-
1
-
-
0027621699
-
Mining association rules between sets of items in large databases
-
ACM
-
R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. In SIGMOD, pages 207-216. ACM, 1993.
-
(1993)
SIGMOD
, pp. 207-216
-
-
Agrawal, R.1
Imielinski, T.2
Swami, A.3
-
4
-
-
78650162978
-
Sentiment knowledge discovery in twitter streaming data
-
A. Bifet and E. Frank. Sentiment knowledge discovery in twitter streaming data. In Disc. Science, pages 1-15, 2010.
-
(2010)
Disc. Science
, pp. 1-15
-
-
Bifet, A.1
Frank, E.2
-
5
-
-
84858171410
-
Ensembles of restricted hoeffding trees
-
A. Bifet, E. Frank, G. Holmes, and B. Pfahringer. Ensembles of restricted hoeffding trees. TIST, 3(2):30:1-30:20, 2012.
-
(2012)
TIST
, vol.3
, Issue.2
, pp. 301-3020
-
-
Bifet, A.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
-
6
-
-
70449100647
-
Learning from time-changing data with adaptive windowing
-
A. Bifet and R. Gavaldà. Learning from time-changing data with adaptive windowing. In SDM, 2007.
-
(2007)
SDM
-
-
Bifet, A.1
Gavaldà, R.2
-
7
-
-
70349871603
-
Adaptive learning from evolving data streams
-
A. Bifet and R. Gavaldà. Adaptive learning from evolving data streams. In IDA, pages 249-260, 2009.
-
(2009)
IDA
, pp. 249-260
-
-
Bifet, A.1
Gavaldà, R.2
-
8
-
-
77953527363
-
MOA: Massive online analysis
-
A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer. MOA: Massive online analysis. JMLR, 11:1601-1604, 2010.
-
(2010)
JMLR
, vol.11
, pp. 1601-1604
-
-
Bifet, A.1
Holmes, G.2
Kirkby, R.3
Pfahringer, B.4
-
9
-
-
79956323714
-
Fast perceptron decision tree learning from evolving data streams
-
A. Bifet, G. Holmes, B. Pfahringer, and E. Frank. Fast perceptron decision tree learning from evolving data streams. In PAKDD, pages 299-310, 2010.
-
(2010)
PAKDD
, pp. 299-310
-
-
Bifet, A.1
Holmes, G.2
Pfahringer, B.3
Frank, E.4
-
10
-
-
84871538121
-
Detecting sentiment change in twitter streaming data
-
A. Bifet, G. Holmes, B. Pfahringer, and R. Gavaldà. Detecting sentiment change in twitter streaming data. JMLR, 17:5-11, 2011.
-
(2011)
JMLR
, vol.17
, pp. 5-11
-
-
Bifet, A.1
Holmes, G.2
Pfahringer, B.3
Gavaldà, R.4
-
13
-
-
0039931049
-
Compensation principle
-
S. N. Durlauf and L. E. Blume, editors, Palgrave Macmillan
-
J. Chipman. Compensation principle. In S. N. Durlauf and L. E. Blume, editors, The New Palgrave Dictionary of Economics. Palgrave Macmillan, 2008.
-
(2008)
The New Palgrave Dictionary of Economics
-
-
Chipman, J.1
-
14
-
-
34249753618
-
Support-vector networks
-
C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273-297, 1995.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
15
-
-
0000886528
-
Algorithm 235: Random permutation
-
R. Durstenfeld. Algorithm 235: Random permutation. Commun. ACM, 7(7):420, 1964.
-
(1964)
Commun. ACM
, vol.7
, Issue.7
, pp. 420
-
-
Durstenfeld, R.1
-
16
-
-
84875790944
-
A concept similarity based data stream classification model
-
L. Feng, F. Chen, and Y. Yao. A concept similarity based data stream classification model. Journal of Information & Computational Science, 10(4):949-957, 2013.
-
(2013)
Journal of Information & Computational Science
, vol.10
, Issue.4
, pp. 949-957
-
-
Feng, L.1
Chen, F.2
Yao, Y.3
-
17
-
-
70350664414
-
Issues in evaluation of stream learning algorithms
-
J. Gama, R. S. ao, and P. Rodrigues. Issues in evaluation of stream learning algorithms. In SIGKDD, page 329, 2009.
-
(2009)
SIGKDD
, pp. 329
-
-
Gama, J.1
Ao, R.S.2
Rodrigues, P.3
-
18
-
-
2442449952
-
Mining frequent patterns without candidate generation: A frequent-pattern tree approach
-
J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data Mining Knowledge Discovery, 8(1):53-87, 2004.
-
(2004)
Data Mining Knowledge Discovery
, vol.8
, Issue.1
, pp. 53-87
-
-
Han, J.1
Pei, J.2
Yin, Y.3
Mao, R.4
-
19
-
-
0000082519
-
The foundations of welfare economics
-
J. Hicks. The foundations of welfare economics. The Economic Journal, 49(196):696-712, 1939.
-
(1939)
The Economic Journal
, vol.49
, Issue.196
, pp. 696-712
-
-
Hicks, J.1
-
21
-
-
77953128121
-
Sliding-window top-k queries on uncertain streams
-
C. Jin, K. Yi, L. Chen, J. Yu, and X. Lin. Sliding-window top-k queries on uncertain streams. VLDB J., 19(3):411-435, 2010.
-
(2010)
VLDB J.
, vol.19
, Issue.3
, pp. 411-435
-
-
Jin, C.1
Yi, K.2
Chen, L.3
Yu, J.4
Lin, X.5
-
22
-
-
0000310992
-
Welfare propositions in economics and interpersonal comparisons of utility
-
N. Kaldor. Welfare propositions in economics and interpersonal comparisons of utility. The Economic Journal, 49(195):549-552, 1939.
-
(1939)
The Economic Journal
, vol.49
, Issue.195
, pp. 549-552
-
-
Kaldor, N.1
-
23
-
-
84883713774
-
Learning drifting concepts: Example selection vs. Example weighting
-
R. Klinkenberg. Learning drifting concepts: Example selection vs. example weighting. Intell. Data Anal., 8(3), 2004.
-
(2004)
Intell. Data Anal.
, vol.8
, Issue.3
-
-
Klinkenberg, R.1
-
24
-
-
0345303623
-
Gradual forgetting for adaptation to concept drift
-
I. Koychev. Gradual forgetting for adaptation to concept drift. In ECAI, pages 101-106, 2000.
-
(2000)
ECAI
, pp. 101-106
-
-
Koychev, I.1
-
25
-
-
67049160126
-
A practical approach to classify evolving data streams: Training with limited amount of labeled data
-
M. Masud, J. Gao, L. Khan, J. Han, and B. Thuraisingham. A practical approach to classify evolving data streams: Training with limited amount of labeled data. In ICDM, pages 929-934, 2008.
-
(2008)
ICDM
, pp. 929-934
-
-
Masud, M.1
Gao, J.2
Khan, L.3
Han, J.4
Thuraisingham, B.5
-
26
-
-
84899734203
-
Learning to rank similar apparel styles with economically-efficient rule-based active learning
-
M. Moreira, J. dos Santos, and A. Veloso. Learning to rank similar apparel styles with economically-efficient rule-based active learning. In ICMR, pages 361-369, 2014.
-
(2014)
ICMR
, pp. 361-369
-
-
Moreira, M.1
Dos Santos, J.2
Veloso, A.3
-
27
-
-
36949039903
-
Learning in environments with unknown dynamics: Towards more robust concept learners
-
M. N. nez, R. Fidalgo, and R. Morales. Learning in environments with unknown dynamics: Towards more robust concept learners. JMLR, 8, 2007.
-
(2007)
JMLR
, vol.8
-
-
Nez, M.N.1
Fidalgo, R.2
Morales, R.3
-
28
-
-
84904561910
-
Pareto?s republic and the new science of peace
-
F. Palda. Pareto?s Republic and the new Science of Peace. Cooper-Wolfling, 2011.
-
(2011)
Cooper-Wolfling
-
-
Palda, F.1
-
29
-
-
84867374306
-
Pareto-efficient hybridization for multi-objective recommender systems
-
M. Ribeiro, A. Lacerda, A. Veloso, and N. Ziviani. Pareto-efficient hybridization for multi-objective recommender systems. In RecSys, pages 19-26, 2012.
-
(2012)
RecSys
, pp. 19-26
-
-
Ribeiro, M.1
Lacerda, A.2
Veloso, A.3
Ziviani, N.4
-
30
-
-
80052131982
-
Effective sentiment stream analysis with self-augmenting training and demand-driven projection
-
ACM
-
I. Santana, J. Gomide, A. Veloso, W. M. Jr., and R. Ferreira. Effective sentiment stream analysis with self-augmenting training and demand-driven projection. In SIGIR, pages 475-484. ACM, 2011.
-
(2011)
SIGIR
, pp. 475-484
-
-
Santana, I.1
Gomide, J.2
Veloso, A.3
Jr., W.M.4
Ferreira, R.5
-
31
-
-
84904542592
-
Classification model for data streams based on similarity
-
D. Torres, J. Ruiz, and Y. Sarabia. Classification model for data streams based on similarity. In IEA, pages 1-9, 2011.
-
(2011)
IEA
, pp. 1-9
-
-
Torres, D.1
Ruiz, J.2
Sarabia, Y.3
-
32
-
-
84878058142
-
Lazy associative classification
-
A. Veloso, W. M. Jr., and M. Zaki. Lazy associative classification. In ICDM, pages 645-654, 2006.
-
(2006)
ICDM
, pp. 645-654
-
-
Veloso, A.1
Jr., W.M.2
Zaki, M.3
-
33
-
-
79953892381
-
Calibrated lazy associative classification
-
A. Veloso, W. Meira Jr., M. Gonçalves, H. de Almeida, and M. Zaki. Calibrated lazy associative classification. Inf. Sci., 181(13):2656-2670, 2011.
-
(2011)
Inf. Sci.
, vol.181
, Issue.13
, pp. 2656-2670
-
-
Veloso, A.1
Meira Jr., W.2
Gonçalves, M.3
De Almeida, H.4
Zaki, M.5
-
34
-
-
35248901442
-
Parallel and distributed frequent itemset mining on dynamic datasets
-
A. Veloso, M. Otey, S. Parthasarathy, and W. Meira Jr. Parallel and distributed frequent itemset mining on dynamic datasets. In HiPC, pages 184-193, 2003.
-
(2003)
HiPC
, pp. 184-193
-
-
Veloso, A.1
Otey, M.2
Parthasarathy, S.3
Meira Jr., W.4
-
36
-
-
84904573093
-
MOA concept drift active learning strategies for streaming data
-
I. Žliobait?e, A. Bifet, G. Holmes, and B. Pfahringer. MOA concept drift active learning strategies for streaming data. JMLR, 17:48-55, 2011.
-
(2011)
JMLR
, vol.17
, pp. 48-55
-
-
Žliobaite, I.1
Bifet, A.2
Holmes, G.3
Pfahringer, B.4
-
37
-
-
80052421217
-
Active learning with evolving streaming data
-
I. Žliobait?e, A. Bifet, B. Pfahringer, and G. Holmes. Active learning with evolving streaming data. In Machine Learning and Knowledge Discovery in Databases, volume 6913, pages 597-612. 2011.
-
(2011)
Machine Learning and Knowledge Discovery in Databases
, vol.6913
, pp. 597-612
-
-
Žliobaite, I.1
Bifet, A.2
Pfahringer, B.3
Holmes, G.4
-
38
-
-
84888385653
-
Active learning with drifting streaming data
-
I. Žliobait?e, A. Bifet, B. Pfahringer, and G. Holmes. Active learning with drifting streaming data. IEEE Trans. on Neural Networks and Learning Systems, PP(99):1-1, 2013.
-
(2013)
IEEE Trans. on Neural Networks and Learning Systems
, vol.PP
, Issue.99
, pp. 1-1
-
-
Žliobaite, I.1
Bifet, A.2
Pfahringer, B.3
Holmes, G.4
-
39
-
-
6344277753
-
Fast vertical mining using diffsets
-
M. Zaki and K. Gouda. Fast vertical mining using diffsets. In SIGKDD, pages 326-335, 2003.
-
(2003)
SIGKDD
, pp. 326-335
-
-
Zaki, M.1
Gouda, K.2
-
40
-
-
85138646379
-
New algorithms for fast discovery of association rules
-
M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fast discovery of association rules. In SIGKDD, pages 283-286, 1997.
-
(1997)
SIGKDD
, pp. 283-286
-
-
Zaki, M.1
Parthasarathy, S.2
Ogihara, M.3
Li, W.4
-
41
-
-
78649975675
-
Active learning from stream data using optimal weight classifier ensemble
-
X. Zhu, P. Zhang, X. Lin, and Y. Shi. Active learning from stream data using optimal weight classifier ensemble. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 40(6):1607-1621, 2010.
-
(2010)
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
, vol.40
, Issue.6
, pp. 1607-1621
-
-
Zhu, X.1
Zhang, P.2
Lin, X.3
Shi, Y.4
-
42
-
-
77952383186
-
Efficient elastic burst detection in data streams
-
Y. Zhu and D. Shasha. Efficient elastic burst detection in data streams. In KDD, pages 336-345, 2003.
-
(2003)
KDD
, pp. 336-345
-
-
Zhu, Y.1
Shasha, D.2
|