-
1
-
-
0036701004
-
Formulation of Euler-Lagrange equations for fractional variational problems
-
O. P. Agrawal. Formulation of Euler-Lagrange equations for fractional variational problems, J. Math. Anal. Appl. 272 (2002), no. 1, 368-379.
-
(2002)
J. Math. Anal. Appl
, vol.272
, Issue.1
, pp. 368-379
-
-
Agrawal, O.P.1
-
2
-
-
15544379439
-
A general formulation and solution scheme for fractional optimal control problems
-
O. P. Agrawal. A general formulation and solution scheme for fractional optimal control problems, Nonlinear Dynam. 38 (2004), no. 1-4, 323-337.
-
(2004)
Nonlinear Dynam
, vol.38
, Issue.1-4
, pp. 323-337
-
-
Agrawal, O.P.1
-
3
-
-
4043139312
-
Lagrangians witb linear velocities within Riemann-Liouville fractional derivatives
-
D. Baleanu, T. Avkar. Lagrangians witb linear velocities within Riemann-Liouville fractional derivatives, Nuovo Cimento 119 (2004) 73-79.
-
(2004)
Nuovo Cimento
, vol.119
, pp. 73-79
-
-
Baleanu, D.1
Avkar, T.2
-
4
-
-
34047097242
-
-
J. Cresson. Fractional embedding of differential operators and Lagrangean systems, J. Math. Phys., 48 (2007), no. 3, 033504, 34 pp.
-
J. Cresson. Fractional embedding of differential operators and Lagrangean systems, J. Math. Phys., 48 (2007), no. 3, 033504, 34 pp.
-
-
-
-
5
-
-
33751163014
-
-
I. Duca, C. Udriste. Some inequalities satisfied by periodical solutions of multi-time Hamilton equations, Balkan J. of Geometry and Its Applications 11 (2006), no. 2, 50-60.
-
I. Duca, C. Udriste. Some inequalities satisfied by periodical solutions of multi-time Hamilton equations, Balkan J. of Geometry and Its Applications 11 (2006), no. 2, 50-60.
-
-
-
-
6
-
-
34547165802
-
A fractional action-like variational approach of some classical, quantum and geometrical dynamics
-
R. A. El-Nabulsi. A fractional action-like variational approach of some classical, quantum and geometrical dynamics, Int. J. Appl. Math. 17 (2005), 299-317.
-
(2005)
Int. J. Appl. Math
, vol.17
, pp. 299-317
-
-
El-Nabulsi, R.A.1
-
7
-
-
34548580114
-
A fractional approach to nonconservative lagrangian dynamical systems
-
R. A. El-Nabulsi. A fractional approach to nonconservative lagrangian dynamical systems, FIZIKA A 14 (2005), no. 4, 289-298.
-
(2005)
FIZIKA A
, vol.14
, Issue.4
, pp. 289-298
-
-
El-Nabulsi, R.A.1
-
8
-
-
34548583736
-
-
R. A. E;-Nabulsi, D. F. M. Torres. Necessary Optimality Conditions for Fractional Action-Like Integrals of Variational Calculus with Riemann-Liouville Derivatives of Order (α, β), Math. Meth. Appl. Sci. 30 (2007), no. 15, 1931-1939.
-
R. A. E;-Nabulsi, D. F. M. Torres. Necessary Optimality Conditions for Fractional Action-Like Integrals of Variational Calculus with Riemann-Liouville Derivatives of Order (α, β), Math. Meth. Appl. Sci. 30 (2007), no. 15, 1931-1939.
-
-
-
-
9
-
-
47049089659
-
-
G. S. F. Frederico, D. F. M. Torres. Noether's theorem for fractional optimal control problems, Proc. 2nd IFAC Workshop on Fractional Differentiation and its Applications, 19-21 July 2006, Porto, 142-147.
-
G. S. F. Frederico, D. F. M. Torres. Noether's theorem for fractional optimal control problems, Proc. 2nd IFAC Workshop on Fractional Differentiation and its Applications, 19-21 July 2006, Porto, 142-147.
-
-
-
-
10
-
-
34250648556
-
A formulation of Noether's theorem for fractional problems of the calculus of variations
-
G. S. F. Frederico, D. F. M. Torres. A formulation of Noether's theorem for fractional problems of the calculus of variations, J. Math. Anal. Appl. 334 (2007), no. 2, 834-846.
-
(2007)
J. Math. Anal. Appl
, vol.334
, Issue.2
, pp. 834-846
-
-
Frederico, G.S.F.1
Torres, D.F.M.2
-
11
-
-
33846270372
-
Fractional Hamilton-Jacobi equation for the optimal control of nonrandom fractional dynamics with fractional cost function
-
G. Jumarie. Fractional Hamilton-Jacobi equation for the optimal control of nonrandom fractional dynamics with fractional cost function, J. Appl. Math. and Computing 23 (2007), no. 1-2, 215-228.
-
(2007)
J. Appl. Math. and Computing
, vol.23
, Issue.1-2
, pp. 215-228
-
-
Jumarie, G.1
-
12
-
-
0036027310
-
Lagrangean and Hamiltonian fractional sequential mechanics
-
M. Klimek. Lagrangean and Hamiltonian fractional sequential mechanics, Czechoslovak J. Phys. 52 (2002), no. 11, 1247-1253.
-
(2002)
Czechoslovak J. Phys
, vol.52
, Issue.11
, pp. 1247-1253
-
-
Klimek, M.1
-
13
-
-
30544445345
-
Lagrangian fractional mechanics - a noncommutative approach
-
M. Klimek. Lagrangian fractional mechanics - a noncommutative approach, Czechoslovak J. Phys. 55 (2005), no. 11, 1447-1453.
-
(2005)
Czechoslovak J. Phys
, vol.55
, Issue.11
, pp. 1447-1453
-
-
Klimek, M.1
-
14
-
-
0000735791
-
-
F. Riewe. Nonconservative Lagrangian and Hamiltonian mechanics, Phys. Rev. E (3) 53 (1996), no. 2, 1890-1899.
-
F. Riewe. Nonconservative Lagrangian and Hamiltonian mechanics, Phys. Rev. E (3) 53 (1996), no. 2, 1890-1899.
-
-
-
-
15
-
-
24944485940
-
Proper extensions of Noether's symmetry theorem for nonsmooth extremals of the calculus of variations
-
D. F. M. Torres. Proper extensions of Noether's symmetry theorem for nonsmooth extremals of the calculus of variations, Commun. Pure Appl. Anal. 3 (2004), no. 3, 491-500.
-
(2004)
Commun. Pure Appl. Anal
, vol.3
, Issue.3
, pp. 491-500
-
-
Torres, D.F.M.1
-
16
-
-
33751172633
-
-
C. Udriste, I. Duca. Periodical solutions of multi-time Hamilton equations, Analele Universitatii Bucuresti 55 (2005), no. 1, 179-188.
-
(2005)
Periodical solutions of multi-time Hamilton equations, Analele Universitatii Bucuresti
, vol.55
, Issue.1
, pp. 179-188
-
-
Udriste, C.1
Duca, I.2
-
17
-
-
34347387828
-
Multi-time Euler-Lagrange-Hamilton theory
-
C. Udriste, I. Tevy. Multi-time Euler-Lagrange-Hamilton theory, WSEAS Transactions on Mathematics 6 (2007), no. 6, 701-709.
-
(2007)
WSEAS Transactions on Mathematics
, vol.6
, Issue.6
, pp. 701-709
-
-
Udriste, C.1
Tevy, I.2
|