메뉴 건너뛰기




Volumn 6, Issue , 2016, Pages

Metabolic engineering of a synergistic pathway for n-butanol production in Saccharomyces cerevisiae

Author keywords

[No Author keywords available]

Indexed keywords

ALCOHOL DEHYDROGENASE; BUTANOL; CARBOXYLYASE; SACCHAROMYCES CEREVISIAE PROTEIN;

EID: 84966707632     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep25675     Document Type: Article
Times cited : (66)

References (46)
  • 1
    • 38149030843 scopus 로고    scopus 로고
    • An attractive biofuel
    • Durre, P. Biobutanol: An attractive biofuel. Biotechnol. J. 2, 1525-1534 (2007
    • (2007) Biotechnol. J. , vol.2 , pp. 1525-1534
    • Biobutanol, D.P.1
  • 2
    • 77955558633 scopus 로고    scopus 로고
    • Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels
    • Weber, C., et al. Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl. Microbiol. Biotechnol. 87, 1303-1315 (2010
    • (2010) Appl. Microbiol. Biotechnol , vol.87 , pp. 1303-1315
    • Weber, C.1
  • 3
    • 79958010538 scopus 로고    scopus 로고
    • Fermentative production of butanol-The industrial perspective
    • Green, E.M. Fermentative production of butanol-The industrial perspective. Curr. Opin. Biotechnol. 22, 337-343 (2011
    • (2011) Curr. Opin. Biotechnol , vol.22 , pp. 337-343
    • Green, E.M.1
  • 4
    • 84863775815 scopus 로고    scopus 로고
    • Chemicals from biobutanol: Technologies and markets
    • Mascal, M. Chemicals from biobutanol: technologies and markets. Biofuels, Bioprod. Biorefin. 6, 483-493 (2012
    • (2012) Biofuels Bioprod. Biorefin , vol.6 , pp. 483-493
    • Mascal, M.1
  • 5
    • 84892534390 scopus 로고    scopus 로고
    • Microbial n-butanol production from clostridia to non-clostridial hosts
    • Branduardi, P., de Ferra, F., Longo, V., & Porro, D. Microbial n-butanol production from Clostridia to non-Clostridial hosts. Eng. Life Sci. 14, 16-26 (2014
    • (2014) Eng. Life Sci , vol.14 , pp. 16-26
    • Branduardi, P.1    De Ferra, F.2    Longo, V.3    Porro, D.4
  • 6
    • 84865142847 scopus 로고    scopus 로고
    • Microbial engineering for the production of advanced biofuels
    • Peralta-Yahya, P.P., Zhang, F., del Cardayre, S.B., & Keasling, J.D. Microbial engineering for the production of advanced biofuels. Nature 488, 320-328 (2012
    • (2012) Nature , vol.488 , pp. 320-328
    • Peralta-Yahya, P.P.1    Zhang, F.2    Del Cardayre, S.B.3    Keasling, J.D.4
  • 7
    • 84907546229 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers
    • Generoso, W.C., Schadeweg, V., Oreb, M., & Boles, E. Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers. Curr. Opin. Biotechnol. 33, 1-7 (2015
    • (2015) Curr. Opin. Biotechnol , vol.33 , pp. 1-7
    • Generoso, W.C.1    Schadeweg, V.2    Oreb, M.3    Boles, E.4
  • 8
    • 84887999379 scopus 로고    scopus 로고
    • Prospective and development of butanol as an advanced biofuel
    • Xue, C., Zhao, X.-Q., Liu, C.-G., Chen, L.-J., & Bai, F.-W. Prospective and development of butanol as an advanced biofuel. Biotechnol. Adv. 31, 1575-1584 (2013
    • (2013) Biotechnol. Adv , vol.31 , pp. 1575-1584
    • Xue, C.1    Zhao, X.-Q.2    Liu, C.-G.3    Chen, L.-J.4    Bai, F.-W.5
  • 9
    • 84866402290 scopus 로고    scopus 로고
    • Escherichia coli for biofuel production: Bridging the gap from promise to practice
    • Huffer, S., Roche, C.M., Blanch, H.W., & Clark, D.S. Escherichia coli for biofuel production: bridging the gap from promise to practice. Trends Biotechnol. 30, 538-545 (2012
    • (2012) Trends Biotechnol , vol.30 , pp. 538-545
    • Huffer, S.1    Roche, C.M.2    Blanch, H.W.3    Clark, D.S.4
  • 10
    • 79955611425 scopus 로고    scopus 로고
    • Driving forces enable high-Titer anaerobic 1-Butanol synthesis in Escherichia coli
    • Shen, C.R., et al. Driving forces enable high-Titer anaerobic 1-Butanol synthesis in Escherichia coli. Appl. Environ. Microbiol. 77, 2905-2915 (2011
    • (2011) Appl. Environ. Microbiol , vol.77 , pp. 2905-2915
    • Shen, C.R.1
  • 11
    • 84901808659 scopus 로고    scopus 로고
    • Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains
    • Lian, J., Si, T., Nair, N.U., & Zhao, H. Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. Metab. Eng. 24, 139-149 (2014
    • (2014) Metab. Eng , vol.24 , pp. 139-149
    • Lian, J.1    Si, T.2    Nair, N.U.3    Zhao, H.4
  • 12
    • 80051941601 scopus 로고    scopus 로고
    • Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals
    • Dellomonaco, C., Clomburg, J.M., Miller, E.N., & Gonzalez, R. Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals. Nature 476, 355-359 (2011
    • (2011) Nature , vol.476 , pp. 355-359
    • Dellomonaco, C.1    Clomburg, J.M.2    Miller, E.N.3    Gonzalez, R.4
  • 13
    • 84925666935 scopus 로고    scopus 로고
    • Reversal of the β-Oxidation cycle in Saccharomyces cerevisiae for production of fuels and chemicals
    • Lian, J., & Zhao, H. Reversal of the β-Oxidation cycle in Saccharomyces cerevisiae for production of fuels and chemicals. ACS Synth. Biol. 4, 332-341 (2015
    • (2015) ACS Synth. Biol , vol.4 , pp. 332-341
    • Lian, J.1    Zhao, H.2
  • 14
  • 15
    • 67449106543 scopus 로고    scopus 로고
    • Butanol tolerance in a selection of microorganisms
    • Knoshaug, E.P., & Zhang, M. Butanol tolerance in a selection of microorganisms. Appl. Biochem. Biotechnol. 153, 13-20 (2009
    • (2009) Appl. Biochem. Biotechnol , vol.153 , pp. 13-20
    • Knoshaug, E.P.1    Zhang, M.2
  • 16
    • 84864186953 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae: A key cell factory platform for future biorefineries
    • Hong, K.K., & Nielsen, J. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell. Mol. Life Sci. 69, 2671-2690 (2012
    • (2012) Cell. Mol. Life Sci , vol.69 , pp. 2671-2690
    • Hong, K.K.1    Nielsen, J.2
  • 17
    • 51949107835 scopus 로고    scopus 로고
    • Progress in metabolic engineering of Saccharomyces cerevisiae
    • Nevoigt, E. Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 72, 379-412 (2008
    • (2008) Microbiol. Mol. Biol. Rev , vol.72 , pp. 379-412
    • Nevoigt, E.1
  • 18
    • 84893502214 scopus 로고    scopus 로고
    • Utilizing an endogenous pathway for 1-butanol production in Saccharomyces cerevisiae
    • Si, T., Luo, Y., Xiao, H., & Zhao, H. Utilizing an endogenous pathway for 1-butanol production in Saccharomyces cerevisiae. Metab. Eng. 22, 60-68 (2014
    • (2014) Metab. Eng , vol.22 , pp. 60-68
    • Si, T.1    Luo, Y.2    Xiao, H.3    Zhao, H.4
  • 19
    • 54349114978 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-Acid pathways
    • Shen, C.R., & Liao, J.C. Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-Acid pathways. Metab. Eng. 10, 312-320 (2008
    • (2008) Metab. Eng , vol.10 , pp. 312-320
    • Shen, C.R.1    Liao, J.C.2
  • 20
    • 84874796954 scopus 로고    scopus 로고
    • Synergy as design principle for metabolic engineering of 1-propanol production in Escherichia coli
    • Shen, C.R., & Liao, J.C. Synergy as design principle for metabolic engineering of 1-propanol production in Escherichia coli. Metab. Eng. 17, 12-22 (2013
    • (2013) Metab. Eng , vol.17 , pp. 12-22
    • Shen, C.R.1    Liao, J.C.2
  • 21
    • 57449098845 scopus 로고    scopus 로고
    • Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-Propanol and 1-Butanol by Escherichia coli
    • Atsumi, S., & Liao, J.C. Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-Propanol and 1-Butanol by Escherichia coli. Appl. Environ. Microbiol. 74, 7802-7808 (2008
    • (2008) Appl. Environ. Microbiol , vol.74 , pp. 7802-7808
    • Atsumi, S.1    Liao, J.C.2
  • 22
  • 23
    • 78649326953 scopus 로고    scopus 로고
    • Biosynthesis of chiral 3-hydroxyvalerate from single propionate-unrelated carbon sources in metabolically engineered e
    • Tseng, H.-C., Harwell, C.L., Martin, C.H., & Prather, K.L. Biosynthesis of chiral 3-hydroxyvalerate from single propionate-unrelated carbon sources in metabolically engineered E. coli. Microb. Cell Fact. 9, 96 (2010
    • (2010) Coli. Microb. Cell Fact , vol.9 , pp. 96
    • Tseng, H.-C.1    Harwell, C.L.2    Martin, C.H.3    Prather, K.L.4
  • 24
    • 54349090042 scopus 로고    scopus 로고
    • Production of 2-methyl-1-butanol in engineered Escherichia coli
    • Cann, A.F., & Liao, J.C. Production of 2-methyl-1-butanol in engineered Escherichia coli. Appl. Microbiol. Biotechnol. 81, 89-98 (2008
    • (2008) Appl. Microbiol. Biotechnol , vol.81 , pp. 89-98
    • Cann, A.F.1    Liao, J.C.2
  • 25
    • 84937209203 scopus 로고    scopus 로고
    • Butanol production in S cerevisiae via a synthetic ABE pathway is enhanced by specific metabolic engineering and butanol resistance
    • Swidah, R., et al. Butanol production in S. cerevisiae via a synthetic ABE pathway is enhanced by specific metabolic engineering and butanol resistance. Biotechnol. Biofuels 8, 1-9 (2015
    • (2015) Biotechnol. Biofuels , vol.8 , pp. 1-9
    • Swidah, R.1
  • 26
    • 0032947192 scopus 로고    scopus 로고
    • Threonine overproduction in yeast strains carrying the HOM3-R2 mutant allele under the control of different inducible promoters
    • Farfan, M.-J., Aparicio, L., & Calderon, I.L. Threonine overproduction in yeast strains carrying the HOM3-R2 mutant allele under the control of different inducible promoters. Appl. Environ. Microbiol. 65, 110-116 (1999
    • (1999) Appl. Environ. Microbiol , vol.65 , pp. 110-116
    • Farfan, M.-J.1    Aparicio, L.2    Calderon, I.L.3
  • 27
    • 0027742654 scopus 로고
    • Isolation of a mutant allele that deregulates the threonine biosynthesis in Saccharomyces cerevisiae
    • Martin-Rendon, E., Farfan, M., Ramos, C., & Calderon, I. Isolation of a mutant allele that deregulates the threonine biosynthesis in Saccharomyces cerevisiae. Current. Genetics 24, 465-471 (1993
    • (1993) Current. Genetics , vol.24 , pp. 465-471
    • Martin-Rendon, E.1    Farfan, M.2    Ramos, C.3    Calderon, I.4
  • 28
    • 0037338355 scopus 로고    scopus 로고
    • Leucine biosynthesis in fungi: Entering metabolism through the back door
    • Kohlhaw, G.B. Leucine biosynthesis in fungi: entering metabolism through the back door. Microbiol. Mol. Biol. Rev. 67, 1-15 (2003
    • (2003) Microbiol. Mol. Biol. Rev , vol.67 , pp. 1-15
    • Kohlhaw, G.B.1
  • 29
    • 84865777627 scopus 로고    scopus 로고
    • Cytosolic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeast Saccharomyces cerevisiae
    • Brat, D., Weber, C., Lorenzen, W., Bode, H., & Boles, E. Cytosolic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeast Saccharomyces cerevisiae. Biotechnol. Biofuels 5: 65 (2012
    • (2012) Biotechnol. Biofuels , vol.5 , pp. 65
    • Brat, D.1    Weber, C.2    Lorenzen, W.3    Bode, H.4    Boles, E.5
  • 30
    • 84877256074 scopus 로고    scopus 로고
    • Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols
    • Avalos, J.L., Fink, G.R., & Stephanopoulos, G. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat. Biotech. 31, 335-341 (2013
    • (2013) Nat. Biotech , vol.31 , pp. 335-341
    • Avalos, J.L.1    Fink, G.R.2    Stephanopoulos, G.3
  • 31
    • 0035824654 scopus 로고    scopus 로고
    • Mitochondrial and cytosolic isoforms of yeast fumarase are derivatives of a single translation product and have identical amino termini
    • Sass, E., Blachinsky, E., Karniely, S., & Pines, O. Mitochondrial and cytosolic isoforms of yeast fumarase are derivatives of a single translation product and have identical amino termini. J. Biol. Chem. 276, 46111-46117 (2001
    • (2001) J. Biol. Chem , vol.276 , pp. 46111-46117
    • Sass, E.1    Blachinsky, E.2    Karniely, S.3    Pines, O.4
  • 32
    • 0029058992 scopus 로고
    • Peroxisomal and mitochondrial carnitine acetyltransferases of Saccharomyces cerevisiae are encoded by a single gene
    • Elgersma, Y., Van Roermund, C., Wanders, R., & Tabak, H. Peroxisomal and mitochondrial carnitine acetyltransferases of Saccharomyces cerevisiae are encoded by a single gene. EMBO J. 14, 3472 (1995
    • (1995) EMBO J. , vol.14 , pp. 3472
    • Elgersma, Y.1    Van Roermund, C.2    Wanders, R.3    Tabak, H.4
  • 33
    • 0023876383 scopus 로고
    • Yeast LEU4 encodes mitochondrial and nonmitochondrial forms of alpha-isopropylmalate synthase
    • Beltzer, J.P., Morris, S.R., & Kohlhaw, G.B. Yeast LEU4 encodes mitochondrial and nonmitochondrial forms of alpha-isopropylmalate synthase. J. Biol. Chem. 263, 368-374 (1988
    • (1988) J. Biol. Chem , vol.263 , pp. 368-374
    • Beltzer, J.P.1    Morris, S.R.2    Kohlhaw, G.B.3
  • 34
    • 41549147373 scopus 로고    scopus 로고
    • Elucidation of an alternate isoleucine biosynthesis pathway in Geobacter sulfurreducens
    • Risso, C., Van Dien, S.J., Orloff, A., Lovley, D.R., & Coppi, M.V. Elucidation of an alternate isoleucine biosynthesis pathway in Geobacter sulfurreducens. J. Bacteriol. 190, 2266-2274 (2008
    • (2008) J. Bacteriol , vol.190 , pp. 2266-2274
    • Risso, C.1    Van Dien, S.J.2    Orloff, A.3    Lovley, D.R.4    Coppi, M.V.5
  • 35
    • 0017174779 scopus 로고
    • Yeast alpha-isopropylmalate isomerase Factors affecting stability and enzyme activity
    • Bigelis, R., & Umbarger, H.E. Yeast alpha-isopropylmalate isomerase. Factors affecting stability and enzyme activity. J. Biol. Chem. 251, 3545-3552 (1976
    • (1976) J. Biol. Chem , vol.251 , pp. 3545-3552
    • Bigelis, R.1    Umbarger, H.E.2
  • 36
    • 0033565665 scopus 로고    scopus 로고
    • The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins
    • Kispal, G., Csere, P., Prohl, C., & Lill, R. The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. EMBO J. 18, 3981-3989 (1999
    • (1999) EMBO J. , vol.18 , pp. 3981-3989
    • Kispal, G.1    Csere, P.2    Prohl, C.3    Lill, R.4
  • 37
    • 13344275166 scopus 로고    scopus 로고
    • Effect of gene amplification on threonine production by yeast
    • Farfan, M.-J., Martin-Rendon, E., & Calderon, I.L. Effect of gene amplification on threonine production by yeast. Biotechnol. Bioeng. 49, 667-674 (1996
    • (1996) Biotechnol. Bioeng , vol.49 , pp. 667-674
    • Farfan, M.-J.1    Martin-Rendon, E.2    Calderon, I.L.3
  • 38
    • 84939961676 scopus 로고    scopus 로고
    • Improving 2-Phenylethanol production via ehrlich pathway using genetic engineered Saccharomyces cerevisiae strains
    • Yin, S., et al. Improving 2-Phenylethanol production via ehrlich pathway using genetic engineered Saccharomyces cerevisiae strains. Curr. Microbiol. 70, 762-767 (2015
    • (2015) Curr. Microbiol , vol.70 , pp. 762-767
    • Yin, S.1
  • 39
    • 84888018350 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for the production of 2-phenylethanol via Ehrlich pathway
    • Kim, B., Cho, B.-R., & Hahn, J.-S. Metabolic engineering of Saccharomyces cerevisiae for the production of 2-phenylethanol via Ehrlich pathway. Biotechnol. Bioeng. 111, 115-124 (2014
    • (2014) Biotechnol. Bioeng , vol.111 , pp. 115-124
    • Kim, B.1    Cho, B.-R.2    Hahn, J.-S.3
  • 40
    • 38049001166 scopus 로고    scopus 로고
    • Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels
    • Atsumi, S., Hanai, T., & Liao, J. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451, 86-89 (2008
    • (2008) Nature , vol.451 , pp. 86-89
    • Atsumi, S.1    Hanai, T.2    Liao, J.3
  • 41
    • 0036433309 scopus 로고    scopus 로고
    • Characterization of a Saccharomyces cerevisiae NADP(H)-dependent alcohol dehydrogenase (ADHVII), a member of the cinnamyl alcohol dehydrogenase family
    • Larroy, C., Pares, X., & Biosca, J.A. Characterization of a Saccharomyces cerevisiae NADP(H)-dependent alcohol dehydrogenase (ADHVII), a member of the cinnamyl alcohol dehydrogenase family. Eur. J. Biochem. 269, 5738-5745 (2002
    • (2002) Eur. J. Biochem , vol.269 , pp. 5738-5745
    • Larroy, C.1    Pares, X.2    Biosca, J.A.3
  • 42
    • 53049097710 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for 1-butanol production
    • Atsumi, S., et al. Metabolic engineering of Escherichia coli for 1-butanol production. Metab. Eng. 10, 305-311 (2008
    • (2008) Metab. Eng , vol.10 , pp. 305-311
    • Atsumi, S.1
  • 44
    • 34347206860 scopus 로고    scopus 로고
    • High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method
    • Gietz, R.D., & Schiestl, R.H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 31-34 (2007
    • (2007) Nat. Protoc , vol.2 , pp. 31-34
    • Gietz, R.D.1    Schiestl, R.H.2
  • 45
    • 0022384454 scopus 로고
    • Characterization of a mitochondrial transport system for branched chain alpha-keto acids
    • Hutson, S.M., & Rannels, S.L. Characterization of a mitochondrial transport system for branched chain alpha-keto acids. J. Biol. Chem. 260, 14189-14193 (1985
    • (1985) J. Biol. Chem , vol.260 , pp. 14189-14193
    • Hutson, S.M.1    Rannels, S.L.2
  • 46
    • 79956226145 scopus 로고    scopus 로고
    • Characterization of a thiamin diphosphate-dependent phenylpyruvate decarboxylase from Saccharomyces cerevisiae
    • Kneen, M.M., et al. Characterization of a thiamin diphosphate-dependent phenylpyruvate decarboxylase from Saccharomyces cerevisiae. FEBS J. 278, 1842-1853 (2011
    • (2011) FEBS J. , vol.278 , pp. 1842-1853
    • Kneen, M.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.