메뉴 건너뛰기




Volumn 25, Issue 11, 2012, Pages 1941-1946

A formulation of the fractional Noether-type theorem for multidimensional Lagrangians

Author keywords

Calculus of variation; Conservative and nonconservative systems; Fractional calculus; Fractional Euler Lagrange equation; Fractional Noether type theorem

Indexed keywords

DIFFERENTIAL EQUATIONS; EQUATIONS OF MOTION; LAGRANGE MULTIPLIERS;

EID: 84865645571     PISSN: 08939659     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.aml.2012.03.006     Document Type: Article
Times cited : (69)

References (39)
  • 2
    • 0000735791 scopus 로고    scopus 로고
    • Nonconservative lagrangian and hamiltonian mechanics
    • F. Riewe, Nonconservative Lagrangian and Hamiltonian mechanics, Phys. Rev. E 53 (2) (1996) 1890-1899.
    • (1996) Phys. Rev. E , vol.53 , Issue.2 , pp. 1890-1899
    • Riewe, F.1
  • 3
    • 23344444772 scopus 로고    scopus 로고
    • Lagrangian formulation of classical fields within riemann-liouville fractional derivatives
    • D. Baleanu, S. Muslih, Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives, Phy. Scripta 72 (2005) 119-121.
    • (2005) Phy. Scripta , vol.72 , pp. 119-121
    • Baleanu, D.1    Muslih, S.2
  • 4
    • 84865653121 scopus 로고    scopus 로고
    • Linear non-conservative systems with fractional damping and the derivatives of critical load parameter
    • V.V. Kobelev, Linear non-conservative systems with fractional damping and the derivatives of critical load parameter, GAMM-Mitt. 30 (2) (2007) 287-299.
    • (2007) GAMM-Mitt , vol.30 , Issue.2 , pp. 287-299
    • Kobelev, V.V.1
  • 5
    • 78651098922 scopus 로고    scopus 로고
    • Lagrange equations of nonholonomic systems with fractional derivatives
    • Z. Sha, F. Jing-Li, L. Yong-Song, Lagrange equations of nonholonomic systems with fractional derivatives, Chinese Phys. B 19 (2010) 120301.
    • (2010) Chinese Phys. B , vol.19 , pp. 120301
    • Sha, Z.1    Jing-Li, F.2    Yong-Song, L.3
  • 6
    • 34748879376 scopus 로고    scopus 로고
    • Generalized euler-lagrange equations and transversality conditions for fvps in terms of the caputo derivative
    • O.P. Agrawal, Generalized Euler-Lagrange equations and transversality conditions for FVPs in terms of the Caputo derivative, J. Vib. Control 13 (9-10) (2007) 1217-1237.
    • (2007) J. Vib. Control , vol.13 , Issue.9-10 , pp. 1217-1237
    • Agrawal, O.P.1
  • 7
    • 83555172512 scopus 로고    scopus 로고
    • Multiobjective fractional variational calculus in terms of a combined caputo derivative
    • A.B. Malinowska, D.F.M. Torres, Multiobjective fractional variational calculus in terms of a combined Caputo derivative, Appl. Math. Comput. 218 (9) (2012) 5099-5111.
    • (2012) Appl. Math. Comput. , vol.218 , Issue.9 , pp. 5099-5111
    • Malinowska, A.B.1    Torres, D.F.M.2
  • 8
    • 79961009317 scopus 로고    scopus 로고
    • Fractional variational calculus with classical and combined caputo derivatives
    • T. Odzijewicz, A.B. Malinowska, D.F.M. Torres, Fractional variational calculus with classical and combined Caputo derivatives, Nonlinear Anal. 75 (3) (2012) 1507-1515.
    • (2012) Nonlinear Anal , vol.75 , Issue.3 , pp. 1507-1515
    • Odzijewicz, T.1    Malinowska, A.B.2    Torres, D.F.M.3
  • 9
    • 80053201237 scopus 로고    scopus 로고
    • Fractional variational problems with the riesz-caputo derivative
    • R. Almeida, Fractional variational problems with the Riesz-Caputo derivative, Appl. Math. Lett. 25 (2012) 142-148.
    • (2012) Appl. Math. Lett. , vol.25 , pp. 142-148
    • Almeida, R.1
  • 10
    • 0036027310 scopus 로고    scopus 로고
    • Fractional sequential mechanics-models with symmetric fractional derivatives
    • M. Klimek, Fractional sequential mechanics-models with symmetric fractional derivatives, Czech. J. Phys. 52 (2002) 1247-1253.
    • (2002) Czech. J. Phys. , vol.52 , pp. 1247-1253
    • Klimek, M.1
  • 11
    • 79953211976 scopus 로고    scopus 로고
    • Composition functionals in fractional calculus of variations
    • A.B. Malinowska, M.R. Sidi Ammi, D.F.M. Torres, Composition functionals in fractional calculus of variations, Commun. Frac. Calc. 1 (1) (2010) 32-40.
    • (2010) Commun. Frac. Calc. , vol.1 , Issue.1 , pp. 32-40
    • Malinowska, A.B.1    Sidi Ammi, M.R.2    Torres, D.F.M.3
  • 12
    • 31744447506 scopus 로고    scopus 로고
    • Hamiltonian formalism of fractional systems
    • A.A. Stanislavsky, Hamiltonian formalism of fractional systems, Eur. Phys. J. B 49 (2006) 93-101.
    • (2006) Eur. Phys. J. B , vol.49 , pp. 93-101
    • Stanislavsky, A.A.1
  • 13
    • 34548583736 scopus 로고    scopus 로고
    • Necessary optimality conditions for fractional action-like integrals of variational calculus with riemann-liouville derivatives of order (α, β)
    • R.A. El-Nabulsi, D.F.M. Torres, Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order (α, β), Math. Methods Appl. Sci. 30 (15) (2007) 1931-1939.
    • (2007) Math. Methods Appl. Sci. , vol.30 , Issue.15 , pp. 1931-1939
    • El-Nabulsi, R.A.1    Torres, D.F.M.2
  • 14
    • 68249142794 scopus 로고    scopus 로고
    • The fractional calculus of variations from extended erdelyi-kober operator
    • A.R. El-Nabulsi, The fractional calculus of variations from extended Erdelyi-Kober operator, Int. J. Mod. Phys. B 23 (16) (2009) 3349-3361.
    • (2009) Int. J. Mod. Phys. B , vol.23 , Issue.16 , pp. 3349-3361
    • El-Nabulsi, A.R.1
  • 15
    • 79957577216 scopus 로고    scopus 로고
    • A periodic functional approach to the calculus of variations and the problem of time-dependent damped harmonic oscillators
    • R.A. El-Nabulsi, A periodic functional approach to the calculus of variations and the problem of time-dependent damped harmonic oscillators, Appl. Math. Lett. 24 (2011) 1647-1653.
    • (2011) Appl. Math. Lett. , vol.24 , pp. 1647-1653
    • El-Nabulsi, R.A.1
  • 16
    • 79957454704 scopus 로고    scopus 로고
    • Fractional variational problems from extended exponentially fractional integral
    • A.R. El-Nabulsi, Fractional variational problems from extended exponentially fractional integral, Appl. Math. Comput. 217 (22) (2011) 9492-9496.
    • (2011) Appl. Math. Comput. , vol.217 , Issue.22 , pp. 9492-9496
    • El-Nabulsi, A.R.1
  • 17
    • 77957235666 scopus 로고    scopus 로고
    • Universal fractional euler-lagrange equation from a generalized fractional derivate operator
    • A.R. El-Nabulsi, Universal fractional Euler-Lagrange equation from a generalized fractional derivate operator, Cent. Eur. J. Phys. 9 (1) (2011) 250-256.
    • (2011) Cent. Eur. J. Phys. , vol.9 , Issue.1 , pp. 250-256
    • El-Nabulsi, A.R.1
  • 18
    • 44649143140 scopus 로고    scopus 로고
    • Fractional actionlike variational problems
    • 053521
    • R.A. El-Nabulsi, D.F.M. Torres, Fractional actionlike variational problems, J. Math. Phys. 49 (5) (2008) 053521. 7 pp.
    • (2008) J. Math. Phys. , vol.49 , Issue.5
    • El-Nabulsi, R.A.1    Torres, D.F.M.2
  • 19
    • 53949090119 scopus 로고    scopus 로고
    • Fractional field theories from multi-dimensional fractional variational problems
    • A.R. El-Nabulsi, Fractional field theories from multi-dimensional fractional variational problems, J. Mod. Geom. Meth. Mod. Phys. 5 (6) (2008) 863-892.
    • (2008) J. Mod. Geom. Meth. Mod. Phys. , vol.5 , Issue.6 , pp. 863-892
    • El-Nabulsi, A.R.1
  • 20
    • 34047097242 scopus 로고    scopus 로고
    • Fractional embedding of differential operators and lagrangian systems
    • 033504.
    • J. Cresson, Fractional embedding of differential operators and Lagrangian systems, J. Math. Phys. 48 (3) (2007) 033504. 34 pp.
    • (2007) J. Math. Phys. , vol.48 , Issue.3
    • Cresson, J.1
  • 21
    • 70350747741 scopus 로고    scopus 로고
    • Inverse problem of fractional calculus of variations for partial differential equations
    • J. Cresson, Inverse problem of fractional calculus of variations for partial differential equations, Commun. Nonlinear Sci. Numer. Simul. 15 (4) (2010) 987-996.
    • (2010) Commun. Nonlinear Sci. Numer. Simul. , vol.15 , Issue.4 , pp. 987-996
    • Cresson, J.1
  • 22
    • 77950867099 scopus 로고    scopus 로고
    • A fractional calculus of variations for multiple integrals with application to vibrating string
    • 033503
    • R. Almeida, A.B. Malinowska, D.F.M. Torres, A fractional calculus of variations for multiple integrals with application to vibrating string, J. Math. Phys. 51 (3) (2010) 033503. 12 pp.
    • (2010) J. Math. Phys. , vol.51 , Issue.3
    • Almeida, R.1    Malinowska, A.B.2    Torres, D.F.M.3
  • 23
    • 34250648556 scopus 로고    scopus 로고
    • A formulation of noether's theorem for fractional problems of the calculus of variations
    • G.S.F. Frederico, D.F.M. Torres, A formulation of Noether's theorem for fractional problems of the calculus of variations, J. Math. Anal. Appl. 334 (2) (2007) 834-846.
    • (2007) J. Math. Anal. Appl. , vol.334 , Issue.2 , pp. 834-846
    • Frederico, G.S.F.1    Torres, D.F.M.2
  • 24
    • 67349097718 scopus 로고    scopus 로고
    • Variational problems with fractional derivatives: Invariance conditions and noether's theorem, nonlinear anal
    • T.M. Atanacković, S. Konjik, S. Pilipović, S. Simic, Variational problems with fractional derivatives: invariance conditions and Noether's theorem, Nonlinear Anal., Theory Methods Appl. 71 (5-6) (2009) 1504-1517.
    • (2009) Theory Methods Appl , vol.71 , Issue.5-6 , pp. 1504-1517
    • Atanacković, T.M.1    Konjik, S.2    Pilipović, S.3    Simic, S.4
  • 25
    • 53949093156 scopus 로고    scopus 로고
    • Fractional optimal control in the sense of caputo and the fractional noether's theorem
    • G.S.F. Frederico, D.F.M. Torres, Fractional optimal control in the sense of Caputo and the fractional Noether's theorem, Int. Math. Forum 3 (9-12) (2008) 479-493.
    • (2008) Int. Math. Forum , vol.3 , Issue.9-12 , pp. 479-493
    • Frederico, G.S.F.1    Torres, D.F.M.2
  • 26
    • 77957259811 scopus 로고    scopus 로고
    • Fractional noether's theorem in the riesz-caputo sense
    • G.S.F. Frederico, D.F.M. Torres, Fractional Noether's theorem in the Riesz-Caputo sense, Appl. Math. Comput. 217 (3) (2010) 1023-1033.
    • (2010) Appl. Math. Comput. , vol.217 , Issue.3 , pp. 1023-1033
    • Frederico, G.S.F.1    Torres, D.F.M.2
  • 33
    • 79951711091 scopus 로고    scopus 로고
    • A generalized nonlinear model for the evolution of low frequency freak waves
    • J.M. Blackledge, A generalized nonlinear model for the evolution of low frequency freak waves, Int. J. Appl. Math. 41 (1) (2011) 06.
    • (2011) Int. J. Appl. Math. , vol.41 , Issue.1 , pp. 06
    • Blackledge, J.M.1
  • 34
    • 79954496009 scopus 로고    scopus 로고
    • Gaussian curvature from flat elastica sheets
    • C.D. Modes, K. Bhattacharya, M. Warner, Gaussian curvature from flat elastica sheets, Proc. R. Soc. A 467 (2128) (2011) 1121-1140.
    • (2011) Proc. R. Soc.A , vol.467 , Issue.2128 , pp. 1121-1140
    • Modes, C.D.1    Bhattacharya, K.2    Warner, M.3
  • 35
    • 53949098288 scopus 로고    scopus 로고
    • General solutions for the space-and time-fractional diffusion-wave equation
    • S. Momani, General solutions for the space-and time-fractional diffusion-wave equation, J. Phys. Sci. 10 (2006) 30-43.
    • (2006) J. Phys. Sci. , vol.10 , pp. 30-43
    • Momani, S.1
  • 36
    • 78649924907 scopus 로고    scopus 로고
    • An explicit difference method for solving fractional diffusion and diffusion-wave equations in the caputo form
    • 021014
    • J.Q. Murillo, S.B. Yuste, An explicit difference method for solving fractional diffusion and diffusion-wave equations in the Caputo form, J. Comput. Nonlinear Dynam. 6 (2) (2011) 021014. 6p.
    • (2011) J. Comput. Nonlinear Dynam. , vol.6 , Issue.2
    • Murillo, J.Q.1    Yuste, S.B.2
  • 37
    • 0001553919 scopus 로고
    • Fractional difussion and wave equations
    • W.R. Schneider, W. Wyss, Fractional difussion and wave equations, J. Math. Phys. 30 (1989) 134-144.
    • (1989) J. Math. Phys. , vol.30 , pp. 134-144
    • Schneider, W.R.1    Wyss, W.2
  • 38
    • 84856287353 scopus 로고    scopus 로고
    • Time fractional wave equation: Caputo sense
    • H. Parsian, Time fractional wave equation: Caputo sense, Adv. Stud. Theor. Phys. 6 (2) (2012) 95-100.
    • (2012) Adv. Stud. Theor. Phys. , vol.6 , Issue.2 , pp. 95-100
    • Parsian, H.1
  • 39
    • 0003437218 scopus 로고
    • Addison-Wesley Press Inc. Cambridge MA
    • H. Goldstein, Classical Mechanics, Addison-Wesley Press, Inc., Cambridge, MA, 1951.
    • (1951) Classical Mechanics
    • Goldstein, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.