-
1
-
-
80052252137
-
Fractional Dirac bracket and quantization for constrained systems
-
E. M. C. Abreu and C. F. L. Godinho, Fractional Dirac bracket and quantization for constrained systems, Phys. Rev. E 84 (2011), 026608.
-
(2011)
Phys. Rev. E
, vol.84
-
-
Abreu, E.M.C.1
Godinho, C.F.L.2
-
2
-
-
15544379439
-
A general formulation and solution scheme for fractional optimal control problems
-
O. P. Agrawal, A general formulation and solution scheme for fractional optimal control problems, Nonlinear Dynam. 38 (2004), no. 1-4, 323-337.
-
(2004)
Nonlinear Dynam
, vol.38
, Issue.1-4
, pp. 323-337
-
-
Agrawal, O.P.1
-
3
-
-
34748879376
-
Generalized Euler-Lagrange equations and transversality conditions for FVPs in terms of the Caputo derivative
-
O. P. Agrawal, Generalized Euler-Lagrange equations and transversality conditions for FVPs in terms of the Caputo derivative, J. Vib. Control 13 (2007), no. 9-10, 1217-1237.
-
(2007)
J. Vib. Control
, vol.13
, Issue.9-10
, pp. 1217-1237
-
-
Agrawal, O.P.1
-
4
-
-
84956131985
-
Observation of fractons in silica aerogels
-
S. Alexander and R. Orbach, Observation of fractons in silica aerogels, Europhys. Lett. 6 (1988), 245-250.
-
(1988)
Europhys. Lett
, vol.6
, pp. 245-250
-
-
Alexander, S.1
Orbach, R.2
-
5
-
-
84857758121
-
Isoperimetric problems of the calculus of variations with fractional derivatives
-
R. Almeida, R. A. C. Ferreira and D. F. M. Torres, Isoperimetric problems of the calculus of variations with fractional derivatives, Acta Math. Sci. Ser. B Engl. Ed. 32 (2012), no. 2, 619-630.
-
(2012)
Acta Math. Sci. Ser. B Engl. Ed
, vol.32
, Issue.2
, pp. 619-630
-
-
Almeida, R.1
Ferreira, R.A.C.2
Torres, D.F.M.3
-
6
-
-
77950867099
-
A fractional calculus of variations for multiple integrals with application to vibrating string
-
R. Almeida, A. B. Malinowska and D. F. M. Torres, A fractional calculus of variations for multiple integrals with application to vibrating string, J. Math. Phys. 51 (2010), no. 3, 033503.
-
(2010)
J. Math. Phys
, vol.51
, Issue.3
-
-
Almeida, R.1
Malinowska, A.B.2
Torres, D.F.M.3
-
7
-
-
84862289427
-
Fractional Euler-Lagrange differential equations via Caputo derivatives
-
Eds: D. Baleanu, J.A. Tenreiro Machado and A. C. J. Luo, Springer New York, Part 2
-
R. Almeida, A. B. Malinowska and D. F. M. Torres, Fractional Euler-Lagrange differential equations via Caputo derivatives, in: Fractional Dynamics and Control, Eds: D. Baleanu, J.A. Tenreiro Machado and A. C. J. Luo, Springer New York (2012), Part 2, 109-118.
-
(2012)
Fractional Dynamics and Control
, pp. 109-118
-
-
Almeida, R.1
Malinowska, A.B.2
Torres, D.F.M.3
-
8
-
-
82155197606
-
Fractional variational problems depending on indefinite integrals
-
R. Almeida, S. Pooseh and D. F. M. Torres, Fractional variational problems depending on indefinite integrals, Nonlinear Anal. 75 (2012), no. 3, 1009-1025.
-
(2012)
Nonlinear Anal
, vol.75
, Issue.3
, pp. 1009-1025
-
-
Almeida, R.1
Pooseh, S.2
Torres, D.F.M.3
-
9
-
-
84967587886
-
Calculus of variations with fractional derivatives and fractional integrals
-
September 8-11 (2009a), Cuiaba, Brazil. Anais do XXXII CNMAC, 2009
-
R. Almeida and D. F. M. Torres, Calculus of variations with fractional derivatives and fractional integrals, Conference proceedings of the Brazilian Conference on Computational and Applied Mathematics, September 8-11 (2009a), Cuiaba, Brazil. Anais do XXXII CNMAC, 2009, Vol. 2, pp. 1222-1227.
-
(2009)
Conference proceedings of the Brazilian Conference on Computational and Applied Mathematics
, vol.2
, pp. 1222-1227
-
-
Almeida, R.1
Torres, D.F.M.2
-
10
-
-
70349490327
-
Calculus of variations with fractional derivatives and fractional integrals
-
R. Almeida and D. F. M. Torres, Calculus of variations with fractional derivatives and fractional integrals, Appl. Math. Lett. 22 (2009b), no. 12, 1816-1820.
-
(2009)
Appl. Math. Lett
, vol.22
, Issue.12
, pp. 1816-1820
-
-
Almeida, R.1
Torres, D.F.M.2
-
11
-
-
67650544428
-
Holderian variational problems subject to integral constraints
-
R. Almeida and D. F. M. Torres, Holderian variational problems subject to integral constraints, J. Math. Anal. Appl. 359 (2009c), no. 2, 674-681.
-
(2009)
J. Math. Anal. Appl
, vol.359
, Issue.2
, pp. 674-681
-
-
Almeida, R.1
Torres, D.F.M.2
-
12
-
-
66249145058
-
Isoperimetric problems on time scales with nabla derivatives
-
R. Almeida and D. F. M. Torres, Isoperimetric problems on time scales with nabla derivatives, J. Vib. Control 15 (2009d), no. 6, 951-958.
-
(2009)
J. Vib. Control
, vol.15
, Issue.6
, pp. 951-958
-
-
Almeida, R.1
Torres, D.F.M.2
-
13
-
-
77957267794
-
Leitmann’s direct method for fractional optimization problems
-
R. Almeida and D. F. M. Torres, Leitmann’s direct method for fractional optimization problems, Appl. Math. Comput. 217 (2010), no. 3, 956-962.
-
(2010)
Appl. Math. Comput
, vol.217
, Issue.3
, pp. 956-962
-
-
Almeida, R.1
Torres, D.F.M.2
-
14
-
-
77957362548
-
Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives
-
R. Almeida and D. F. M. Torres, Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives, Commun. Nonlinear Sci. Numer. Simulat. 16 (2011a), no. 3, 1490-1500.
-
(2011)
Commun. Nonlinear Sci. Numer. Simulat
, vol.16
, Issue.3
, pp. 1490-1500
-
-
Almeida, R.1
Torres, D.F.M.2
-
15
-
-
79955797338
-
Fractional variational calculus for nondifferentiable functions
-
R. Almeida and D. F. M. Torres, Fractional variational calculus for nondifferentiable functions, Comput. Math. Appl. 61 (2011b), no. 10, 3097-3104.
-
(2011)
Comput. Math. Appl
, vol.61
, Issue.10
, pp. 3097-3104
-
-
Almeida, R.1
Torres, D.F.M.2
-
16
-
-
41849118424
-
Variational problems with fractional derivatives: Euler-Lagrange equations
-
T. M. Atanacković, S. Konjik and S. Pilipović, Variational problems with fractional derivatives: Euler-Lagrange equations, J. Phys. A 41 (2008), no. 9, 095201.
-
(2008)
J. Phys. A
, vol.41
, Issue.9
-
-
Atanacković, T.M.1
Konjik, S.2
Pilipović, S.3
-
17
-
-
67349097718
-
Variational problems with fractional derivatives: Invariance conditions and Nöther’s theorem
-
T. M. Atanacković, S. Konjik, S. Pilipović et al., Variational problems with fractional derivatives: invariance conditions and Nöther’s theorem, Nonlinear Anal. 71 (2009), no. 5-6, 1504-1517.
-
(2009)
Nonlinear Anal
, vol.71
, Issue.5-6
, pp. 1504-1517
-
-
Atanacković, T.M.1
Konjik, S.2
Pilipović, S.3
-
18
-
-
50949125208
-
On a numerical scheme for solving differential equations of fractional order
-
T. M. Atanackovic and B. Stankovic, On a numerical scheme for solving differential equations of fractional order, Mech. Res. Comm. 35 (2008), no. 7, 429-438.
-
(2008)
Mech. Res. Comm
, vol.35
, Issue.7
, pp. 429-438
-
-
Atanackovic, T.M.1
Stankovic, B.2
-
20
-
-
71949100439
-
Fractional Newtonian mechanics
-
D. Baleanu, A. K. Golmankhaneh, R. Nigmatullin et al., Fractional Newtonian mechanics, Cent. Eur. J. Phys. 8 (2010), no. 1, 120-125.
-
(2010)
Cent. Eur. J. Phys
, vol.8
, Issue.1
, pp. 120-125
-
-
Baleanu, D.1
Golmankhaneh, A.K.2
Nigmatullin, R.3
-
21
-
-
70350418601
-
Fractional electromagnetic equations using fractional forms
-
D. Baleanu, A. K. Golmankhaneh, A. K. Golmankhaneh et al., Fractional electromagnetic equations using fractional forms, Int. J. Theor. Phys. 48 (2009), 3114-3123.
-
(2009)
Int. J. Theor. Phys
, vol.48
, pp. 3114-3123
-
-
Baleanu, D.1
Golmankhaneh, A.K.2
Golmankhaneh, A.K.3
-
22
-
-
78651241495
-
Necessary optimality conditions for fractional difference problems of the calculus of variations
-
N. R. O. Bastos, R. A. C. Ferreira and D. F. M. Torres, Necessary optimality conditions for fractional difference problems of the calculus of variations, Discrete Contin. Dyn. Syst. 29 (2011a), no. 2, 417-437.
-
(2011)
Discrete Contin. Dyn. Syst
, vol.29
, Issue.2
, pp. 417-437
-
-
Bastos, N.R.O.1
Ferreira, R.A.C.2
Torres, D.F.M.3
-
23
-
-
78049333168
-
Discrete-time fractional variational problems
-
N. R. O. Bastos, R. A. C. Ferreira and D. F. M. Torres, Discrete-time fractional variational problems, Signal Process. 91 (2011b), no. 3, 513-524.
-
(2011)
Signal Process
, vol.91
, Issue.3
, pp. 513-524
-
-
Bastos, N.R.O.1
Ferreira, R.A.C.2
Torres, D.F.M.3
-
24
-
-
79953318713
-
Fractional derivatives and integrals on time scales via the inverse generalized Laplace transform
-
N. R. O. Bastos, D. Mozyrska and D. F. M. Torres, Fractional derivatives and integrals on time scales via the inverse generalized Laplace transform, Int. J. Math. Comput. 11 (2011), no. J11, 1-9.
-
(2011)
Int. J. Math. Comput
, vol.11
, Issue.J11
, pp. 1-9
-
-
Bastos, N.R.O.1
Mozyrska, D.2
Torres, D.F.M.3
-
25
-
-
79953323775
-
Combined delta-nabla sum operator in discrete fractional calculus
-
N. R. O. Bastos and D. F. M. Torres, Combined delta-nabla sum operator in discrete fractional calculus, Commun. Frac. Calc. 1 (2010), no. 1, 41-47.
-
(2010)
Commun. Frac. Calc
, vol.1
, Issue.1
, pp. 41-47
-
-
Bastos, N.R.O.1
Torres, D.F.M.2
-
26
-
-
0036167101
-
Which Symmetry Noether, Weyl and conservation of electric charge, Studies in History and Philosophy of Science, Part B
-
K. Brading, Which Symmetry Noether, Weyl and conservation of electric charge, Studies in History and Philosophy of Science, Part B, Studies in History and Philosophy of Modern Physics 33 (2002), 3-22.
-
(2002)
Studies in History and Philosophy of Modern Physics
, vol.33
, pp. 3-22
-
-
Brading, K.1
-
27
-
-
67650479716
-
Solution of the fractional Langevin equation and the Mittag-Leffler functions
-
R. F. Camargo, A. O. Chiacchio, R. Charnet et al., Solution of the fractional Langevin equation and the Mittag-Leffler functions, J. Math. Phys. 50 (2009), no. 6, 063507.
-
(2009)
J. Math. Phys
, vol.50
, Issue.6
-
-
Camargo, R.F.1
Chiacchio, A.O.2
Charnet, R.3
-
28
-
-
33746359667
-
On second Noether’s theorem and gauge symmetries in Mechanics
-
J. F. Carinena, J. A. Lazaro-Cami and E. Martinez, On second Noether’s theorem and gauge symmetries in Mechanics, International Journal of Geometric Methods in Modern Physics 3 (2005), no. 3, 1-14.
-
(2005)
International Journal of Geometric Methods in Modern Physics
, vol.3
, Issue.3
, pp. 1-14
-
-
Carinena, J.F.1
Lazaro-Cami, J.A.2
Martinez, E.3
-
30
-
-
43949133877
-
Composition functionals in calculus of variations. Application to products and quotients
-
E. Castillo, A. Luceno and P. Pedregal, Composition functionals in calculus of variations. Application to products and quotients, Math. Models Methods Appl. Sci. 18 (2008), no. 1, 47-75.
-
(2008)
Math. Models Methods Appl. Sci
, vol.18
, Issue.1
, pp. 47-75
-
-
Castillo, E.1
Luceno, A.2
Pedregal, P.3
-
32
-
-
0036722180
-
Scale relativity theory for one-dimensional non-differentiable manifolds
-
J. Cresson, Scale relativity theory for one-dimensional non-differentiable manifolds, Chaos Solitons Fractals 14 (2002), no. 4, 553-562.
-
(2002)
Chaos Solitons Fractals
, vol.14
, Issue.4
, pp. 553-562
-
-
Cresson, J.1
-
33
-
-
34047097242
-
Fractional embedding of differential operators and Lagrangian systems
-
J. Cresson, Fractional embedding of differential operators and Lagrangian systems, J. Math. Phys. 48 (2007), no. 3, 033504.
-
(2007)
J. Math. Phys
, vol.48
, Issue.3
-
-
Cresson, J.1
-
34
-
-
70350747741
-
Inverse problem of fractional calculus of variations for partial differential equations
-
J. Cresson, Inverse problem of fractional calculus of variations for partial differential equations, Commun. Nonlinear Sci. Numer. Simul. 15 (2010), no. 4, 987-996.
-
(2010)
Commun. Nonlinear Sci. Numer. Simul
, vol.15
, Issue.4
, pp. 987-996
-
-
Cresson, J.1
-
35
-
-
67650547434
-
Constants of motion for non-differentiable quantum variational problems
-
J. Cresson, G. S. F. Frederico and D. F. M. Torres, Constants of motion for non-differentiable quantum variational problems, Topol. Methods Nonlinear Anal. 33 (2009), no. 2, 217-231.
-
(2009)
Topol. Methods Nonlinear Anal
, vol.33
, Issue.2
, pp. 217-231
-
-
Cresson, J.1
Frederico, G.S.F.2
Torres, D.F.M.3
-
36
-
-
77950861894
-
A non-classical class of variational problems
-
P. A. F. Cruz, D. F. M. Torres and A. S. I. Zinober, A non-classical class of variational problems, Int. J. Math. Model. Numer. Optim. 1 (2010), no. 3, 227-236.
-
(2010)
Int. J. Math. Model. Numer. Optim
, vol.1
, Issue.3
, pp. 227-236
-
-
Cruz, P.A.F.1
Torres, D.F.M.2
Zinober, A.S.I.3
-
38
-
-
27644561866
-
Representations of fractional Brownian motion using vibrating strings
-
K. Dzhaparidze, H. van Zanten and P. Zareba, Representations of fractional Brownian motion using vibrating strings, Stochastic Process. Appl. 115 (2005), no. 12, 1928-1953.
-
(2005)
Stochastic Process. Appl
, vol.115
, Issue.12
, pp. 1928-1953
-
-
Dzhaparidze, K.1
Van Zanten, H.2
Zareba, P.3
-
39
-
-
34547227520
-
Fractional action functional in classical and quantum field theory
-
48th international thematic issue
-
R. A. El-Nabulsi, I. A. Dzenite and D. F. M. Torres, Fractional action functional in classical and quantum field theory, Scientific Proceedings of Riga Technical University, Series-Computer Science, Boundary Field Problems, and Computer Simulation, 48th international thematic issue (2006), pp. 189- 197.
-
(2006)
Scientific Proceedings of Riga Technical University, Series-Computer Science, Boundary Field Problems, and Computer Simulation
, pp. 189-197
-
-
El-Nabulsi, R.A.1
Dzenite, I.A.2
Torres, D.F.M.3
-
40
-
-
34548583736
-
Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order (α,β)
-
R. A. El-Nabulsi and D. F. M. Torres, Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order (α,β), Math. Methods Appl. Sci. 30 (2007), no. 15, 1931-1939.
-
(2007)
Math. Methods Appl. Sci
, vol.30
, Issue.15
, pp. 1931-1939
-
-
El-Nabulsi, R.A.1
Torres, D.F.M.2
-
41
-
-
44649143140
-
Fractional actionlike variational problems
-
R. A. El-Nabulsi and D. F. M. Torres, Fractional actionlike variational problems, J. Math. Phys. 49 (2008), no. 5, 053521.
-
(2008)
J. Math. Phys
, vol.49
, Issue.5
-
-
El-Nabulsi, R.A.1
Torres, D.F.M.2
-
42
-
-
79953329384
-
Fractional h-difference equations arising from the calculus of variations
-
R. A. C. Ferreira and D. F. M. Torres, Fractional h-difference equations arising from the calculus of variations, Appl. Anal. Discrete Math. 5 (2011), no. 1, 110-121.
-
(2011)
Appl. Anal. Discrete Math
, vol.5
, Issue.1
, pp. 110-121
-
-
Ferreira, R.A.C.1
Torres, D.F.M.2
-
43
-
-
71549134887
-
Optimal control problem with an integral equation as the control object
-
D. Filatova, M. Grzywaczewski and N. Osmolovskii, Optimal control problem with an integral equation as the control object, Nonlinear Anal. 72 (2010), no. 3-4, 1235-1246.
-
(2010)
Nonlinear Anal
, vol.72
, Issue.3-4
, pp. 1235-1246
-
-
Filatova, D.1
Grzywaczewski, M.2
Osmolovskii, N.3
-
45
-
-
34548565581
-
Constants of motion for fractional actionlike variational problems
-
G. S. F. Frederico and D. F. M. Torres, Constants of motion for fractional actionlike variational problems, Int. J. Appl. Math. 19 (2006b), no. 1, 97-104.
-
(2006)
Int. J. Appl. Math
, vol.19
, Issue.1
, pp. 97-104
-
-
Frederico, G.S.F.1
Torres, D.F.M.2
-
46
-
-
34250648556
-
A formulation of Noether’s theorem for fractional problems of the calculus of variations
-
G. S. F. Frederico and D. F. M. Torres, A formulation of Noether’s theorem for fractional problems of the calculus of variations, J. Math. Anal. Appl. 334 (2007a), no. 2, 834-846.
-
(2007)
J. Math. Anal. Appl
, vol.334
, Issue.2
, pp. 834-846
-
-
Frederico, G.S.F.1
Torres, D.F.M.2
-
47
-
-
53949083449
-
Non-conservative Noether’s theorem for fractional action-like variational problems with intrinsic and observer times
-
G. S. F. Frederico and D. F. M. Torres, Non-conservative Noether’s theorem for fractional action-like variational problems with intrinsic and observer times, Int. J. Ecol. Econ. Stat. 9 (2007b), no. F07, 74-82.
-
(2007)
Int. J. Ecol. Econ. Stat
, vol.9
, Issue.F07
, pp. 74-82
-
-
Frederico, G.S.F.1
Torres, D.F.M.2
-
48
-
-
34547181215
-
Nonconservative Noether’s theorem in optimal control
-
G. S. F. Frederico and D. F. M. Torres, Nonconservative Noether’s theorem in optimal control, Int. J. Tomogr. Stat. 5 (2007c), no. W07, 109-114.
-
(2007)
Int. J. Tomogr. Stat
, vol.5
, Issue.W07
, pp. 109-114
-
-
Frederico, G.S.F.1
Torres, D.F.M.2
-
49
-
-
46249125645
-
Fractional conservation laws in optimal control theory
-
G. S. F. Frederico and D. F. M. Torres, Fractional conservation laws in optimal control theory, Nonlinear Dynam. 53 (2008a), no. 3, 215-222.
-
(2008)
Nonlinear Dynam
, vol.53
, Issue.3
, pp. 215-222
-
-
Frederico, G.S.F.1
Torres, D.F.M.2
-
50
-
-
53949093156
-
Fractional optimal control in the sense of Caputo and the fractional Noether’s theorem
-
G. S. F. Frederico and D. F. M. Torres, Fractional optimal control in the sense of Caputo and the fractional Noether’s theorem, Int. Math. Forum 3 (2008b), no. 9-12, 479-493.
-
(2008)
Int. Math. Forum
, vol.3
, Issue.9-12
, pp. 479-493
-
-
Frederico, G.S.F.1
Torres, D.F.M.2
-
51
-
-
47049086566
-
Necessary optimality conditions for fractional action-like problems with intrinsic and observer times
-
G. S. F. Frederico and D. F. M. Torres, Necessary optimality conditions for fractional action-like problems with intrinsic and observer times, WSEAS Trans. Math. 7 (2008c), no. 1, 6-11.
-
(2008)
WSEAS Trans. Math
, vol.7
, Issue.1
, pp. 6-11
-
-
Frederico, G.S.F.1
Torres, D.F.M.2
-
52
-
-
77957259811
-
Fractional Noether’s theorem in the Riesz-Caputo sense
-
G. S. F. Frederico and D. F. M. Torres, Fractional Noether’s theorem in the Riesz-Caputo sense, Appl. Math. Comput. 217 (2010), no. 3, 1023-1033.
-
(2010)
Appl. Math. Comput
, vol.217
, Issue.3
, pp. 1023-1033
-
-
Frederico, G.S.F.1
Torres, D.F.M.2
-
55
-
-
0003437218
-
-
Addison-Wesley Press, Inc., Cambridge, MA
-
H. Goldstein, Classical Mechanics, Addison-Wesley Press, Inc., Cambridge, MA (1951).
-
(1951)
Classical Mechanics
-
-
Goldstein, H.1
-
56
-
-
53149131751
-
Fractional Poisson bracket
-
A. K. Golmankhaneh Fractional Poisson bracket, Turk. J. Phys. 32 (2008), 241-250.
-
(2008)
Turk. J. Phys
, vol.32
, pp. 241-250
-
-
Golmankhaneh, A.K.1
-
57
-
-
84967657635
-
Automatic computation of conservation laws in the calculus of variations and optimal control
-
P. D. F. Gouveia and D. F. M. Torres, Automatic computation of conservation laws in the calculus of variations and optimal control, Comput. Methods Appl. Math. 5 (2005), no. 4, 387-409
-
(2005)
Comput. Methods Appl. Math
, vol.5
, Issue.4
, pp. 387-409
-
-
Gouveia, P.D.F.1
Torres, D.F.M.2
-
58
-
-
72149092442
-
Computing ODE symmetries as abnormal variational symmetries
-
P. D. F. Gouveia and D. F. M. Torres, Computing ODE symmetries as abnormal variational symmetries, Nonlinear Anal. 71 (2009), no. 12, e138-e146.
-
(2009)
Nonlinear Anal
, vol.71
, Issue.12
, pp. e138-e146
-
-
Gouveia, P.D.F.1
Torres, D.F.M.2
-
60
-
-
80755130545
-
Extensions of Noether’s Second Theorem: From continuous to discrete systems
-
P. E. Hydon and E. L. Mansfield, Extensions of Noether’s Second Theorem: from continuous to discrete systems, Proc. R. Soc. A 467 (2011), no. 2135, 3206-3221.
-
(2011)
Proc. R. Soc. A
, vol.467
, Issue.2135
, pp. 3206-3221
-
-
Hydon, P.E.1
Mansfield, E.L.2
-
61
-
-
67649553786
-
Optimality conditions and a solution scheme for fractional optimal control problems
-
Z. D. Jelicic and N. Petrovacki, Optimality conditions and a solution scheme for fractional optimal control problems, Struct. Multidiscip. Optim. 38 (2009), no. 6, 571-581.
-
(2009)
Struct. Multidiscip. Optim
, vol.38
, Issue.6
, pp. 571-581
-
-
Jelicic, Z.D.1
Petrovacki, N.2
-
63
-
-
33846270372
-
Fractional Hamilton-Jacobi equation for the optimal control of nonrandom fractional dynamics with fractional cost function
-
G. Jumarie, Fractional Hamilton-Jacobi equation for the optimal control of nonrandom fractional dynamics with fractional cost function, J. Appl. Math. Comput. 23 (2007), no. 1-2, 215-228.
-
(2007)
J. Appl. Math. Comput
, vol.23
, Issue.1-2
, pp. 215-228
-
-
Jumarie, G.1
-
64
-
-
38749136661
-
Stock exchange fractional dynamics defined as fractional exponential growth driven by (usual) Gaussian white noise. Application to fractional Black-Scholes equations
-
G. Jumarie, Stock exchange fractional dynamics defined as fractional exponential growth driven by (usual) Gaussian white noise. Application to fractional Black-Scholes equations, Insurance Math. Econom. 42 (2008a), no. 1, 271-287.
-
(2008)
Insurance Math. Econom
, vol.42
, Issue.1
, pp. 271-287
-
-
Jumarie, G.1
-
65
-
-
38349194080
-
Modeling fractional stochastic systems as non-random fractional dynamics driven by Brownian motions
-
G. Jumarie, Modeling fractional stochastic systems as non-random fractional dynamics driven by Brownian motions, Appl. Math. Model. 32 (2008b), no. 5, 836-859.
-
(2008)
Appl. Math. Model
, vol.32
, Issue.5
, pp. 836-859
-
-
Jumarie, G.1
-
66
-
-
57049186538
-
Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions
-
G. Jumarie, Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions, Appl. Math. Lett. 22 (2009a), no. 3, 378-385.
-
(2009)
Appl. Math. Lett
, vol.22
, Issue.3
, pp. 378-385
-
-
Jumarie, G.1
-
67
-
-
67449149653
-
From Lagrangian mechanics fractal in space to space fractal Schrödinger’s equation via fractional Taylor’s series
-
G. Jumarie, From Lagrangian mechanics fractal in space to space fractal Schrödinger’s equation via fractional Taylor’s series, Chaos Solitons Fractals 41 (2009b), no. 4, 1590-1604.
-
(2009)
Chaos Solitons Fractals
, vol.41
, Issue.4
, pp. 1590-1604
-
-
Jumarie, G.1
-
68
-
-
70449526839
-
An approach via fractional analysis to non-linearity induced by coarse-graining in space
-
G. Jumarie, An approach via fractional analysis to non-linearity induced by coarse-graining in space, Nonlinear Anal. Real World Appl. 11 (2010a), no. 1, 535-546.
-
(2010)
Nonlinear Anal. Real World Appl
, vol.11
, Issue.1
, pp. 535-546
-
-
Jumarie, G.1
-
69
-
-
77952095903
-
Analysis of the equilibrium positions of nonlinear dynamical systems in the presence of coarse-graining disturbance in space
-
G. Jumarie, Analysis of the equilibrium positions of nonlinear dynamical systems in the presence of coarse-graining disturbance in space, J. Appl. Math. Comput. 32 (2010b), no. 2, 329-351.
-
(2010)
J. Appl. Math. Comput
, vol.32
, Issue.2
, pp. 329-351
-
-
Jumarie, G.1
-
71
-
-
0003654359
-
-
Pitman Research Notes in Mathematics Series, Longman Sci. Tech., Harlow
-
V. Kiryakova, Generalized fractional calculus and applications, Pitman Research Notes in Mathematics Series, 301, Longman Sci. Tech., Harlow (1994).
-
(1994)
Generalized fractional calculus and applications
, vol.301
-
-
Kiryakova, V.1
-
73
-
-
0035737230
-
Fractional sequential mechanics-models with symmetric fractional derivative
-
M. Klimek, Fractional sequential mechanics-models with symmetric fractional derivative, Czechoslovak J. Phys. 51 (2001), no. 12, 1348-1354.
-
(2001)
Czechoslovak J. Phys
, vol.51
, Issue.12
, pp. 1348-1354
-
-
Klimek, M.1
-
74
-
-
0036027310
-
Lagrangean and Hamiltonian fractional sequential mechanics
-
M. Klimek, Lagrangean and Hamiltonian fractional sequential mechanics, Czechoslovak J. Phys. 52 (2002), no. 11, 1247-1253.
-
(2002)
Czechoslovak J. Phys
, vol.52
, Issue.11
, pp. 1247-1253
-
-
Klimek, M.1
-
76
-
-
12344303297
-
Decomposition of Lebesgue-Cantor devil’s staircase
-
K. M. Kolwankar, Decomposition of Lebesgue-Cantor devil’s staircase, Fractals 12 (2004), no. 4, 375-380.
-
(2004)
Fractals
, vol.12
, Issue.4
, pp. 375-380
-
-
Kolwankar, K.M.1
-
77
-
-
0030671988
-
Holder exponents of irregular signals and local fractional derivatives
-
K. M. Kolwankar and A. D. Gangal, Holder exponents of irregular signals and local fractional derivatives, Pramana J. Phys. 48 (1997), 49-68.
-
(1997)
Pramana J. Phys
, vol.48
, pp. 49-68
-
-
Kolwankar, K.M.1
Gangal, A.D.2
-
80
-
-
3042636934
-
On variational problems which admit an infinite continuous group
-
J. D. Logan, On variational problems which admit an infinite continuous group, Yokohama Mathematical Journal 22 (1974), 31-42.
-
(1974)
Yokohama Mathematical Journal
, vol.22
, pp. 31-42
-
-
Logan, J.D.1
-
81
-
-
0003992240
-
-
Academic Press [Harcourt Brace Jovanovich Publishers], New York
-
J. D. Logan, Invariant variational principles, Academic Press [Harcourt Brace Jovanovich Publishers], New York (1977).
-
(1977)
Invariant variational principles
-
-
Logan, J.D.1
-
83
-
-
84862300850
-
Fractional variational calculus for non-differentiable functions
-
Eds: D. Baleanu, J. A. Tenreiro Machado and A. Luo, Chapter 8, Springer, New York, Part 2
-
A. B. Malinowska, Fractional variational calculus for non-differentiable functions, in: Fractional Dynamics and Control, Eds: D. Baleanu, J. A. Tenreiro Machado and A. Luo, Chapter 8, Springer, New York (2012a), Part 2, 97-108.
-
(2012)
Fractional Dynamics and Control
, pp. 97-108
-
-
Malinowska, A.B.1
-
84
-
-
84878078881
-
On fractional variational problems which admit local transformations
-
A. B. Malinowska, On fractional variational problems which admit local transformations, Journal of Vibration and Control (2012b), DOI: 10.1177/1077546312442697
-
(2012)
Journal of Vibration and Control
-
-
Malinowska, A.B.1
-
85
-
-
84865645571
-
A formulation of the fractional Noether-type theorem for multidimensional Lagrangians
-
A. B. Malinowska, A formulation of the fractional Noether-type theorem for multidimensional Lagrangians, Appl. Math. Lett. 25 (2012c), no. 11, 1941-1946.
-
(2012)
Appl. Math. Lett
, vol.25
, Issue.11
, pp. 1941-1946
-
-
Malinowska, A.B.1
-
86
-
-
79953211976
-
Composition functionals in fractional calculus of variations
-
A. B. Malinowska, M. R. Sidi Ammi and D. F. M. Torres, Composition functionals in fractional calculus of variations, Commun. Frac. Calc. 1 (2010), no. 1, 32-40.
-
(2010)
Commun. Frac. Calc
, vol.1
, Issue.1
, pp. 32-40
-
-
Malinowska, A.B.1
Ammi, M.R.S.2
Torres, D.F.M.3
-
87
-
-
70350302594
-
Necessary and sufficient conditions for local Pareto optimality on time scales
-
A. B. Malinowska and D. F. M. Torres, Necessary and sufficient conditions for local Pareto optimality on time scales, J. Math. Sci. (N. Y.) 161 (2009), no. 6, 803-810.
-
(2009)
J. Math. Sci. (N. Y.)
, vol.161
, Issue.6
, pp. 803-810
-
-
Malinowska, A.B.1
Torres, D.F.M.2
-
88
-
-
77956920358
-
Natural boundary conditions in the calculus of variations
-
A. B. Malinowska and D. F. M. Torres, Natural boundary conditions in the calculus of variations, Math. Methods Appl. Sci. 33 (2010a), no. 14, 1712-1722.
-
(2010)
Math. Methods Appl. Sci
, vol.33
, Issue.14
, pp. 1712-1722
-
-
Malinowska, A.B.1
Torres, D.F.M.2
-
89
-
-
77950866104
-
Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative
-
A. B. Malinowska and D. F. M. Torres, Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative, Comput. Math. Appl. 59 (2010b), no. 9, 3110-3116.
-
(2010)
Comput. Math. Appl
, vol.59
, Issue.9
, pp. 3110-3116
-
-
Malinowska, A.B.1
Torres, D.F.M.2
-
90
-
-
82155200032
-
Fractional variational calculus in terms of a combined Caputo derivative
-
Badajoz, Spain, October 18-20 (Eds: I. Podlubny, B. M. Vinagre Jara, YQ. Chen et al.)
-
A. B. Malinowska and D. F. M. Torres, Fractional variational calculus in terms of a combined Caputo derivative, Proceedings of FDA’10, The 4th IFAC Workshop on Fractional Differentiation and its Applications, Badajoz, Spain, October 18-20 (2010c) (Eds: I. Podlubny, B. M. Vinagre Jara, YQ. Chen et al.), Article no. FDA10-084.
-
(2010)
Proceedings of FDA’10, The 4th IFAC Workshop on Fractional Differentiation and its Applications
-
-
Malinowska, A.B.1
Torres, D.F.M.2
-
91
-
-
77957284778
-
Leitmann’s direct method of optimization for absolute extrema of certain problems of the calculus of variations on time scales
-
A. B. Malinowska and D. F. M. Torres, Leitmann’s direct method of optimization for absolute extrema of certain problems of the calculus of variations on time scales, Appl. Math. Comput. 217 (2010d), no. 3, 1158-1162.
-
(2010)
Appl. Math. Comput
, vol.217
, Issue.3
, pp. 1158-1162
-
-
Malinowska, A.B.1
Torres, D.F.M.2
-
92
-
-
84856342754
-
Fractional calculus of variations for a combined Caputo derivative
-
A. B. Malinowska and D. F. M. Torres, Fractional calculus of variations for a combined Caputo derivative, Fract. Calc. Appl. Anal. 14 (2011), no. 4, 523-537.
-
(2011)
Fract. Calc. Appl. Anal
, vol.14
, Issue.4
, pp. 523-537
-
-
Malinowska, A.B.1
Torres, D.F.M.2
-
93
-
-
83555172512
-
Multiobjective fractional variational calculus in terms of a combined Caputo derivative
-
A. B. Malinowska and D. F. M. Torres, Multiobjective fractional variational calculus in terms of a combined Caputo derivative, Appl. Math. Comput. 218 (2012a), no. 9, 5099-5111.
-
(2012)
Appl. Math. Comput
, vol.218
, Issue.9
, pp. 5099-5111
-
-
Malinowska, A.B.1
Torres, D.F.M.2
-
94
-
-
84869195911
-
Towards a combined fractional mechanics and quantization
-
A. B. Malinowska and D. F. M. Torres, Towards a combined fractional mechanics and quantization, Fract. Calc. Appl. Anal. 15 (2012b), no. 3, 407-417.
-
(2012)
Fract. Calc. Appl. Anal
, vol.15
, Issue.3
, pp. 407-417
-
-
Malinowska, A.B.1
Torres, D.F.M.2
-
95
-
-
79954509526
-
Canonical forms of Euler’s equation and natural boundary condition-2 dimensional case
-
T. Marutani, Canonical forms of Euler’s equation and natural boundary condition-2 dimensional case, The Kwansei Gakuin Economic Review 34 (2003) 21-28.
-
(2003)
The Kwansei Gakuin Economic Review
, vol.34
, pp. 21-28
-
-
Marutani, T.1
-
96
-
-
84855189862
-
-
Matlab Central, File ID: #13866. Access date: July 4, 2012
-
F. Merrikh-Bayat, Fractional-order differential order equation solver, Matlab Central, File ID: #13866 (2007). Available at: http://www.mathworks.com/matlabcentral/fileexchange/13866. Access date: July 4, 2012.
-
(2007)
Fractional-order differential order equation solver
-
-
Merrikh-Bayat, F.1
-
98
-
-
53949098288
-
General solutions for the space-and time-fractional diffusion-wave equation
-
S. Momani, General solutions for the space-and time-fractional diffusion-wave equation, Journal of Physical Sciences 10 (2006), 30-43.
-
(2006)
Journal of Physical Sciences
, vol.10
, pp. 30-43
-
-
Momani, S.1
-
99
-
-
84967569840
-
Modified energy control in the memory domain of fractional continuous-time linear control systems
-
(FSS09), (Eds: M. Ortigueira et al.), Lisbon, Portugal, November 4-6
-
D. Mozyrska and D. F. M. Torres, Modified energy control in the memory domain of fractional continuous-time linear control systems, Proceedings of Symposium on Fractional Signals and Systems (FSS09), (Eds: M. Ortigueira et al.), Lisbon, Portugal, November 4-6, 2009.
-
(2009)
Proceedings of Symposium on Fractional Signals and Systems
-
-
Mozyrska, D.1
Torres, D.F.M.2
-
100
-
-
78049320912
-
Minimal modified energy control for fractional linear control systems with the Caputo derivative
-
D. Mozyrska and D. F. M. Torres, Minimal modified energy control for fractional linear control systems with the Caputo derivative, Carpathian J. Math. 26 (2010), no. 2, 210-221.
-
(2010)
Carpathian J. Math
, vol.26
, Issue.2
, pp. 210-221
-
-
Mozyrska, D.1
Torres, D.F.M.2
-
101
-
-
78049334398
-
Modified optimal energy and initial memory of fractional continuous-time linear systems
-
D. Mozyrska and D. F. M. Torres, Modified optimal energy and initial memory of fractional continuous-time linear systems, Signal Process. 91 (2011), no. 3, 379-385.
-
(2011)
Signal Process
, vol.91
, Issue.3
, pp. 379-385
-
-
Mozyrska, D.1
Torres, D.F.M.2
-
102
-
-
84930761411
-
Invariant variation problems
-
English translation of: E. Noether, Invariante variationsprobleme, Gött. Nachr. (1918), 235-257
-
E. Noether, Invariant variation problems, Transport Theory Statist. Phys. 1 (1971), no. 3, 186-207. English translation of: E. Noether, Invariante variationsprobleme, Gött. Nachr. (1918), 235-257.
-
(1971)
Transport Theory Statist. Phys
, vol.1
, Issue.3
, pp. 186-207
-
-
Noether, E.1
-
103
-
-
84967583622
-
Fractional variational calculus of variable order
-
The Stefan Samko Anniversary Volume (Eds: A. Almeida, L. Castro, F.-O. Speck), Operator Theory: Advances and Applications, Birkhäuser Verlag, in press. arXiv:1110.4141
-
T. Odzijewicz, A. B. Malinowska and D. F. M. Torres, Fractional variational calculus of variable order, Advances in Harmonic Analysis and Operator Theory, The Stefan Samko Anniversary Volume (Eds: A. Almeida, L. Castro, F.-O. Speck), Operator Theory: Advances and Applications, Birkhäuser Verlag, in press. arXiv:1110.4141 (2012a)
-
(2012)
Advances in Harmonic Analysis and Operator Theory
-
-
Odzijewicz, T.1
Malinowska, A.B.2
Torres, D.F.M.3
-
104
-
-
79961009317
-
Fractional variational calculus with classical and combined Caputo derivatives
-
T. Odzijewicz, A. B. Malinowska and D. F. M. Torres, Fractional variational calculus with classical and combined Caputo derivatives, Nonlinear Anal. 75 (2012b), 1507-1515.
-
(2012)
Nonlinear Anal
, vol.75
, pp. 1507-1515
-
-
Odzijewicz, T.1
Malinowska, A.B.2
Torres, D.F.M.3
-
105
-
-
84862276520
-
Fractional calculus of variations in terms of a generalized fractional integral with applications to Physics
-
T. Odzijewicz, A. B. Malinowska and D. F. M. Torres, Fractional calculus of variations in terms of a generalized fractional integral with applications to Physics, Abstr. Appl. Anal. 2012 (2012c), Article ID 871912.
-
(2012)
Abstr. Appl. Anal
, vol.2012
-
-
Odzijewicz, T.1
Malinowska, A.B.2
Torres, D.F.M.3
-
106
-
-
82155190579
-
Calculus of variations with fractional and classical derivatives
-
Badajoz, Spain, October 18-20, (Eds: I. Podlubny, B. M. Vinagre Jara, YQ. Chen et al.)
-
T. Odzijewicz and D. F. M. Torres, Calculus of variations with fractional and classical derivatives, Proceedings of FDA’10, The 4th IFAC Workshop on Fractional Differentiation and its Applications, Badajoz, Spain, October 18-20, 2010 (Eds: I. Podlubny, B. M. Vinagre Jara, YQ. Chen et al.), Article no. FDA10-076.
-
(2010)
Proceedings of FDA’10, The 4th IFAC Workshop on Fractional Differentiation and its Applications
-
-
Odzijewicz, T.1
Torres, D.F.M.2
-
107
-
-
79954507662
-
Fractional calculus of variations for double integrals
-
T. Odzijewicz and D. F. M. Torres, Fractional calculus of variations for double integrals, Balkan J. Geom. Appl. 16 (2011), no. 2, 102-113.
-
(2011)
Balkan J. Geom. Appl
, vol.16
, Issue.2
, pp. 102-113
-
-
Odzijewicz, T.1
Torres, D.F.M.2
-
108
-
-
84877660910
-
Calculus of variations with classical and fractional derivatives
-
T. Odzijewicz and D. F. M. Torres, Calculus of variations with classical and fractional derivatives, Math. Balkanica 26 (2012), no. 1-2, 191-202.
-
(2012)
Math. Balkanica
, vol.26
, Issue.1-2
, pp. 191-202
-
-
Odzijewicz, T.1
Torres, D.F.M.2
-
111
-
-
0003716450
-
-
Translated from the Russian by K. N. Trirogoff; (Ed: L. W. Neustadt), Interscience Publishers, John Wiley & Sons, Inc. New York
-
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze et al., The mathematical theory of optimal processes, Translated from the Russian by K. N. Trirogoff; (Ed: L. W. Neustadt), Interscience Publishers, John Wiley & Sons, Inc. New York (1962).
-
(1962)
The mathematical theory of optimal processes
-
-
Pontryagin, L.S.1
Boltyanskii, V.G.2
Gamkrelidze, R.V.3
-
112
-
-
84867468500
-
Approximation of fractional integrals by means of derivatives
-
S. Pooseh, R. Almeida and D. F. M. Torres, Approximation of fractional integrals by means of derivatives, Comput. Math. Appl. (2012a), DOI: 10.1016/j.camwa.2012.01.068
-
(2012)
Comput. Math. Appl
-
-
Pooseh, S.1
Almeida, R.2
Torres, D.F.M.3
-
113
-
-
84862296342
-
Expansion formulas in terms of integer-order derivatives for the Hadamard fractional integral and derivative
-
S. Pooseh, R. Almeida and D. F. M. Torres, Expansion formulas in terms of integer-order derivatives for the Hadamard fractional integral and derivative, Numer. Funct. Anal. Optim. 33 (2012b), no. 3, 301-319.
-
(2012)
Numer. Funct. Anal. Optim
, vol.33
, Issue.3
, pp. 301-319
-
-
Pooseh, S.1
Almeida, R.2
Torres, D.F.M.3
-
114
-
-
81855167707
-
Fractional derivatives in Dengue epidemics
-
S. Pooseh, H. S. Rodrigues and D. F. M. Torres, Fractional derivatives in Dengue epidemics, AIP Conf. Proc. 1389 (2011), no. 1, 739-742.
-
(2011)
AIP Conf. Proc
, vol.1389
, Issue.1
, pp. 739-742
-
-
Pooseh, S.1
Rodrigues, H.S.2
Torres, D.F.M.3
-
115
-
-
43449130374
-
Hamilton-Jacobi fractional mechanics
-
E. M. Rabei and B. S. Ababneh, Hamilton-Jacobi fractional mechanics, J. Math. Anal. Appl. 344 (2008), no. 2, 799-805.
-
(2008)
J. Math. Anal. Appl
, vol.344
, Issue.2
, pp. 799-805
-
-
Rabei, E.M.1
Ababneh, B.S.2
-
116
-
-
0000735791
-
Nonconservative Lagrangian and Hamiltonian mechanics
-
F. Riewe, Nonconservative Lagrangian and Hamiltonian mechanics, Phys. Rev. E (3) 53 (1996), no. 2, 1890-1899.
-
(1996)
Phys. Rev. E (3)
, vol.53
, Issue.2
, pp. 1890-1899
-
-
Riewe, F.1
-
117
-
-
4243530410
-
Mechanics with fractional derivatives
-
F. Riewe, Mechanics with fractional derivatives, Phys. Rev. E (3) 55 (1997), no. 3, part B, 3581-3592.
-
(1997)
Phys. Rev. E (3)
, vol.55
, Issue.3
, pp. 3581-3592
-
-
Riewe, F.1
-
118
-
-
0003598080
-
-
Translated from the 1987 Russian original, Gordon and Breach, Yverdon
-
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional integrals and derivatives, Translated from the 1987 Russian original, Gordon and Breach, Yverdon (1993).
-
(1993)
Fractional integrals and derivatives
-
-
Samko, S.G.1
Kilbas, A.A.2
Marichev, O.I.3
-
119
-
-
84873458550
-
Existence and uniqueness of a positive solution to generalized nonlocal thermistor problems with fractional-order derivatives
-
M. R. Sidi Ammi and D. F. M. Torres, Existence and uniqueness of a positive solution to generalized nonlocal thermistor problems with fractional-order derivatives, Differ. Equ. Appl. 4 (2012), no. 2, 267-276.
-
(2012)
Differ. Equ. Appl
, vol.4
, Issue.2
, pp. 267-276
-
-
Ammi, M.R.S.1
Torres, D.F.M.2
-
120
-
-
33847238725
-
Absolute extrema of invariant optimal control problems
-
C. J. Silva and D. F. M. Torres, Absolute extrema of invariant optimal control problems, Commun. Appl. Anal. 10 (2006), no. 4, 503-515.
-
(2006)
Commun. Appl. Anal
, vol.10
, Issue.4
, pp. 503-515
-
-
Silva, C.J.1
Torres, D.F.M.2
-
121
-
-
33745314459
-
Fractional variations for dynamical systems: Hamilton and Lagrange approaches
-
V. E. Tarasov, Fractional variations for dynamical systems: Hamilton and Lagrange approaches, J. Phys. A 39 (2006), no. 26, 8409-8425.
-
(2006)
J. Phys. A
, vol.39
, Issue.26
, pp. 8409-8425
-
-
Tarasov, V.E.1
-
122
-
-
53049088436
-
Fractional vector calculus and fractional Maxwell’s equations
-
V. E. Tarasov, Fractional vector calculus and fractional Maxwell’s equations, Ann. Physics 323 (2008), no. 11, 2756-2778.
-
(2008)
Ann. Physics
, vol.323
, Issue.11
, pp. 2756-2778
-
-
Tarasov, V.E.1
-
124
-
-
77957362117
-
Recent history of fractional calculus
-
J. A. Tenreiro Machado, V. Kiryakova and F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), no. 3, 1140-1153.
-
(2011)
Commun. Nonlinear Sci. Numer. Simul
, vol.16
, Issue.3
, pp. 1140-1153
-
-
Machado, J.A.T.1
Kiryakova, V.2
Mainardi, F.3
-
125
-
-
0038340532
-
On the Noether theorem for optimal control
-
D. F. M. Torres, On the Noether theorem for optimal control, Eur. J. Control 8 (2002), no. 1, 56-63.
-
(2002)
Eur. J. Control
, vol.8
, Issue.1
, pp. 56-63
-
-
Torres, D.F.M.1
-
126
-
-
3042672872
-
Gauge symmetries and Noether currents in optimal control
-
D. F. M. Torres, Gauge symmetries and Noether currents in optimal control, Appl. Math. E-Notes 3 (2003), 49-57.
-
(2003)
Appl. Math. E-Notes
, vol.3
, pp. 49-57
-
-
Torres, D.F.M.1
-
127
-
-
33847183562
-
Caratheodory equivalence Noether theorems, and Tonelli full-regularity in the calculus of variations and optimal control
-
D. F. M. Torres, Caratheodory equivalence Noether theorems, and Tonelli full-regularity in the calculus of variations and optimal control, J. Math. Sci. (N. Y.) 120 (2004a), no. 1, 1032-1050.
-
(2004)
J. Math. Sci. (N. Y.)
, vol.120
, Issue.1
, pp. 1032-1050
-
-
Torres, D.F.M.1
-
128
-
-
33746721022
-
Quasi-invariant optimal control problems
-
D. F. M. Torres, Quasi-invariant optimal control problems, Port. Math. (N.S.) 61 (2004b), no. 1, 97-114.
-
(2004)
Port. Math. (N.S.)
, vol.61
, Issue.1
, pp. 97-114
-
-
Torres, D.F.M.1
-
129
-
-
24944485940
-
Proper extensions of Noether’s symmetry theorem for nonsmooth extremals of the calculus of variations
-
D. F. M. Torres, Proper extensions of Noether’s symmetry theorem for nonsmooth extremals of the calculus of variations, Commun. Pure Appl. Anal. 3 (2004c), no. 3, 491-500.
-
(2004)
Commun. Pure Appl. Anal
, vol.3
, Issue.3
, pp. 491-500
-
-
Torres, D.F.M.1
-
130
-
-
41549140502
-
Contrasting two transformation-based methods for obtaining absolute extrema
-
D. F. M. Torres and G. Leitmann, Contrasting two transformation-based methods for obtaining absolute extrema, J. Optim. Theory Appl. 137 (2008), no. 1, 53-59.
-
(2008)
J. Optim. Theory Appl
, vol.137
, Issue.1
, pp. 53-59
-
-
Torres, D.F.M.1
Leitmann, G.2
-
131
-
-
76449088946
-
An approximate method for numerically solving fractional order optimal control problems of general form
-
C. Tricaud and Y. Chen, An approximate method for numerically solving fractional order optimal control problems of general form, Comput. Math. Appl. 59 (2010), no. 5, 1644-1655.
-
(2010)
Comput. Math. Appl
, vol.59
, Issue.5
, pp. 1644-1655
-
-
Tricaud, C.1
Chen, Y.2
-
136
-
-
77951695104
-
Eigenfunctions and Fundamental Solutions of the Fractional Two-Parameter Laplacian
-
S. Yakubovich, Eigenfunctions and Fundamental Solutions of the Fractional Two-Parameter Laplacian, Int. J. Math. Math. Sci., 2010 (2010), Article ID 541934.
-
(2010)
Int. J. Math. Math. Sci
, vol.2010
-
-
Yakubovich, S.1
|