-
1
-
-
33745870156
-
Fractional Hamiltonian analysis of irregular systems
-
Baleanu D. Fractional Hamiltonian analysis of irregular systems. Signal Process. 86 (2006) 2632-2636
-
(2006)
Signal Process.
, vol.86
, pp. 2632-2636
-
-
Baleanu, D.1
-
2
-
-
4043139312
-
Lagrangians with linear velocities within Riemann-Liouville fractional derivatives
-
Baleanu D., and Avkar T. Lagrangians with linear velocities within Riemann-Liouville fractional derivatives. Il Nuovo Cim. B 119 (2004) 73-79
-
(2004)
Il Nuovo Cim. B
, vol.119
, pp. 73-79
-
-
Baleanu, D.1
Avkar, T.2
-
3
-
-
14844283120
-
Hamiltonian formulation of systems with linear velocities within Riemann-Liouville fractional derivatives
-
Baleanu D., and Muslih S.I. Hamiltonian formulation of systems with linear velocities within Riemann-Liouville fractional derivatives. J. Math. Anal. Appl. 304 (2005) 599-606
-
(2005)
J. Math. Anal. Appl.
, vol.304
, pp. 599-606
-
-
Baleanu, D.1
Muslih, S.I.2
-
4
-
-
1342310800
-
The Lagrange formalism with fractional derivatives in problems of mechanics
-
Rekhviashvili S.Sh. The Lagrange formalism with fractional derivatives in problems of mechanics. Tech. Phys. Lett. 30 (2004) 33-37
-
(2004)
Tech. Phys. Lett.
, vol.30
, pp. 33-37
-
-
Rekhviashvili, S.Sh.1
-
6
-
-
0039849267
-
Inferring conservation laws in particle physics: A case study in the problem of induction
-
Schulte O. Inferring conservation laws in particle physics: A case study in the problem of induction. Brit. J. Philos. Sci 51 (2000) 771-806
-
(2000)
Brit. J. Philos. Sci
, vol.51
, pp. 771-806
-
-
Schulte, O.1
-
9
-
-
34247636164
-
Diffusion wave equation with two fractional derivatives of different order
-
Atanacković T.M., Pilipović S., and Zorica D. Diffusion wave equation with two fractional derivatives of different order. J. Phys. A 40 (2007) 5319-5333
-
(2007)
J. Phys. A
, vol.40
, pp. 5319-5333
-
-
Atanacković, T.M.1
Pilipović, S.2
Zorica, D.3
-
10
-
-
34248159960
-
Convergence of the Grünwald-Letnikov scheme for time-fractional diffusion
-
Gorenflo R., and Abdel-Rehim E.A. Convergence of the Grünwald-Letnikov scheme for time-fractional diffusion. J. Comput. Appl. Math. 205 (2007) 871-881
-
(2007)
J. Comput. Appl. Math.
, vol.205
, pp. 871-881
-
-
Gorenflo, R.1
Abdel-Rehim, E.A.2
-
11
-
-
30644458726
-
Wright functions as scale-invariant solutions of the diffusion-wave equation
-
Gorenflo R., Luchko Y., and Mainardi F. Wright functions as scale-invariant solutions of the diffusion-wave equation. J. Math. Sci. (NY) 132 (2006) 614-628
-
(2006)
J. Math. Sci. (NY)
, vol.132
, pp. 614-628
-
-
Gorenflo, R.1
Luchko, Y.2
Mainardi, F.3
-
12
-
-
34047155650
-
Continuous-time random walk and parametric subordination in fractional diffusion
-
Gorenflo R., Mainardi F., and Vivoli A. Continuous-time random walk and parametric subordination in fractional diffusion. Chaos Solitons Fractals 34 (2007) 87-103
-
(2007)
Chaos Solitons Fractals
, vol.34
, pp. 87-103
-
-
Gorenflo, R.1
Mainardi, F.2
Vivoli, A.3
-
13
-
-
0000103589
-
Discrete and continuous random walk models for space-time fractional diffusion
-
Gorenflo R., Vivoli A., and Mainardi F. Discrete and continuous random walk models for space-time fractional diffusion. J. Comput. Appl. Math. 118 (2000) 175-191
-
(2000)
J. Comput. Appl. Math.
, vol.118
, pp. 175-191
-
-
Gorenflo, R.1
Vivoli, A.2
Mainardi, F.3
-
14
-
-
0035480489
-
Fractional master equation: Non-standard analysis and Liouville-Riemann derivative
-
Jumarie G. Fractional master equation: Non-standard analysis and Liouville-Riemann derivative. Chaos Solitons Fractals 12 (2001) 2577-2587
-
(2001)
Chaos Solitons Fractals
, vol.12
, pp. 2577-2587
-
-
Jumarie, G.1
-
15
-
-
29144520230
-
Fractionalization of the complex-valued Brownian motion of order n using Riemann-Liouville derivative, Applications to mathematical finance and stochastic mechanics
-
Jumarie G. Fractionalization of the complex-valued Brownian motion of order n using Riemann-Liouville derivative, Applications to mathematical finance and stochastic mechanics. Chaos Solitons Fractals 28 (2006) 1285-1305
-
(2006)
Chaos Solitons Fractals
, vol.28
, pp. 1285-1305
-
-
Jumarie, G.1
-
16
-
-
33745839870
-
Non-local continuum mechanics and fractional calculus
-
Lazopoulos K.A. Non-local continuum mechanics and fractional calculus. Mech. Res. Commun. 33 (2006) 753-757
-
(2006)
Mech. Res. Commun.
, vol.33
, pp. 753-757
-
-
Lazopoulos, K.A.1
-
17
-
-
34247367101
-
Some aspects of fractional diffusion equations of single and distributed order
-
Mainardi F., Pagnini G., and Gorenflo R. Some aspects of fractional diffusion equations of single and distributed order. Appl. Math. Comput. 187 (2007) 295-305
-
(2007)
Appl. Math. Comput.
, vol.187
, pp. 295-305
-
-
Mainardi, F.1
Pagnini, G.2
Gorenflo, R.3
-
18
-
-
0035421619
-
Relaxation properties of fractional derivative viscoelasticity models
-
Sakakibara S. Relaxation properties of fractional derivative viscoelasticity models. Nonlinear Anal. 47 (2001) 5449-5454
-
(2001)
Nonlinear Anal.
, vol.47
, pp. 5449-5454
-
-
Sakakibara, S.1
-
19
-
-
34047124843
-
The stochastic nature of complexity evolution in the fractional systems
-
Stanislavsky A.A. The stochastic nature of complexity evolution in the fractional systems. Chaos Solitons Fractals 34 (2007) 51-61
-
(2007)
Chaos Solitons Fractals
, vol.34
, pp. 51-61
-
-
Stanislavsky, A.A.1
-
20
-
-
0000735791
-
Nonconservative Lagrangian and Hamiltonian mechanics
-
Riewe F. Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53 (1996) 1890-1899
-
(1996)
Phys. Rev. E
, vol.53
, pp. 1890-1899
-
-
Riewe, F.1
-
21
-
-
4243530410
-
Mechanics with fractional derivatives
-
Riewe F. Mechanics with fractional derivatives. Phys. Rev. E 55 (1997) 3581-3592
-
(1997)
Phys. Rev. E
, vol.55
, pp. 3581-3592
-
-
Riewe, F.1
-
22
-
-
0036701004
-
Formulation of Euler-Lagrange equations for fractional variational problems
-
Agrawal O.P. Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272 (2002) 368-379
-
(2002)
J. Math. Anal. Appl.
, vol.272
, pp. 368-379
-
-
Agrawal, O.P.1
-
23
-
-
33746876366
-
Fractional variational calculus and the transversality conditions
-
Agrawal O.P. Fractional variational calculus and the transversality conditions. J. Phys. A 39 (2006) 10375-10384
-
(2006)
J. Phys. A
, vol.39
, pp. 10375-10384
-
-
Agrawal, O.P.1
-
24
-
-
34250210234
-
Fractional variational calculus in terms of Riesz fractional derivatives
-
Agrawal O.P. Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. A 40 (2007) 6287-6303
-
(2007)
J. Phys. A
, vol.40
, pp. 6287-6303
-
-
Agrawal, O.P.1
-
25
-
-
34250648556
-
A formulation of Nöther's theorem for fractional problems of the calculus of variations
-
Frederico G.S.F., and Torres D.F.M. A formulation of Nöther's theorem for fractional problems of the calculus of variations. J. Math. Anal. Appl. 334 (2007) 834-846
-
(2007)
J. Math. Anal. Appl.
, vol.334
, pp. 834-846
-
-
Frederico, G.S.F.1
Torres, D.F.M.2
-
26
-
-
41149152515
-
Conservation laws and Hamilton's equations for systems with long-range interaction and memory
-
Tarasov V.E., and Zaslavsky G.M. Conservation laws and Hamilton's equations for systems with long-range interaction and memory. Commun. Nonlinear Sci. Numer. Simul. 13 (2008) 1860-1878
-
(2008)
Commun. Nonlinear Sci. Numer. Simul.
, vol.13
, pp. 1860-1878
-
-
Tarasov, V.E.1
Zaslavsky, G.M.2
-
27
-
-
33845944224
-
On a nonlinear distributed order fractional differential equation
-
Atanacković T.M., Oparnica Lj., and Pilipović S. On a nonlinear distributed order fractional differential equation. J. Math. Anal. Appl. 328 (2007) 590-608
-
(2007)
J. Math. Anal. Appl.
, vol.328
, pp. 590-608
-
-
Atanacković, T.M.1
Oparnica, Lj.2
Pilipović, S.3
-
28
-
-
34547619943
-
On a class of differential equations with left and right fractional derivatives
-
Atanacković T.M., and Stanković B. On a class of differential equations with left and right fractional derivatives. Z. Angew. Math. Mech. 87 (2007) 537-546
-
(2007)
Z. Angew. Math. Mech.
, vol.87
, pp. 537-546
-
-
Atanacković, T.M.1
Stanković, B.2
-
29
-
-
1842530950
-
Extending Bauer's corollary to fractional derivatives
-
Dreisigmeyer D.W., and Young P.M. Extending Bauer's corollary to fractional derivatives. J. Phys. A 37 (2003) 117-121
-
(2003)
J. Phys. A
, vol.37
, pp. 117-121
-
-
Dreisigmeyer, D.W.1
Young, P.M.2
-
30
-
-
0043132218
-
Nonconservative Lagrangian mechanics: A generalized function approach
-
Dreisigmeyer D.W., and Young P.M. Nonconservative Lagrangian mechanics: A generalized function approach. J. Phys. A: Math. Gen. 36 (2003) 8297-8310
-
(2003)
J. Phys. A: Math. Gen.
, vol.36
, pp. 8297-8310
-
-
Dreisigmeyer, D.W.1
Young, P.M.2
-
31
-
-
3142686670
-
Fractional variational principle in macroscopic picture
-
Gaies A., and El-Akrmi A. Fractional variational principle in macroscopic picture. Phys. Scripta 70 (2004) 7-10
-
(2004)
Phys. Scripta
, vol.70
, pp. 7-10
-
-
Gaies, A.1
El-Akrmi, A.2
-
32
-
-
0035737230
-
Fractional sequential mechanics - model with symmetric fractional derivative
-
Klimek M. Fractional sequential mechanics - model with symmetric fractional derivative. Czech. J. Phys. 51 (2001) 1348-1354
-
(2001)
Czech. J. Phys.
, vol.51
, pp. 1348-1354
-
-
Klimek, M.1
-
33
-
-
33748425302
-
Numerical comparison of methods for solving linear differential equations of fractional order
-
Momani S., and Odibat Z. Numerical comparison of methods for solving linear differential equations of fractional order. Chaos Solitons Fractals 31 (2007) 1248-1255
-
(2007)
Chaos Solitons Fractals
, vol.31
, pp. 1248-1255
-
-
Momani, S.1
Odibat, Z.2
-
34
-
-
30344464250
-
Application of variational iteration method to nonlinear differential equations of fractional order
-
Odibat Z., and Momani S. Application of variational iteration method to nonlinear differential equations of fractional order. Int. J. Nonlinear Sci. Numer. Simul. 7 (2006) 27-34
-
(2006)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.7
, pp. 27-34
-
-
Odibat, Z.1
Momani, S.2
-
35
-
-
33750972567
-
The Hamilton formalism with fractional derivatives
-
Rabei E.M., Nawafleh K.I., Hijjawi R.S., Muslih S.I., and Baleanu D. The Hamilton formalism with fractional derivatives. J. Math. Anal. Appl. 327 (2007) 891-897
-
(2007)
J. Math. Anal. Appl.
, vol.327
, pp. 891-897
-
-
Rabei, E.M.1
Nawafleh, K.I.2
Hijjawi, R.S.3
Muslih, S.I.4
Baleanu, D.5
-
36
-
-
46249125645
-
Fractional conservation laws in optimal control theory
-
Frederico G.S.F., and Torres D.F.M. Fractional conservation laws in optimal control theory. Nonlinear Dyn. 53 (2008) 215-222
-
(2008)
Nonlinear Dyn.
, vol.53
, pp. 215-222
-
-
Frederico, G.S.F.1
Torres, D.F.M.2
-
37
-
-
53949093156
-
Fractional optimal control in the sense of Caputo and the fractional Nöther's theorem
-
Frederico G.S.F., and Torres D.F.M. Fractional optimal control in the sense of Caputo and the fractional Nöther's theorem. Int. Math. Forum 3 (2008) 479-493
-
(2008)
Int. Math. Forum
, vol.3
, pp. 479-493
-
-
Frederico, G.S.F.1
Torres, D.F.M.2
-
38
-
-
41849118424
-
Variational problems with fractional derivatives: Euler-Lagrange equations
-
Atanacković T.M., Konjik S., and Pilipović S. Variational problems with fractional derivatives: Euler-Lagrange equations. J. Phys. A 41 (2008) 095201
-
(2008)
J. Phys. A
, vol.41
, pp. 095201
-
-
Atanacković, T.M.1
Konjik, S.2
Pilipović, S.3
-
39
-
-
0942287926
-
-
Springer, New York
-
Olver P.J. Applications of Lie Groups to Differential Equations. second ed. Graduate Texts in Mathematics vol. 107 (1993), Springer, New York
-
(1993)
Graduate Texts in Mathematics
, vol.107
-
-
Olver, P.J.1
|