메뉴 건너뛰기




Volumn , Issue , 2014, Pages 637-646

Economically-efficient sentiment stream analysis

Author keywords

Economic efficiency; Sentiment analysis; Streams and drifts

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA MINING; INFORMATION RETRIEVAL; SEARCH ENGINES; SOCIAL NETWORKING (ONLINE);

EID: 84904540811     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2600428.2609612     Document Type: Conference Paper
Times cited : (21)

References (42)
  • 1
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large databases
    • ACM
    • R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. In SIGMOD, pages 207-216. ACM, 1993.
    • (1993) SIGMOD , pp. 207-216
    • Agrawal, R.1    Imielinski, T.2    Swami, A.3
  • 4
    • 78650162978 scopus 로고    scopus 로고
    • Sentiment knowledge discovery in twitter streaming data
    • A. Bifet and E. Frank. Sentiment knowledge discovery in twitter streaming data. In Disc. Science, pages 1-15, 2010.
    • (2010) Disc. Science , pp. 1-15
    • Bifet, A.1    Frank, E.2
  • 5
    • 84858171410 scopus 로고    scopus 로고
    • Ensembles of restricted hoeffding trees
    • A. Bifet, E. Frank, G. Holmes, and B. Pfahringer. Ensembles of restricted hoeffding trees. TIST, 3(2):30:1-30:20, 2012.
    • (2012) TIST , vol.3 , Issue.2 , pp. 301-3020
    • Bifet, A.1    Frank, E.2    Holmes, G.3    Pfahringer, B.4
  • 6
    • 70449100647 scopus 로고    scopus 로고
    • Learning from time-changing data with adaptive windowing
    • A. Bifet and R. Gavaldà. Learning from time-changing data with adaptive windowing. In SDM, 2007.
    • (2007) SDM
    • Bifet, A.1    Gavaldà, R.2
  • 7
    • 70349871603 scopus 로고    scopus 로고
    • Adaptive learning from evolving data streams
    • A. Bifet and R. Gavaldà. Adaptive learning from evolving data streams. In IDA, pages 249-260, 2009.
    • (2009) IDA , pp. 249-260
    • Bifet, A.1    Gavaldà, R.2
  • 9
    • 79956323714 scopus 로고    scopus 로고
    • Fast perceptron decision tree learning from evolving data streams
    • A. Bifet, G. Holmes, B. Pfahringer, and E. Frank. Fast perceptron decision tree learning from evolving data streams. In PAKDD, pages 299-310, 2010.
    • (2010) PAKDD , pp. 299-310
    • Bifet, A.1    Holmes, G.2    Pfahringer, B.3    Frank, E.4
  • 10
    • 84871538121 scopus 로고    scopus 로고
    • Detecting sentiment change in twitter streaming data
    • A. Bifet, G. Holmes, B. Pfahringer, and R. Gavaldà. Detecting sentiment change in twitter streaming data. JMLR, 17:5-11, 2011.
    • (2011) JMLR , vol.17 , pp. 5-11
    • Bifet, A.1    Holmes, G.2    Pfahringer, B.3    Gavaldà, R.4
  • 13
    • 0039931049 scopus 로고    scopus 로고
    • Compensation principle
    • S. N. Durlauf and L. E. Blume, editors, Palgrave Macmillan
    • J. Chipman. Compensation principle. In S. N. Durlauf and L. E. Blume, editors, The New Palgrave Dictionary of Economics. Palgrave Macmillan, 2008.
    • (2008) The New Palgrave Dictionary of Economics
    • Chipman, J.1
  • 14
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273-297, 1995.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 15
    • 0000886528 scopus 로고
    • Algorithm 235: Random permutation
    • R. Durstenfeld. Algorithm 235: Random permutation. Commun. ACM, 7(7):420, 1964.
    • (1964) Commun. ACM , vol.7 , Issue.7 , pp. 420
    • Durstenfeld, R.1
  • 17
    • 70350664414 scopus 로고    scopus 로고
    • Issues in evaluation of stream learning algorithms
    • J. Gama, R. S. ao, and P. Rodrigues. Issues in evaluation of stream learning algorithms. In SIGKDD, page 329, 2009.
    • (2009) SIGKDD , pp. 329
    • Gama, J.1    Ao, R.S.2    Rodrigues, P.3
  • 18
    • 2442449952 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation: A frequent-pattern tree approach
    • J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data Mining Knowledge Discovery, 8(1):53-87, 2004.
    • (2004) Data Mining Knowledge Discovery , vol.8 , Issue.1 , pp. 53-87
    • Han, J.1    Pei, J.2    Yin, Y.3    Mao, R.4
  • 19
    • 0000082519 scopus 로고
    • The foundations of welfare economics
    • J. Hicks. The foundations of welfare economics. The Economic Journal, 49(196):696-712, 1939.
    • (1939) The Economic Journal , vol.49 , Issue.196 , pp. 696-712
    • Hicks, J.1
  • 21
    • 77953128121 scopus 로고    scopus 로고
    • Sliding-window top-k queries on uncertain streams
    • C. Jin, K. Yi, L. Chen, J. Yu, and X. Lin. Sliding-window top-k queries on uncertain streams. VLDB J., 19(3):411-435, 2010.
    • (2010) VLDB J. , vol.19 , Issue.3 , pp. 411-435
    • Jin, C.1    Yi, K.2    Chen, L.3    Yu, J.4    Lin, X.5
  • 22
    • 0000310992 scopus 로고
    • Welfare propositions in economics and interpersonal comparisons of utility
    • N. Kaldor. Welfare propositions in economics and interpersonal comparisons of utility. The Economic Journal, 49(195):549-552, 1939.
    • (1939) The Economic Journal , vol.49 , Issue.195 , pp. 549-552
    • Kaldor, N.1
  • 23
    • 84883713774 scopus 로고    scopus 로고
    • Learning drifting concepts: Example selection vs. Example weighting
    • R. Klinkenberg. Learning drifting concepts: Example selection vs. example weighting. Intell. Data Anal., 8(3), 2004.
    • (2004) Intell. Data Anal. , vol.8 , Issue.3
    • Klinkenberg, R.1
  • 24
    • 0345303623 scopus 로고    scopus 로고
    • Gradual forgetting for adaptation to concept drift
    • I. Koychev. Gradual forgetting for adaptation to concept drift. In ECAI, pages 101-106, 2000.
    • (2000) ECAI , pp. 101-106
    • Koychev, I.1
  • 25
    • 67049160126 scopus 로고    scopus 로고
    • A practical approach to classify evolving data streams: Training with limited amount of labeled data
    • M. Masud, J. Gao, L. Khan, J. Han, and B. Thuraisingham. A practical approach to classify evolving data streams: Training with limited amount of labeled data. In ICDM, pages 929-934, 2008.
    • (2008) ICDM , pp. 929-934
    • Masud, M.1    Gao, J.2    Khan, L.3    Han, J.4    Thuraisingham, B.5
  • 26
    • 84899734203 scopus 로고    scopus 로고
    • Learning to rank similar apparel styles with economically-efficient rule-based active learning
    • M. Moreira, J. dos Santos, and A. Veloso. Learning to rank similar apparel styles with economically-efficient rule-based active learning. In ICMR, pages 361-369, 2014.
    • (2014) ICMR , pp. 361-369
    • Moreira, M.1    Dos Santos, J.2    Veloso, A.3
  • 27
    • 36949039903 scopus 로고    scopus 로고
    • Learning in environments with unknown dynamics: Towards more robust concept learners
    • M. N. nez, R. Fidalgo, and R. Morales. Learning in environments with unknown dynamics: Towards more robust concept learners. JMLR, 8, 2007.
    • (2007) JMLR , vol.8
    • Nez, M.N.1    Fidalgo, R.2    Morales, R.3
  • 28
    • 84904561910 scopus 로고    scopus 로고
    • Pareto?s republic and the new science of peace
    • F. Palda. Pareto?s Republic and the new Science of Peace. Cooper-Wolfling, 2011.
    • (2011) Cooper-Wolfling
    • Palda, F.1
  • 29
    • 84867374306 scopus 로고    scopus 로고
    • Pareto-efficient hybridization for multi-objective recommender systems
    • M. Ribeiro, A. Lacerda, A. Veloso, and N. Ziviani. Pareto-efficient hybridization for multi-objective recommender systems. In RecSys, pages 19-26, 2012.
    • (2012) RecSys , pp. 19-26
    • Ribeiro, M.1    Lacerda, A.2    Veloso, A.3    Ziviani, N.4
  • 30
    • 80052131982 scopus 로고    scopus 로고
    • Effective sentiment stream analysis with self-augmenting training and demand-driven projection
    • ACM
    • I. Santana, J. Gomide, A. Veloso, W. M. Jr., and R. Ferreira. Effective sentiment stream analysis with self-augmenting training and demand-driven projection. In SIGIR, pages 475-484. ACM, 2011.
    • (2011) SIGIR , pp. 475-484
    • Santana, I.1    Gomide, J.2    Veloso, A.3    Jr., W.M.4    Ferreira, R.5
  • 31
    • 84904542592 scopus 로고    scopus 로고
    • Classification model for data streams based on similarity
    • D. Torres, J. Ruiz, and Y. Sarabia. Classification model for data streams based on similarity. In IEA, pages 1-9, 2011.
    • (2011) IEA , pp. 1-9
    • Torres, D.1    Ruiz, J.2    Sarabia, Y.3
  • 32
    • 84878058142 scopus 로고    scopus 로고
    • Lazy associative classification
    • A. Veloso, W. M. Jr., and M. Zaki. Lazy associative classification. In ICDM, pages 645-654, 2006.
    • (2006) ICDM , pp. 645-654
    • Veloso, A.1    Jr., W.M.2    Zaki, M.3
  • 34
    • 35248901442 scopus 로고    scopus 로고
    • Parallel and distributed frequent itemset mining on dynamic datasets
    • A. Veloso, M. Otey, S. Parthasarathy, and W. Meira Jr. Parallel and distributed frequent itemset mining on dynamic datasets. In HiPC, pages 184-193, 2003.
    • (2003) HiPC , pp. 184-193
    • Veloso, A.1    Otey, M.2    Parthasarathy, S.3    Meira Jr., W.4
  • 36
    • 84904573093 scopus 로고    scopus 로고
    • MOA concept drift active learning strategies for streaming data
    • I. Žliobait?e, A. Bifet, G. Holmes, and B. Pfahringer. MOA concept drift active learning strategies for streaming data. JMLR, 17:48-55, 2011.
    • (2011) JMLR , vol.17 , pp. 48-55
    • Žliobaite, I.1    Bifet, A.2    Holmes, G.3    Pfahringer, B.4
  • 39
    • 6344277753 scopus 로고    scopus 로고
    • Fast vertical mining using diffsets
    • M. Zaki and K. Gouda. Fast vertical mining using diffsets. In SIGKDD, pages 326-335, 2003.
    • (2003) SIGKDD , pp. 326-335
    • Zaki, M.1    Gouda, K.2
  • 40
    • 85138646379 scopus 로고    scopus 로고
    • New algorithms for fast discovery of association rules
    • M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fast discovery of association rules. In SIGKDD, pages 283-286, 1997.
    • (1997) SIGKDD , pp. 283-286
    • Zaki, M.1    Parthasarathy, S.2    Ogihara, M.3    Li, W.4
  • 42
    • 77952383186 scopus 로고    scopus 로고
    • Efficient elastic burst detection in data streams
    • Y. Zhu and D. Shasha. Efficient elastic burst detection in data streams. In KDD, pages 336-345, 2003.
    • (2003) KDD , pp. 336-345
    • Zhu, Y.1    Shasha, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.