-
1
-
-
0036701004
-
Formulation of Euler-Lagrange equations for fractional variational problems
-
Agrawal Om P. Formulation of Euler-Lagrange equations for fractional variational problems. J Math Anal Appl 2002, 272(1):368-379.
-
(2002)
J Math Anal Appl
, vol.272
, Issue.1
, pp. 368-379
-
-
Agrawal, O.P.1
-
2
-
-
15544379439
-
A general formulation and solution scheme for fractional optimal control problems
-
Agrawal Om P. A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dynam 2004, 38(1-4):323-337.
-
(2004)
Nonlinear Dynam
, vol.38
, Issue.1-4
, pp. 323-337
-
-
Agrawal, O.P.1
-
3
-
-
33746876366
-
Fractional variational calculus and the transversality conditions
-
Agrawal Om P. Fractional variational calculus and the transversality conditions. J Phys A: Math Gen 2006, 39:10375-10384.
-
(2006)
J Phys A: Math Gen
, vol.39
, pp. 10375-10384
-
-
Agrawal, O.P.1
-
4
-
-
34250210234
-
Fractional variational calculus in terms of Riesz fractional derivatives
-
Agrawal Om P. Fractional variational calculus in terms of Riesz fractional derivatives. J Phys A: Math Theor 2007, 40:6287-6303.
-
(2007)
J Phys A: Math Theor
, vol.40
, pp. 6287-6303
-
-
Agrawal, O.P.1
-
5
-
-
34748879376
-
Generalized Euler-Lagrange equations and transversality conditions for FVPs in terms of the Caputo derivative
-
Agrawal Om P. Generalized Euler-Lagrange equations and transversality conditions for FVPs in terms of the Caputo derivative. J Vib Control 2007, 13(9-10):1217-1237.
-
(2007)
J Vib Control
, vol.13
, Issue.9-10
, pp. 1217-1237
-
-
Agrawal, O.P.1
-
6
-
-
84885821361
-
Comparison of five numerical schemes for fractional differential equations
-
Springer, Dordrecht, J. Sabatier (Ed.)
-
Agrawal Om P., Kumar Pankaj Comparison of five numerical schemes for fractional differential equations. Advances in fractional calculus 2007, 33-75. Springer, Dordrecht. J. Sabatier (Ed.).
-
(2007)
Advances in fractional calculus
, pp. 33-75
-
-
Agrawal, O.P.1
Kumar, P.2
-
7
-
-
70349490327
-
Calculus of variations with fractional derivatives and fractional integrals
-
Almeida Ricardo, Torres Delfim F.M. Calculus of variations with fractional derivatives and fractional integrals. Appl Math Lett 2009, 22:1816-1820.
-
(2009)
Appl Math Lett
, vol.22
, pp. 1816-1820
-
-
Almeida, R.1
Torres, D.F.M.2
-
8
-
-
77950867099
-
A fractional calculus of variations for multiple integrals with application to vibrating string
-
033503
-
Almeida Ricardo, Malinowska Agnieszka B., Torres Delfim F.M. A fractional calculus of variations for multiple integrals with application to vibrating string. J Math Phys 2010, 51(3):033503. [12 pp.].
-
(2010)
J Math Phys
, vol.51
, Issue.3
, pp. 12
-
-
Almeida, R.1
Malinowska, A.B.2
Torres, D.F.M.3
-
9
-
-
41849118424
-
Variational problems with fractional derivatives: Euler-Lagrange equations
-
Atanacković T.M., Konjik S., Pilipović S. Variational problems with fractional derivatives: Euler-Lagrange equations. J Phys A: Math Theor 2008, 41(9):095201.
-
(2008)
J Phys A: Math Theor
, vol.41
, Issue.9
, pp. 095201
-
-
Atanacković, T.M.1
Konjik, S.2
Pilipović, S.3
-
10
-
-
0022660581
-
On the fractional calculus model of viscoelastic behaviour
-
Blutzer R.L., Torvik P.J. On the fractional calculus model of viscoelastic behaviour. J Rheol 1996, 30:133-135.
-
(1996)
J Rheol
, vol.30
, pp. 133-135
-
-
Blutzer, R.L.1
Torvik, P.J.2
-
11
-
-
85196144531
-
-
Fractional embeddings and stochastic time. In: Proceedings of the IFAC conference on fractional differentiation and its applications, Ankara, Turkey; November 2008
-
Cresson J, Inizan P. Fractional embeddings and stochastic time. In: Proceedings of the IFAC conference on fractional differentiation and its applications, Ankara, Turkey; November 2008.
-
-
-
Cresson, J.1
Inizan, P.2
-
12
-
-
0043132218
-
Nonconservative Lagrangian mechanics: a generalized function approach
-
Dreisigmeyer David W., Young Peter M. Nonconservative Lagrangian mechanics: a generalized function approach. J Phys A 2003, 36(30):8297-8310.
-
(2003)
J Phys A
, vol.36
, Issue.30
, pp. 8297-8310
-
-
Dreisigmeyer, D.W.1
Young, P.M.2
-
13
-
-
1842530950
-
Extending Bauer's corollary to fractional derivatives
-
Dreisigmeyer David W., Young Peter M. Extending Bauer's corollary to fractional derivatives. J Phys A 2004, 37(11):L117-L121.
-
(2004)
J Phys A
, vol.37
, Issue.11
-
-
Dreisigmeyer, D.W.1
Young, P.M.2
-
14
-
-
34250648556
-
A formulation of Noether's theorem for fractional problems of the calculus of variations
-
Frederico Gastão S.F., Torres Delfim F.M. A formulation of Noether's theorem for fractional problems of the calculus of variations. J Math Anal Appl 2007, 334(2):834-846.
-
(2007)
J Math Anal Appl
, vol.334
, Issue.2
, pp. 834-846
-
-
Frederico Gastão, S.F.1
Torres, D.F.M.2
-
15
-
-
46249125645
-
Fractional conservation laws in optimal control theory
-
Frederico Gastão S.F., Torres Delfim F.M. Fractional conservation laws in optimal control theory. Nonlinear Dynam 2008, 53(3):215-222.
-
(2008)
Nonlinear Dynam
, vol.53
, Issue.3
, pp. 215-222
-
-
Frederico Gastão, S.F.1
Torres, D.F.M.2
-
16
-
-
77957342373
-
Compatibility between fractional Hamiltonian formalisms
-
Inizan Pierre Compatibility between fractional Hamiltonian formalisms. Int J Ecol Econ Stat 2007, 9:83-91.
-
(2007)
Int J Ecol Econ Stat
, vol.9
, pp. 83-91
-
-
Inizan, P.1
-
17
-
-
84946178092
-
-
World Scientific Publishing Co., Inc., River Edge, NJ
-
Jónsson Thórdur, Yngvason Jakob Waves & distributions 1995, World Scientific Publishing Co., Inc., River Edge, NJ.
-
(1995)
Waves & distributions
-
-
Thórdur, J.1
Yngvason, J.2
-
18
-
-
33847309315
-
Theory and applications of fractional differential equations
-
Elsevier Science B.V., Amsterdam
-
Kilbas Anatoly A., Srivastava Hari M., Trujillo Juan J. Theory and applications of fractional differential equations. North-Holland mathematics studies 2006, vol. 204. Elsevier Science B.V., Amsterdam.
-
(2006)
North-Holland mathematics studies
, vol.204
-
-
Kilbas, A.A.1
Srivastava, H.M.2
Trujillo, J.J.3
-
19
-
-
0035737230
-
Fractional sequential mechanics-models with symmetric fractional derivative
-
Klimek M. Fractional sequential mechanics-models with symmetric fractional derivative. Czechoslovak J Phys 2001, 51(12):1348-1354.
-
(2001)
Czechoslovak J Phys
, vol.51
, Issue.12
, pp. 1348-1354
-
-
Klimek, M.1
-
20
-
-
0035839339
-
Stationarity-conservation laws for certain linear fractional differential equations
-
Klimek M. Stationarity-conservation laws for certain linear fractional differential equations. J Phys A 2001, 34(31):6167-6184.
-
(2001)
J Phys A
, vol.34
, Issue.31
, pp. 6167-6184
-
-
Klimek, M.1
-
21
-
-
15544380308
-
Fractional trigonometry and the spiral functions
-
Lorenzo Carl F., Hartley Tom T. Fractional trigonometry and the spiral functions. Nonlinear Dynam 2004, 38(1-4):23-60.
-
(2004)
Nonlinear Dynam
, vol.38
, Issue.1-4
, pp. 23-60
-
-
Lorenzo, C.F.1
Hartley, T.T.2
-
22
-
-
30244460855
-
The fundamental solutions for the fractional diffusion-wave equation
-
Mainardi F. The fundamental solutions for the fractional diffusion-wave equation. Appl Math Lett 1996, 9(6):23-28.
-
(1996)
Appl Math Lett
, vol.9
, Issue.6
, pp. 23-28
-
-
Mainardi, F.1
-
23
-
-
77950866104
-
Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative
-
Malinowska Agnieszka B., Torres Delfim F.M. Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative. Comput Math Appl 2010, 59(9):3110-3116.
-
(2010)
Comput Math Appl
, vol.59
, Issue.9
, pp. 3110-3116
-
-
Malinowska Agnieszka, B.1
Torres Delfim, F.M.2
-
25
-
-
14844283120
-
Hamiltonian formulation of systems with linear velocities within Riemann-Liouville fractional derivatives
-
Muslih Sami I., Baleanu Dumitru Hamiltonian formulation of systems with linear velocities within Riemann-Liouville fractional derivatives. J Math Anal Appl 2005, 304(2):599-606.
-
(2005)
J Math Anal Appl
, vol.304
, Issue.2
, pp. 599-606
-
-
Muslih, S.I.1
Baleanu, D.2
-
26
-
-
28744434468
-
Quantization of classical fields with fractional derivatives
-
Muslih Sami I., Baleanu Dumitru Quantization of classical fields with fractional derivatives. Nuovo Cimento Soc Ital Fis B 2005, 120(5):507-512.
-
(2005)
Nuovo Cimento Soc Ital Fis B
, vol.120
, Issue.5
, pp. 507-512
-
-
Muslih, S.I.1
Baleanu, D.2
-
28
-
-
0000735791
-
Nonconservative Lagrangian and Hamiltonian mechanics
-
Riewe Fred Nonconservative Lagrangian and Hamiltonian mechanics. Phys Rev E 1996, 53(2):1890-1899.
-
(1996)
Phys Rev E
, vol.53
, Issue.2
, pp. 1890-1899
-
-
Riewe, F.1
-
29
-
-
4243530410
-
Mechanics with fractional derivatives
-
Riewe Fred Mechanics with fractional derivatives. Phys Rev E 1997, 55(3):3581-3592.
-
(1997)
Phys Rev E
, vol.55
, Issue.3
, pp. 3581-3592
-
-
Riewe, F.1
|