-
1
-
-
0036701004
-
Formulation of Euler-Lagrange equations for fractional variational problems
-
O. P. Agrawal, Formulation of Euler-Lagrange equations for fractional variational problems, J. Math. Anal. Appl., 272 (2002), 368-379.
-
(2002)
J. Math. Anal. Appl.
, vol.272
, pp. 368-379
-
-
Agrawal, O.P.1
-
2
-
-
15544379439
-
A general formulation and solution scheme for fractional optimal control problems
-
DOI 10.1007/s11071-004-3764-6
-
O. P. Agrawal, A general formulation and solution scheme for fractional optimal control problems, Nonlinear Dynam., 38 (2004), 323-337. (Pubitemid 40400624)
-
(2004)
Nonlinear Dynamics
, vol.38
, Issue.1-4
, pp. 323-337
-
-
Agrawal, O.P.1
-
3
-
-
33746876366
-
Fractional variational calculus and the transversality conditions
-
DOI 10.1088/0305-4470/39/33/008, PII S0305447006218080, 008
-
O. P. Agrawal, Fractional variational calculus and the transversality conditions, J. Phys. A, 39 (2006), 10375-10384. (Pubitemid 44183559)
-
(2006)
Journal of Physics A: Mathematical and General
, vol.39
, Issue.33
, pp. 10375-10384
-
-
Agrawal, O.P.1
-
4
-
-
34548226960
-
A general finite element formulation for fractional variational problems
-
O. P. Agrawal, A general finite element formulation for fractional variational problems, J. Math. Anal. Appl., 337 (2008), 1-12.
-
(2008)
J. Math. Anal. Appl.
, vol.337
, pp. 1-12
-
-
Agrawal, O.P.1
-
5
-
-
34748901185
-
A hamiltonian formulation and a direct numerical scheme for fractional optimal control problems
-
DOI 10.1177/1077546307077467
-
O. P. Agrawal and D. Baleanu, A Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems, J. Vib. Control, 13 (2007), 1269-1281. (Pubitemid 47482812)
-
(2007)
JVC/Journal of Vibration and Control
, vol.13
, Issue.9-10
, pp. 1269-1281
-
-
Agrawal, O.P.1
Baleanu, D.2
-
6
-
-
0036501078
-
Cauchy functions for dynamic equations on a measure chain
-
E. Akin, Cauchy functions for dynamic equations on a measure chain, J. Math. Anal. Appl., 267 (2002), 97-115.
-
(2002)
J. Math. Anal. Appl.
, vol.267
, pp. 97-115
-
-
Akin, E.1
-
7
-
-
77950867099
-
A fractional calculus of variations for multiple integrals with application to vibrating string
-
R. Almeida, A. B. Malinowska and D. F. M. Torres, A fractional calculus of variations for multiple integrals with application to vibrating string, J. Math. Phys., 51 (2010), 033503.
-
(2010)
J. Math. Phys.
, vol.51
, pp. 033503
-
-
Almeida, R.1
Malinowska, A.B.2
Torres, D.F.M.3
-
8
-
-
70349490327
-
Calculus of variations with fractional derivatives and fractional integrals
-
R. Almeida and D. F. M. Torres, Calculus of variations with fractional derivatives and fractional integrals, Appl. Math. Lett., 22 (2009), 1816-1820.
-
(2009)
Appl. Math. Lett.
, vol.22
, pp. 1816-1820
-
-
Almeida, R.1
Torres, D.F.M.2
-
9
-
-
77950548183
-
A transform method in discrete fractional calculus
-
F. M. Atici and P. W. Eloe, A transform method in discrete fractional calculus, Int. J. Difference Equ., 2 (2007), 165-176.
-
(2007)
Int. J. Difference Equ.
, vol.2
, pp. 165-176
-
-
Atici, F.M.1
Eloe, P.W.2
-
10
-
-
74149083825
-
Initial value problems in discrete fractional calculus
-
F. M. Atici and P. W. Eloe, Initial value problems in discrete fractional calculus, Proc. Amer. Math. Soc., 137 (2009), 981-989.
-
(2009)
Proc. Amer. Math. Soc.
, vol.137
, pp. 981-989
-
-
Atici, F.M.1
Eloe, P.W.2
-
11
-
-
62849085116
-
A central difference numerical scheme for fractional optimal control problems
-
D. Baleanu, O. Defterli and O. P. Agrawal, A central difference numerical scheme for fractional optimal control problems, J. Vib. Control, 15 (2009), 583-597.
-
(2009)
J. Vib. Control
, vol.15
, pp. 583-597
-
-
Baleanu, D.1
Defterli, O.2
Agrawal, O.P.3
-
12
-
-
12844271148
-
Calculus of variations on time scales
-
M. Bohner, Calculus of variations on time scales, Dynam. Systems Appl., 13 (2004), 339-349. (Pubitemid 40162923)
-
(2004)
Dynamic Systems and Applications
, vol.13
, Issue.3-4
, pp. 339-349
-
-
Bohner, M.1
-
13
-
-
34548583736
-
Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order (α, β)
-
DOI 10.1002/mma.879
-
R. A. El-Nabulsi and D. F. M. Torres, Necessary optimality conditions for fractional actionlike integrals ofvariational calculus with Riemann-Liouville derivatives of order (α, β), Math. Meth. Appl. Sci., 30 (2007), 1931-1939. (Pubitemid 47395843)
-
(2007)
Mathematical Methods in the Applied Sciences
, vol.30
, Issue.15
, pp. 1931-1939
-
-
El-Nabulsi, R.A.1
Torres, D.F.M.2
-
14
-
-
84895308971
-
Higher-order calculus of variations on time scales
-
(eds. A. Sarychev, A. Shiryaev, M. Guerra and M. R. Grossinho) Springer, Berlin
-
R. A. C. Ferreira and D. F. M. Torres, Higher-order calculus of variations on time scales, in "Mathematical Control Theory and Finance" (eds. A. Sarychev, A. Shiryaev, M. Guerra and M. R. Grossinho), Springer, Berlin, (2008), 149-159.
-
(2008)
Mathematical Control Theory and Finance
, pp. 149-159
-
-
Ferreira, R.A.C.1
Torres, D.F.M.2
-
15
-
-
34250648556
-
A formulation of Noether's theorem for fractional problems ofthe calculus of variations
-
G. S. F. Frederico and D. F. M. Torres, A formulation of Noether's theorem for fractional problems ofthe calculus of variations, J. Math. Anal. Appl., 334 (2007), 834-846.
-
(2007)
J. Math. Anal. Appl.
, vol.334
, pp. 834-846
-
-
Frederico, G.S.F.1
Torres, D.F.M.2
-
16
-
-
46249125645
-
Fractional conservation laws in optimal control theory
-
G. S. F. Frederico and D. F. M. Torres, Fractional conservation laws in optimal control theory, Nonlinear Dynam., 53 (2008), 215-222.
-
(2008)
Nonlinear Dynam.
, vol.53
, pp. 215-222
-
-
Frederico, G.S.F.1
Torres, D.F.M.2
-
17
-
-
0037732716
-
Nonnegativity of a discrete quadratic functional in terms of the (strengthened) Legendre and Jacobi conditions
-
R. Hilscher and V. Zeidan, Nonnegativity of a discrete quadratic functional in terms of the (strengthened) Legendre and Jacobi conditions, Comput. Math. Appl., 45 (2003), 1369-1383.
-
(2003)
Comput. Math. Appl.
, vol.45
, pp. 1369-1383
-
-
Hilscher, R.1
Zeidan, V.2
-
18
-
-
24344489504
-
Nonnegativity and positivity of quadratic functionals in discrete calculus of variations: Survey
-
DOI 10.1080/10236190500137454
-
R. Hilscher and V. Zeidan, Nonnegativity and positivity of quadratic functionals in discrete calculus of variations: Survey, J. Difference Equ. Appl., 11 (2005), 857-875. (Pubitemid 41251448)
-
(2005)
Journal of Difference Equations and Applications
, vol.11
, Issue.9
, pp. 857-875
-
-
Hilscher, R.1
Zeidan, V.2
-
21
-
-
77950866104
-
Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative
-
A. B. Malinowska and D. F. M. Torres, Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative, Comput. Math. Appl., 59 (2010), 3110-3116.
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 3110-3116
-
-
Malinowska, A.B.1
Torres, D.F.M.2
-
22
-
-
77949837723
-
Fractional difference calculus
-
(eds. H. M. Srivastava and S. Owa), (K̄oriyama 1988), Horwood, Chichester
-
K. S. Miller and B. Ross, Fractional difference calculus, in "Univalent Functions, Fractional Calculus, and Their Applications" (eds. H. M. Srivastava and S. Owa), (K̄oriyama, 1988), Horwood, Chichester, (1989), 139-152.
-
(1989)
Univalent Functions, Fractional Calculus, and Their Applications
, pp. 139-152
-
-
Miller, K.S.1
-
24
-
-
52349114814
-
Fractional central differences and derivatives
-
M. D. Ortigueira, Fractional central differences and derivatives, J. Vib. Control, 14 (2008), 1255-1266.
-
(2008)
J. Vib. Control
, vol.14
, pp. 1255-1266
-
-
Ortigueira, M.D.1
-
25
-
-
15544378664
-
A fractional linear system view of the fractional brownian motion
-
DOI 10.1007/s11071-004-3762-8
-
M. D. Ortigueira and A. G. Batista, A fractional linear system view of the fractional Brownian motion, Nonlinear Dynam., 38 (2004), 295-303. (Pubitemid 40400622)
-
(2004)
Nonlinear Dynamics
, vol.38
, Issue.1-4
, pp. 295-303
-
-
Ortigueira, M.D.1
Batista, A.G.2
-
26
-
-
0000735791
-
Nonconservative Lagrangian and Hamiltonian mechanics
-
F. Riewe, Nonconservative Lagrangian and Hamiltonian mechanics, Phys. Rev. E, 53 (1996), 1890-1899. (Pubitemid 126583833)
-
(1996)
Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
, vol.53
, Issue.2
, pp. 1890-1899
-
-
Riewe, F.1
-
27
-
-
0003282782
-
Fractional Integrals and Derivatives
-
Gordon and Breach, Yverdon
-
S. G. Samko, A. A. Kilbas and O. I. Marichev, "Fractional Integrals and Derivatives," Translated from the 1987 Russian original, Gordon and Breach, Yverdon, 1993.
-
Translated from the 1987 Russian Original
, vol.1993
-
-
Samko, S.G.1
Kilbas, A.A.2
Marichev, O.I.3
-
28
-
-
52349097236
-
Using fractional derivatives in joint control of hexapod robots
-
M. F. Silva, J. A. Tenreiro Machado and R. S. Barbosa, Using fractional derivatives in joint control of hexapod robots, J. Vib. Control, 14 (2008), 1473-1485.
-
(2008)
J. Vib. Control
, vol.14
, pp. 1473-1485
-
-
Silva, M.F.1
Tenreiro MacHado, J.A.2
Barbosa, R.S.3
|