-
1
-
-
41849118424
-
Variational problems with fractional derivatives: Euler Lagrange equations
-
Atanacković T.M., Konjik S., and Pilipović S. Variational problems with fractional derivatives: Euler Lagrange equations. J. Phys. A: Math. Theor. 41 9 (2008) 095201
-
(2008)
J. Phys. A: Math. Theor.
, vol.41
, Issue.9
, pp. 095201
-
-
Atanacković, T.M.1
Konjik, S.2
Pilipović, S.3
-
2
-
-
44649172155
-
On fractional Euler-Lagrange and Hamilton equations and the fractional generalization of total time derivative
-
Baleanu D., Muslih S.I., and Rabei E.M. On fractional Euler-Lagrange and Hamilton equations and the fractional generalization of total time derivative. Nonlinear Dynam. 53 1-2 (2008) 67-74
-
(2008)
Nonlinear Dynam.
, vol.53
, Issue.1-2
, pp. 67-74
-
-
Baleanu, D.1
Muslih, S.I.2
Rabei, E.M.3
-
3
-
-
34548583736
-
Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order (α, β)
-
El-Nabulsi R.A., and Torres D.F.M. Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order (α, β). Math. Methods Appl. Sci. 30 15 (2007) 1931-1939
-
(2007)
Math. Methods Appl. Sci.
, vol.30
, Issue.15
, pp. 1931-1939
-
-
El-Nabulsi, R.A.1
Torres, D.F.M.2
-
4
-
-
34250648556
-
A formulation of Noether's theorem for fractional problems of the calculus of variations
-
Frederico G.S.F., and Torres D.F.M. A formulation of Noether's theorem for fractional problems of the calculus of variations. J. Math. Anal. Appl. 334 2 (2007) 834-846
-
(2007)
J. Math. Anal. Appl.
, vol.334
, Issue.2
, pp. 834-846
-
-
Frederico, G.S.F.1
Torres, D.F.M.2
-
5
-
-
46249125645
-
Fractional conservation laws in optimal control theory
-
Frederico G.S.F., and Torres D.F.M. Fractional conservation laws in optimal control theory. Nonlinear Dynam. 53 3 (2008) 215-222
-
(2008)
Nonlinear Dynam.
, vol.53
, Issue.3
, pp. 215-222
-
-
Frederico, G.S.F.1
Torres, D.F.M.2
-
6
-
-
33746876366
-
Fractional variational calculus and the transversality conditions
-
Agrawal O.P. Fractional variational calculus and the transversality conditions. J. Phys. A: Math. Gen. 39 (2006) 10375-10384
-
(2006)
J. Phys. A: Math. Gen.
, vol.39
, pp. 10375-10384
-
-
Agrawal, O.P.1
-
7
-
-
34250210234
-
Fractional variational calculus in terms of Riesz fractional derivatives
-
Agrawal O.P. Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. A 40 24 (2007) 6287-6303
-
(2007)
J. Phys. A
, vol.40
, Issue.24
, pp. 6287-6303
-
-
Agrawal, O.P.1
-
9
-
-
33845669957
-
Fractional Hamilton formalism within Caputo's derivative
-
Baleanu D., and Agrawal Om.P. Fractional Hamilton formalism within Caputo's derivative. Czechoslovak J. Phys. 56 10-11 (2006) 1087-1092
-
(2006)
Czechoslovak J. Phys.
, vol.56
, Issue.10-11
, pp. 1087-1092
-
-
Baleanu, D.1
Agrawal, Om.P.2
-
10
-
-
34748827947
-
Fractional Euler-Lagrange equations of motion in fractional space
-
Muslih S.I., and Baleanu D. Fractional Euler-Lagrange equations of motion in fractional space. J. Vib. Control 13 9-10 (2007) 1209-1216
-
(2007)
J. Vib. Control
, vol.13
, Issue.9-10
, pp. 1209-1216
-
-
Muslih, S.I.1
Baleanu, D.2
-
11
-
-
70350381298
-
Application of fractional calculus in the dynamical analysis and control of mechanical manipulators
-
Ferreira N., Duarte F., Lima M., Marcos M., and Machado J.T. Application of fractional calculus in the dynamical analysis and control of mechanical manipulators. Fract. Calc. Appl. Anal. 11 1 (2008) 91-113
-
(2008)
Fract. Calc. Appl. Anal.
, vol.11
, Issue.1
, pp. 91-113
-
-
Ferreira, N.1
Duarte, F.2
Lima, M.3
Marcos, M.4
Machado, J.T.5
-
12
-
-
10844270442
-
Application of fractional calculus to fluid mechanics
-
Kulish V.V., and Lage J.L. Application of fractional calculus to fluid mechanics. J. Fluids Eng. 124 3 (2002) 803-806
-
(2002)
J. Fluids Eng.
, vol.124
, Issue.3
, pp. 803-806
-
-
Kulish, V.V.1
Lage, J.L.2
-
13
-
-
3042776917
-
Fractional calculus in Bioengineering. Part 1-3
-
Magin R. Fractional calculus in Bioengineering. Part 1-3. Critical Reviews in Bioengineering 32 (2004)
-
(2004)
Critical Reviews in Bioengineering
, vol.32
-
-
Magin, R.1
-
14
-
-
0033750757
-
Fractional diffusion based on Riemann-Liouville fractional derivatives
-
Hilfer R. Fractional diffusion based on Riemann-Liouville fractional derivatives. J. Phys. Chem. B 104 16 (2000) 3914-3917
-
(2000)
J. Phys. Chem. B
, vol.104
, Issue.16
, pp. 3914-3917
-
-
Hilfer, R.1
-
16
-
-
17844372193
-
Recent applications of fractional calculus to science and engineering
-
Debnath L. Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci. 54 (2003) 3413-3442
-
(2003)
Int. J. Math. Math. Sci.
, vol.54
, pp. 3413-3442
-
-
Debnath, L.1
-
17
-
-
52449115880
-
Design of a fractional control using performance contours. Application to an electromechanical system
-
Oustaloup A., Pommier V., and Lanusse P. Design of a fractional control using performance contours. Application to an electromechanical system. Fract. Calc. Appl. Anal. 6 1 (2003) 1-24
-
(2003)
Fract. Calc. Appl. Anal.
, vol.6
, Issue.1
, pp. 1-24
-
-
Oustaloup, A.1
Pommier, V.2
Lanusse, P.3
-
18
-
-
0002795136
-
On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity
-
Keil F., Mackens W., Voss H., and Werther J. (Eds), Springer-Verlag, Heidelberg
-
Diethelm K., and Freed A.D. On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity. In: Keil F., Mackens W., Voss H., and Werther J. (Eds). Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties (1999), Springer-Verlag, Heidelberg 217-224
-
(1999)
Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties
, pp. 217-224
-
-
Diethelm, K.1
Freed, A.D.2
-
20
-
-
52349103905
-
Introduction to the special issue on fractional differentiation and its applications
-
Tenreiro Machado J.A., and Barbosa R.S. Introduction to the special issue on fractional differentiation and its applications. J. Vib. Control 9-10 (2008) 1253
-
(2008)
J. Vib. Control
, vol.9-10
, pp. 1253
-
-
Tenreiro Machado, J.A.1
Barbosa, R.S.2
-
22
-
-
0004182814
-
-
Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York
-
Oldham K.B., and Spanier J. The Fractional Calculus (1974), Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York
-
(1974)
The Fractional Calculus
-
-
Oldham, K.B.1
Spanier, J.2
-
25
-
-
0006972557
-
Functions that have no first order derivative might have fractional derivatives of all orders less than one
-
Ross B., Samko S.G., and Love E.R. Functions that have no first order derivative might have fractional derivatives of all orders less than one. Real Annal. Exchange 20 1 (1994/95) 140-157
-
(1994)
Real Annal. Exchange
, vol.20
, Issue.1
, pp. 140-157
-
-
Ross, B.1
Samko, S.G.2
Love, E.R.3
|