1983.
    • (1983) Ann. of Statist. , vol.11 , Issue.2 , pp. 416-431
    • Rissanen, J.1
  • 28
    • 34548722676 scopus 로고    scopus 로고
    • Stream monitoring under the time warping distance
    • Y. Sakurai, C. Faloutsos, and M. Yamamuro. Stream monitoring under the time warping distance. In ICDE, pages 1046-1055, 2007.
    • (2007) ICDE , pp. 1046-1055
    • Sakurai, Y.1    Faloutsos, C.2    Yamamuro, M.3
  • 29
    • 29844444109 scopus 로고    scopus 로고
    • Braid: Stream mining through group lag correlations
    • Y. Sakurai, S. Papadimitriou, and C. Faloutsos. Braid: Stream mining through group lag correlations. In SIGMOD, pages 599-610, 2005.
    • (2005) SIGMOD , pp. 599-610
    • Sakurai, Y.1    Papadimitriou, S.2    Faloutsos, C.3
  • 31
    • 3142713119 scopus 로고    scopus 로고
    • Prediction and indexing of moving objects with unknown motion patterns
    • Y. Tao, C. Faloutsos, D. Papadias, and B. Liu. Prediction and indexing of moving objects with unknown motion patterns. In Proceedings of ACM SIGMOD, pages 611-622, 2004.
    • (2004) Proceedings of ACM SIGMOD , pp. 611-622
    • Tao, Y.1    Faloutsos, C.2    Papadias, D.3    Liu, B.4
  • 32
    • 84866038437 scopus 로고    scopus 로고
    • The long and the short of it: Summarising event sequences with serial episodes
    • N. Tatti and J. Vreeken. The long and the short of it: summarising event sequences with serial episodes. In KDD, pages 462-470, 2012.
    • (2012) KDD , pp. 462-470
    • Tatti, N.1    Vreeken, J.2
  • 33
    • 84877876319 scopus 로고    scopus 로고
    • Pattern discovery in data streams under the time warping distance
    • M. Toyoda, Y. Sakurai, and Y. Ishikawa. Pattern discovery in data streams under the time warping distance. VLDB J., 22(3):295-318, 2013.
    • (2013) VLDB J. , vol.22 , Issue.3 , pp. 295-318
    • Toyoda, M.1    Sakurai, Y.2    Ishikawa, Y.3
  • 34
    • 79959970432 scopus 로고    scopus 로고
    • Finding semantics in time series
    • P. Wang, H. Wang, and W. Wang. Finding semantics in time series. In SIGMOD Conference, pages 385-396, 2011.
    • (2011) SIGMOD Conference , pp. 385-396
    • Wang, P.1    Wang, H.2    Wang, W.3
  • 36
    • 0030157145 scopus 로고    scopus 로고
    • Birch: An efficient data clustering method for very large databases
    • ACM
    • T. Zhang, R. Ramakrishnan, and M. Livny. Birch: an efficient data clustering method for very large databases. In SIGMOD, pages 103-114. ACM, 1996.
    • (1996) SIGMOD , pp. 103-114
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.