-
2
-
-
0032688141
-
Efficient time series matching by wavelets
-
K. Chan and W. Fu. Efficient time series matching by wavelets. In ICDE, 1999.
-
(1999)
ICDE
-
-
Chan, K.1
Fu, W.2
-
4
-
-
67649655741
-
Concept clustering of evolving data
-
S. Chen, H. Wang, and S. Zhou. Concept clustering of evolving data. In ICDE, 2009.
-
(2009)
ICDE
-
-
Chen, S.1
Wang, H.2
Zhou, S.3
-
5
-
-
52649146290
-
Stop chasing trends: Discovering high order models in evolving data
-
S. Chen, H. Wang, S. Zhou, and P. Yu. Stop chasing trends: Discovering high order models in evolving data. In ICDE, 2008.
-
(2008)
ICDE
-
-
Chen, S.1
Wang, H.2
Zhou, S.3
Yu, P.4
-
6
-
-
0033316175
-
Time series prediction by estimating markov probabilities through topology preserving maps
-
G. Dangelmayr, S. Gadaleta, D. Hundley, and M. Kirby. Time series prediction by estimating markov probabilities through topology preserving maps. In SPIE, 1999.
-
(1999)
SPIE
-
-
Dangelmayr, G.1
Gadaleta, S.2
Hundley, D.3
Kirby, M.4
-
7
-
-
84867136666
-
Querying and mining of time series data: Experimental comparison of representations and distance measures
-
H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh. Querying and mining of time series data: Experimental comparison of representations and distance measures. In VLDB, 2008.
-
(2008)
VLDB
-
-
Ding, H.1
Trajcevski, G.2
Scheuermann, P.3
Wang, X.4
Keogh, E.5
-
9
-
-
67649637304
-
Online anomaly prediction for robust cluster systems
-
X. Gu and H. Wang. Online anomaly prediction for robust cluster systems. In ICDE, 2009.
-
(2009)
ICDE
-
-
Gu, X.1
Wang, H.2
-
10
-
-
0001545778
-
Dimensionality reduction for fast similarity search in large time series databases
-
E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. Dimensionality reduction for fast similarity search in large time series databases. KAIS, 2000.
-
(2000)
KAIS
-
-
Keogh, E.1
Chakrabarti, K.2
Pazzani, M.3
Mehrotra, S.4
-
11
-
-
85150810448
-
An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback
-
E. Keogh and M. Pazzani. An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback. In SIGKDD, 1998.
-
(1998)
SIGKDD
-
-
Keogh, E.1
Pazzani, M.2
-
12
-
-
33845594450
-
An online algorithm for segmenting time series
-
E. Keogh, S.Chu, D. Hart, and M. Pazzani. An online algorithm for segmenting time series. In ICDM, 2001.
-
(2001)
ICDM
-
-
Keogh, E.1
Chu, S.2
Hart, D.3
Pazzani, M.4
-
13
-
-
84988316460
-
A decade of progress in indexing and mining large time series databases
-
E. J. Keogh. A decade of progress in indexing and mining large time series databases. In VLDB, 2006.
-
(2006)
VLDB
-
-
Keogh, E.J.1
-
14
-
-
34548093287
-
Experiencing sax: A novel symbolic representation of time series
-
J. Lin, E. J. Keogh, L. Wei, and S. Lonardi. Experiencing sax: a novel symbolic representation of time series. In DMKD, 2007.
-
(2007)
DMKD
-
-
Lin, J.1
Keogh, E.J.2
Wei, L.3
Lonardi, S.4
-
15
-
-
0029770147
-
A second-order hmm for high performance word and phoneme-based continuous speech recognition
-
J. F. Mari, D. Fohr, and J. C. Junqira. A second-order hmm for high performance word and phoneme-based continuous speech recognition. In ICASSP, 1996.
-
(1996)
ICASSP
-
-
Mari, J.F.1
Fohr, D.2
Junqira, J.C.3
-
16
-
-
77956199047
-
Online discovery and maintenance of time series motifs
-
A. Mueen and E. Keogh. Online discovery and maintenance of time series motifs. In SIGKDD, 2010.
-
(2010)
SIGKDD
-
-
Mueen, A.1
Keogh, E.2
-
17
-
-
77951156369
-
Finding time series motifs in disk-resident data
-
A. Mueen, E. Keogh, and N. Bigdely-Shamlo. Finding time series motifs in disk-resident data. In ICDM, 2009.
-
(2009)
ICDM
-
-
Mueen, A.1
Keogh, E.2
Bigdely-Shamlo, N.3
-
18
-
-
0033871047
-
Landmarks: A new model for similarity-based pattern querying in time series databases
-
C. Perng, H. Wang, S. R. Zhang, and D. Parker. Landmarks: A new model for similarity-based pattern querying in time series databases. In ICDE, 2000.
-
(2000)
ICDE
-
-
Perng, C.1
Wang, H.2
Zhang, S.R.3
Parker, D.4
-
19
-
-
79951923355
-
Managing massive time series streams with multiscale compressed trickles
-
G. Reeves, J. Liu, S. Nath, and F. Zhao. Managing massive time series streams with multiscale compressed trickles. In VLDB, 2009.
-
(2009)
VLDB
-
-
Reeves, G.1
Liu, J.2
Nath, S.3
Zhao, F.4
-
20
-
-
0030282113
-
The power of amnesia: Learning probabilistic automata with variable memory length
-
D. Ron, Y. Singer, and N. Tishby. The power of amnesia: Learning probabilistic automata with variable memory length. Machine Learning, pages 117-149, 1996.
-
(1996)
Machine Learning
, pp. 117-149
-
-
Ron, D.1
Singer, Y.2
Tishby, N.3
-
21
-
-
77956256340
-
Adaptive system anomaly prediction for large-scale hosting infrastructures
-
Y. Tan, X. Gu, and H. Wang. Adaptive system anomaly prediction for large-scale hosting infrastructures. In PODC, 2010.
-
(2010)
PODC
-
-
Tan, Y.1
Gu, X.2
Wang, H.3
-
22
-
-
35448932482
-
Effective variation management for pseudo periodical streams
-
L. Tang, B. Cui, H. Li, G. Miao, D. Yang, and X. Zhou. Effective variation management for pseudo periodical streams. In SIGMOD, 2007.
-
(2007)
SIGMOD
-
-
Tang, L.1
Cui, B.2
Li, H.3
Miao, G.4
Yang, D.5
Zhou, X.6
-
23
-
-
77952415079
-
Mining concept-drifting data streams using ensemble classifiers
-
H. Wang, W. Fan, P. S. Yu, and J. Han. Mining concept-drifting data streams using ensemble classifiers. In SIGKDD, 2003.
-
(2003)
SIGKDD
-
-
Wang, H.1
Fan, W.2
Yu, P.S.3
Han, J.4
-
24
-
-
33749559199
-
Suppressing model overfitting in mining concept-drifting data streams
-
H. Wang, J. Yin, J. Pei, P. S. Yu, and J. X. Yu. Suppressing model overfitting in mining concept-drifting data streams. In SIGKDD, 2006.
-
(2006)
SIGKDD
-
-
Wang, H.1
Yin, J.2
Pei, J.3
Yu, P.S.4
Yu, J.X.5
-
25
-
-
77954736323
-
An algorithmic approach to event summarization
-
P. Wang, H. Wang, M. Liu, and W. Wang. An algorithmic approach to event summarization. In SIGMOD, 2010.
-
(2010)
SIGMOD
-
-
Wang, P.1
Wang, H.2
Liu, M.3
Wang, W.4
-
26
-
-
84893614726
-
Mining complex time-series data by learning the temporal structure using bayesian techniques and markovian models
-
Y. Wang and L. Zhou. Mining complex time-series data by learning the temporal structure using bayesian techniques and markovian models. In ICDM, 2006.
-
(2006)
ICDM
-
-
Wang, Y.1
Zhou, L.2
-
27
-
-
35348843782
-
Cluster and calendar based visualization of time series data
-
J. J. Wiik and E. R. Selow. Cluster and calendar based visualization of time series data. In INFOVIS, 1999.
-
(1999)
INFOVIS
-
-
Wiik, J.J.1
Selow, E.R.2
|