-
2
-
-
0000735791
-
Nonconservative lagrangian and hamiltonian mechanics
-
F. Riewe, Nonconservative Lagrangian and Hamiltonian mechanics, Phys. Rev. E 53 (2) (1996) 1890-1899.
-
(1996)
Phys. Rev. E
, vol.53
, Issue.2
, pp. 1890-1899
-
-
Riewe, F.1
-
3
-
-
23344444772
-
Lagrangian formulation of classical fields within riemann-liouville fractional derivatives
-
D. Baleanu, S. Muslih, Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives, Phy. Scripta 72 (2005) 119-121.
-
(2005)
Phy. Scripta
, vol.72
, pp. 119-121
-
-
Baleanu, D.1
Muslih, S.2
-
4
-
-
84865653121
-
Linear non-conservative systems with fractional damping and the derivatives of critical load parameter
-
V.V. Kobelev, Linear non-conservative systems with fractional damping and the derivatives of critical load parameter, GAMM-Mitt. 30 (2) (2007) 287-299.
-
(2007)
GAMM-Mitt
, vol.30
, Issue.2
, pp. 287-299
-
-
Kobelev, V.V.1
-
5
-
-
78651098922
-
Lagrange equations of nonholonomic systems with fractional derivatives
-
Z. Sha, F. Jing-Li, L. Yong-Song, Lagrange equations of nonholonomic systems with fractional derivatives, Chinese Phys. B 19 (2010) 120301.
-
(2010)
Chinese Phys. B
, vol.19
, pp. 120301
-
-
Sha, Z.1
Jing-Li, F.2
Yong-Song, L.3
-
6
-
-
34748879376
-
Generalized euler-lagrange equations and transversality conditions for fvps in terms of the caputo derivative
-
O.P. Agrawal, Generalized Euler-Lagrange equations and transversality conditions for FVPs in terms of the Caputo derivative, J. Vib. Control 13 (9-10) (2007) 1217-1237.
-
(2007)
J. Vib. Control
, vol.13
, Issue.9-10
, pp. 1217-1237
-
-
Agrawal, O.P.1
-
7
-
-
83555172512
-
Multiobjective fractional variational calculus in terms of a combined caputo derivative
-
A.B. Malinowska, D.F.M. Torres, Multiobjective fractional variational calculus in terms of a combined Caputo derivative, Appl. Math. Comput. 218 (9) (2012) 5099-5111.
-
(2012)
Appl. Math. Comput.
, vol.218
, Issue.9
, pp. 5099-5111
-
-
Malinowska, A.B.1
Torres, D.F.M.2
-
8
-
-
79961009317
-
Fractional variational calculus with classical and combined caputo derivatives
-
T. Odzijewicz, A.B. Malinowska, D.F.M. Torres, Fractional variational calculus with classical and combined Caputo derivatives, Nonlinear Anal. 75 (3) (2012) 1507-1515.
-
(2012)
Nonlinear Anal
, vol.75
, Issue.3
, pp. 1507-1515
-
-
Odzijewicz, T.1
Malinowska, A.B.2
Torres, D.F.M.3
-
9
-
-
80053201237
-
Fractional variational problems with the riesz-caputo derivative
-
R. Almeida, Fractional variational problems with the Riesz-Caputo derivative, Appl. Math. Lett. 25 (2012) 142-148.
-
(2012)
Appl. Math. Lett.
, vol.25
, pp. 142-148
-
-
Almeida, R.1
-
10
-
-
0036027310
-
Fractional sequential mechanics-models with symmetric fractional derivatives
-
M. Klimek, Fractional sequential mechanics-models with symmetric fractional derivatives, Czech. J. Phys. 52 (2002) 1247-1253.
-
(2002)
Czech. J. Phys.
, vol.52
, pp. 1247-1253
-
-
Klimek, M.1
-
11
-
-
79953211976
-
Composition functionals in fractional calculus of variations
-
A.B. Malinowska, M.R. Sidi Ammi, D.F.M. Torres, Composition functionals in fractional calculus of variations, Commun. Frac. Calc. 1 (1) (2010) 32-40.
-
(2010)
Commun. Frac. Calc.
, vol.1
, Issue.1
, pp. 32-40
-
-
Malinowska, A.B.1
Sidi Ammi, M.R.2
Torres, D.F.M.3
-
12
-
-
31744447506
-
Hamiltonian formalism of fractional systems
-
A.A. Stanislavsky, Hamiltonian formalism of fractional systems, Eur. Phys. J. B 49 (2006) 93-101.
-
(2006)
Eur. Phys. J. B
, vol.49
, pp. 93-101
-
-
Stanislavsky, A.A.1
-
13
-
-
34548583736
-
Necessary optimality conditions for fractional action-like integrals of variational calculus with riemann-liouville derivatives of order (α, β)
-
R.A. El-Nabulsi, D.F.M. Torres, Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order (α, β), Math. Methods Appl. Sci. 30 (15) (2007) 1931-1939.
-
(2007)
Math. Methods Appl. Sci.
, vol.30
, Issue.15
, pp. 1931-1939
-
-
El-Nabulsi, R.A.1
Torres, D.F.M.2
-
14
-
-
68249142794
-
The fractional calculus of variations from extended erdelyi-kober operator
-
A.R. El-Nabulsi, The fractional calculus of variations from extended Erdelyi-Kober operator, Int. J. Mod. Phys. B 23 (16) (2009) 3349-3361.
-
(2009)
Int. J. Mod. Phys. B
, vol.23
, Issue.16
, pp. 3349-3361
-
-
El-Nabulsi, A.R.1
-
15
-
-
79957577216
-
A periodic functional approach to the calculus of variations and the problem of time-dependent damped harmonic oscillators
-
R.A. El-Nabulsi, A periodic functional approach to the calculus of variations and the problem of time-dependent damped harmonic oscillators, Appl. Math. Lett. 24 (2011) 1647-1653.
-
(2011)
Appl. Math. Lett.
, vol.24
, pp. 1647-1653
-
-
El-Nabulsi, R.A.1
-
16
-
-
79957454704
-
Fractional variational problems from extended exponentially fractional integral
-
A.R. El-Nabulsi, Fractional variational problems from extended exponentially fractional integral, Appl. Math. Comput. 217 (22) (2011) 9492-9496.
-
(2011)
Appl. Math. Comput.
, vol.217
, Issue.22
, pp. 9492-9496
-
-
El-Nabulsi, A.R.1
-
17
-
-
77957235666
-
Universal fractional euler-lagrange equation from a generalized fractional derivate operator
-
A.R. El-Nabulsi, Universal fractional Euler-Lagrange equation from a generalized fractional derivate operator, Cent. Eur. J. Phys. 9 (1) (2011) 250-256.
-
(2011)
Cent. Eur. J. Phys.
, vol.9
, Issue.1
, pp. 250-256
-
-
El-Nabulsi, A.R.1
-
18
-
-
44649143140
-
Fractional actionlike variational problems
-
053521
-
R.A. El-Nabulsi, D.F.M. Torres, Fractional actionlike variational problems, J. Math. Phys. 49 (5) (2008) 053521. 7 pp.
-
(2008)
J. Math. Phys.
, vol.49
, Issue.5
-
-
El-Nabulsi, R.A.1
Torres, D.F.M.2
-
19
-
-
53949090119
-
Fractional field theories from multi-dimensional fractional variational problems
-
A.R. El-Nabulsi, Fractional field theories from multi-dimensional fractional variational problems, J. Mod. Geom. Meth. Mod. Phys. 5 (6) (2008) 863-892.
-
(2008)
J. Mod. Geom. Meth. Mod. Phys.
, vol.5
, Issue.6
, pp. 863-892
-
-
El-Nabulsi, A.R.1
-
20
-
-
34047097242
-
Fractional embedding of differential operators and lagrangian systems
-
033504.
-
J. Cresson, Fractional embedding of differential operators and Lagrangian systems, J. Math. Phys. 48 (3) (2007) 033504. 34 pp.
-
(2007)
J. Math. Phys.
, vol.48
, Issue.3
-
-
Cresson, J.1
-
21
-
-
70350747741
-
Inverse problem of fractional calculus of variations for partial differential equations
-
J. Cresson, Inverse problem of fractional calculus of variations for partial differential equations, Commun. Nonlinear Sci. Numer. Simul. 15 (4) (2010) 987-996.
-
(2010)
Commun. Nonlinear Sci. Numer. Simul.
, vol.15
, Issue.4
, pp. 987-996
-
-
Cresson, J.1
-
22
-
-
77950867099
-
A fractional calculus of variations for multiple integrals with application to vibrating string
-
033503
-
R. Almeida, A.B. Malinowska, D.F.M. Torres, A fractional calculus of variations for multiple integrals with application to vibrating string, J. Math. Phys. 51 (3) (2010) 033503. 12 pp.
-
(2010)
J. Math. Phys.
, vol.51
, Issue.3
-
-
Almeida, R.1
Malinowska, A.B.2
Torres, D.F.M.3
-
23
-
-
34250648556
-
A formulation of noether's theorem for fractional problems of the calculus of variations
-
G.S.F. Frederico, D.F.M. Torres, A formulation of Noether's theorem for fractional problems of the calculus of variations, J. Math. Anal. Appl. 334 (2) (2007) 834-846.
-
(2007)
J. Math. Anal. Appl.
, vol.334
, Issue.2
, pp. 834-846
-
-
Frederico, G.S.F.1
Torres, D.F.M.2
-
24
-
-
67349097718
-
Variational problems with fractional derivatives: Invariance conditions and noether's theorem, nonlinear anal
-
T.M. Atanacković, S. Konjik, S. Pilipović, S. Simic, Variational problems with fractional derivatives: invariance conditions and Noether's theorem, Nonlinear Anal., Theory Methods Appl. 71 (5-6) (2009) 1504-1517.
-
(2009)
Theory Methods Appl
, vol.71
, Issue.5-6
, pp. 1504-1517
-
-
Atanacković, T.M.1
Konjik, S.2
Pilipović, S.3
Simic, S.4
-
25
-
-
53949093156
-
Fractional optimal control in the sense of caputo and the fractional noether's theorem
-
G.S.F. Frederico, D.F.M. Torres, Fractional optimal control in the sense of Caputo and the fractional Noether's theorem, Int. Math. Forum 3 (9-12) (2008) 479-493.
-
(2008)
Int. Math. Forum
, vol.3
, Issue.9-12
, pp. 479-493
-
-
Frederico, G.S.F.1
Torres, D.F.M.2
-
26
-
-
77957259811
-
Fractional noether's theorem in the riesz-caputo sense
-
G.S.F. Frederico, D.F.M. Torres, Fractional Noether's theorem in the Riesz-Caputo sense, Appl. Math. Comput. 217 (3) (2010) 1023-1033.
-
(2010)
Appl. Math. Comput.
, vol.217
, Issue.3
, pp. 1023-1033
-
-
Frederico, G.S.F.1
Torres, D.F.M.2
-
33
-
-
79951711091
-
A generalized nonlinear model for the evolution of low frequency freak waves
-
J.M. Blackledge, A generalized nonlinear model for the evolution of low frequency freak waves, Int. J. Appl. Math. 41 (1) (2011) 06.
-
(2011)
Int. J. Appl. Math.
, vol.41
, Issue.1
, pp. 06
-
-
Blackledge, J.M.1
-
34
-
-
79954496009
-
Gaussian curvature from flat elastica sheets
-
C.D. Modes, K. Bhattacharya, M. Warner, Gaussian curvature from flat elastica sheets, Proc. R. Soc. A 467 (2128) (2011) 1121-1140.
-
(2011)
Proc. R. Soc.A
, vol.467
, Issue.2128
, pp. 1121-1140
-
-
Modes, C.D.1
Bhattacharya, K.2
Warner, M.3
-
35
-
-
53949098288
-
General solutions for the space-and time-fractional diffusion-wave equation
-
S. Momani, General solutions for the space-and time-fractional diffusion-wave equation, J. Phys. Sci. 10 (2006) 30-43.
-
(2006)
J. Phys. Sci.
, vol.10
, pp. 30-43
-
-
Momani, S.1
-
36
-
-
78649924907
-
An explicit difference method for solving fractional diffusion and diffusion-wave equations in the caputo form
-
021014
-
J.Q. Murillo, S.B. Yuste, An explicit difference method for solving fractional diffusion and diffusion-wave equations in the Caputo form, J. Comput. Nonlinear Dynam. 6 (2) (2011) 021014. 6p.
-
(2011)
J. Comput. Nonlinear Dynam.
, vol.6
, Issue.2
-
-
Murillo, J.Q.1
Yuste, S.B.2
-
37
-
-
0001553919
-
Fractional difussion and wave equations
-
W.R. Schneider, W. Wyss, Fractional difussion and wave equations, J. Math. Phys. 30 (1989) 134-144.
-
(1989)
J. Math. Phys.
, vol.30
, pp. 134-144
-
-
Schneider, W.R.1
Wyss, W.2
-
38
-
-
84856287353
-
Time fractional wave equation: Caputo sense
-
H. Parsian, Time fractional wave equation: Caputo sense, Adv. Stud. Theor. Phys. 6 (2) (2012) 95-100.
-
(2012)
Adv. Stud. Theor. Phys.
, vol.6
, Issue.2
, pp. 95-100
-
-
Parsian, H.1
-
39
-
-
0003437218
-
-
Addison-Wesley Press Inc. Cambridge MA
-
H. Goldstein, Classical Mechanics, Addison-Wesley Press, Inc., Cambridge, MA, 1951.
-
(1951)
Classical Mechanics
-
-
Goldstein, H.1
|