메뉴 건너뛰기




Volumn 2, Issue , 2005, Pages 697-708

Streaming pattern discovery in multiple time-series

Author keywords

[No Author keywords available]

Indexed keywords

DATA PROCESSING; DATABASE SYSTEMS; EVALUATION; NUMERICAL ANALYSIS; PATTERN RECOGNITION;

EID: 33745631543     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (356)

References (42)
  • 2
    • 1142291588 scopus 로고    scopus 로고
    • A framework for diagnosing changes in evolving data streams
    • C. C. Aggarwal. A framework for diagnosing changes in evolving data streams. In SIGMOD, 2003.
    • (2003) SIGMOD
    • Aggarwal, C.C.1
  • 3
    • 85012236181 scopus 로고    scopus 로고
    • A framework for clustering evolving data streams
    • C. C. Aggarwal, J. Han, and P. S. Yu. A framework for clustering evolving data streams. In VLDB, 2003.
    • (2003) VLDB
    • Aggarwal, C.C.1    Han, J.2    Yu, P.S.3
  • 4
    • 84883244633 scopus 로고    scopus 로고
    • Detection and tracking of discrete phenomena in sensor network databases
    • M. H. Ali, M. F. Mokbel, W. Aref, and I. Kamel. Detection and tracking of discrete phenomena in sensor network databases. In SSDBM, 2005.
    • (2005) SSDBM
    • Ali, M.H.1    Mokbel, M.F.2    Aref, W.3    Kamel, I.4
  • 5
    • 0036040742 scopus 로고    scopus 로고
    • Characterizing memory requirements for queries over continuous data streams
    • A. Arasu, B. Babcock, S. Babu, J. McAlister, and J. Widom. Characterizing memory requirements for queries over continuous data streams. In PODS, 2002.
    • (2002) PODS
    • Arasu, A.1    Babcock, B.2    Babu, S.3    McAlister, J.4    Widom, J.5
  • 6
    • 1142267347 scopus 로고    scopus 로고
    • Chain : Operator scheduling for memory minimization in data stream systems
    • B. Babcock, S. Babu, M. Datar, and R. Motwani. Chain : Operator scheduling for memory minimization in data stream systems. In SIGMOD, 2003.
    • (2003) SIGMOD
    • Babcock, B.1    Babu, S.2    Datar, M.3    Motwani, R.4
  • 7
    • 10644244988 scopus 로고    scopus 로고
    • Sampling from a moving window over streaming data
    • B. Babcock, M. Datar, and R. Motwani. Sampling from a moving window over streaming data. In SODA, 2002.
    • (2002) SODA
    • Babcock, B.1    Datar, M.2    Motwani, R.3
  • 10
    • 7444255935 scopus 로고    scopus 로고
    • Comparing data streams using hamming norms (how to zero in)
    • G. Cormode, M. Datar, P. Indyk, and S. Muthukrishnan. Comparing data streams using hamming norms (how to zero in). In VLDB, 2002.
    • (2002) VLDB
    • Cormode, G.1    Datar, M.2    Indyk, P.3    Muthukrishnan, S.4
  • 12
    • 1142303698 scopus 로고    scopus 로고
    • Approximate join processing over data streams
    • A. Das, J. Gehrke, and M. Riedewald. Approximate join processing over data streams. In SIGMOD, 2003.
    • (2003) SIGMOD
    • Das, A.1    Gehrke, J.2    Riedewald, M.3
  • 13
    • 2442462968 scopus 로고    scopus 로고
    • Maintaining stream statistics over sliding windows
    • M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statistics over sliding windows. In SODA, 2002.
    • (2002) SODA
    • Datar, M.1    Gionis, A.2    Indyk, P.3    Motwani, R.4
  • 14
    • 28444450448 scopus 로고    scopus 로고
    • Exploiting correlated attributes in acqusitional query processing
    • A. Deshpande, C. Guestrin, S. Madden, and W. Hong. Exploiting correlated attributes in acqusitional query processing. In ICDE, 2005.
    • (2005) ICDE
    • Deshpande, A.1    Guestrin, C.2    Madden, S.3    Hong, W.4
  • 17
    • 0034592938 scopus 로고    scopus 로고
    • Mining high-speed data streams
    • P. Domingos and G. Hulten. Mining high-speed data streams. In KDD, 2000.
    • (2000) KDD
    • Domingos, P.1    Hulten, G.2
  • 19
    • 1142303685 scopus 로고    scopus 로고
    • Processing set expressions over continuous update streams
    • S. Ganguly, M. Garofalakis, and R. Rastogi. Processing set expressions over continuous update streams. In SIGMOD, 2003.
    • (2003) SIGMOD
    • Ganguly, S.1    Garofalakis, M.2    Rastogi, R.3
  • 21
    • 33745592667 scopus 로고    scopus 로고
    • Correlating synchronous and asynchronous data streams
    • S. Guha, D. Gunopulos, and N. Koudas. Correlating synchronous and asynchronous data streams. In KDD, 2003.
    • (2003) KDD
    • Guha, S.1    Gunopulos, D.2    Koudas, N.3
  • 22
    • 33745586224 scopus 로고    scopus 로고
    • XWAVE: Optimal and approximate extended wavelets for streaming data
    • S. Guha, C. Kim and K. Shim. XWAVE: Optimal and approximate extended wavelets for streaming data. In VLDB, 2004.
    • (2004) VLDB
    • Guha, S.1    Kim, C.2    Shim, K.3
  • 25
    • 58149108398 scopus 로고    scopus 로고
    • Mining time-changing data streams
    • G. Huten, L. Spencer, and P. Domingos. Mining time-changing data streams. In KDD, 2001.
    • (2001) KDD
    • Huten, G.1    Spencer, L.2    Domingos, P.3
  • 28
    • 33644519491 scopus 로고    scopus 로고
    • Iterative incremental clustering of time series
    • J. Lin, M. Vlachos, E. Keogh, and D. Gunopulos. Iterative incremental clustering of time series. In EDBT, 2004.
    • (2004) EDBT
    • Lin, J.1    Vlachos, M.2    Keogh, E.3    Gunopulos, D.4
  • 30
    • 0002399288 scopus 로고
    • Neural networks, principal components, and subspaces
    • E. Oja. Neural networks, principal components, and subspaces. Intl. J. Neural Syst., 1:61-68, 1989.
    • (1989) Intl. J. Neural Syst. , vol.1 , pp. 61-68
    • Oja, E.1
  • 33
    • 29844444109 scopus 로고    scopus 로고
    • BRAID: Stream mining through group lag correlations
    • Y. Sakurai, S. Papadimitriou, and C. Faloutsos. BRAID: Stream mining through group lag correlations. In SIGMOD, 2005.
    • (2005) SIGMOD
    • Sakurai, Y.1    Papadimitriou, S.2    Faloutsos, C.3
  • 34
    • 28444476165 scopus 로고    scopus 로고
    • Online latent variable detection in sensor networks
    • demo
    • J. Sun, S. Papadimitriou, and C. Faloutsos. Online latent variable detection in sensor networks. In ICDE, 2005. (demo).
    • (2005) ICDE
    • Sun, J.1    Papadimitriou, S.2    Faloutsos, C.3
  • 36
    • 77952415079 scopus 로고    scopus 로고
    • Mining concept-drifting data streams using ensemble classifiers
    • H. Wang, W. Fan, P. S. Yu, and J. Han. Mining concept-drifting data streams using ensemble classifiers. In Proc.ACM SIGKDD, 2003.
    • (2003) Proc.ACM SIGKDD
    • Wang, H.1    Fan, W.2    Yu, P.S.3    Han, J.4
  • 37
    • 0029196852 scopus 로고
    • Projection approximation subspace tracking
    • B. Yang. Projection approximation subspace tracking. IEEE Trans. Sig. Proc., 43(1):95-107, 1995.
    • (1995) IEEE Trans. Sig. Proc. , vol.43 , Issue.1 , pp. 95-107
    • Yang, B.1
  • 38
    • 2442533650 scopus 로고    scopus 로고
    • Query processing in sensor networks
    • Y. Yao and J. Gehrke. Query processing in sensor networks. In CIDR, 2003.
    • (2003) CIDR
    • Yao, Y.1    Gehrke, J.2
  • 40
    • 0030157145 scopus 로고    scopus 로고
    • BIRCH: An efficient data clustering method for very large databases
    • T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An efficient data clustering method for very large databases. In SIGMOD, 1996.
    • (1996) SIGMOD
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3
  • 41
    • 0344343630 scopus 로고    scopus 로고
    • StatStream: Statistical monitoring of thousands of data streams in real time
    • Y. Zhu and D. Shasha. StatStream: Statistical monitoring of thousands of data streams in real time. In VLDB, 2002.
    • (2002) VLDB
    • Zhu, Y.1    Shasha, D.2
  • 42
    • 77952383186 scopus 로고    scopus 로고
    • Efficient elastic burst detection in data streams
    • Y. Zhu and D. Shasha. Efficient elastic burst detection in data streams. In KDD, 2003.
    • (2003) KDD
    • Zhu, Y.1    Shasha, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.