메뉴 건너뛰기




Volumn 62, Issue , 2016, Pages 133-144

Machine learning optimization of cross docking accuracy

Author keywords

Autodock Vina; Cross docking; Docking power; Drug discovery; Machine learning optimization; Molecular docking; Scoring function; Smina

Indexed keywords

ARTIFICIAL INTELLIGENCE; FORECASTING; LIGANDS; MOLECULAR MODELING; SUPERVISED LEARNING;

EID: 84966429538     PISSN: 14769271     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compbiolchem.2016.04.005     Document Type: Article
Times cited : (18)

References (51)
  • 1
    • 84945475267 scopus 로고    scopus 로고
    • Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening WIREs
    • Q.U. Ain, A. Aleksandrova, F.D. Roessler, and P.J. Ballester Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening WIREs Comput. Mol. Sci. 5 2015 405 424 10.1002/wcms.1225
    • (2015) Comput. Mol. Sci. , vol.5 , pp. 405-424
    • Ain, Q.U.1    Aleksandrova, A.2    Roessler, F.D.3    Ballester, P.J.4
  • 2
    • 84936802766 scopus 로고    scopus 로고
    • Fast, accurate, and reliable molecular docking with QuickVina 2
    • A. Alhossary, S.D. Handoko, Y. Mu, and C.-K. Kwoh Fast, accurate, and reliable molecular docking with QuickVina 2 Bioinformatics 31 2015 2214 2216 10.1093/bioinformatics/btv082
    • (2015) Bioinformatics , vol.31 , pp. 2214-2216
    • Alhossary, A.1    Handoko, S.D.2    Mu, Y.3    Kwoh, C.-K.4
  • 4
    • 84964698564 scopus 로고    scopus 로고
    • Machine-learning scoring functions for identifying native poses of ligands docked to known and novel proteins
    • H.M. Ashtawy, and N.R. Mahapatra Machine-learning scoring functions for identifying native poses of ligands docked to known and novel proteins BMC Bioinf. 16 Suppl. 6 2015 S3 10.1186/1471-2105-16-S6-S3
    • (2015) BMC Bioinf. , vol.16 , pp. S3
    • Ashtawy, H.M.1    Mahapatra, N.R.2
  • 6
    • 84879583689 scopus 로고    scopus 로고
    • Evaluation and optimization of virtual screening workflows with DEKOIS 2.0 - A public library of challenging docking benchmark sets
    • M.R. Bauer, T.M. Ibrahim, S.M. Vogel, and F.M. Boeckler Evaluation and optimization of virtual screening workflows with DEKOIS 2.0 - a public library of challenging docking benchmark sets J. Chem. Inf. Model. 53 2013 1447 1462 10.1021/ci400115b
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1447-1462
    • Bauer, M.R.1    Ibrahim, T.M.2    Vogel, S.M.3    Boeckler, F.M.4
  • 7
    • 66149103553 scopus 로고    scopus 로고
    • Comparative assessment of scoring functions on a diverse test set
    • T. Cheng, X. Li, Y. Li, Z. Liu, and R. Wang Comparative assessment of scoring functions on a diverse test set J. Chem. Inf. Model. 49 2009 1079 1093 10.1021/ci9000053
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 1079-1093
    • Cheng, T.1    Li, X.2    Li, Y.3    Liu, Z.4    Wang, R.5
  • 8
    • 84855925739 scopus 로고    scopus 로고
    • How to benchmark methods for structure-based virtual screening of large compound libraries
    • R. Baron, Springer Science + Business Media
    • A.J. Christofferson, and N. Huang How to benchmark methods for structure-based virtual screening of large compound libraries R. Baron, Computational Drug Discovery and Design 2011 Springer Science + Business Media 187 195 10.1007/978-1-61779-465-0-13
    • (2011) Computational Drug Discovery and Design , pp. 187-195
    • Christofferson, A.J.1    Huang, N.2
  • 9
    • 84873041650 scopus 로고    scopus 로고
    • Characterization of small molecule binding. I. Accurate identification of strong inhibitors in virtual screening
    • B. Ding, J. Wang, N. Li, and W. Wang Characterization of small molecule binding. I. Accurate identification of strong inhibitors in virtual screening J. Chem. Inf. Model. 53 2013 114 122 10.1021/ci300508m
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 114-122
    • Ding, B.1    Wang, J.2    Li, N.3    Wang, W.4
  • 10
    • 84880552522 scopus 로고    scopus 로고
    • Comparing neural-network scoring functions and the state of the art: Applications to common library screening
    • J.D. Durrant, A.J. Friedman, K.E. Rogers, and J.A. McCammon Comparing neural-network scoring functions and the state of the art: applications to common library screening J. Chem. Inf. Model. 53 2013 1726 1735 10.1021/ci400042y
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1726-1735
    • Durrant, J.D.1    Friedman, A.J.2    Rogers, K.E.3    McCammon, J.A.4
  • 11
    • 84856397848 scopus 로고    scopus 로고
    • A force field with discrete displaceable waters and desolvation entropy for hydrated ligand docking
    • S. Forli, and A.J. Olson A force field with discrete displaceable waters and desolvation entropy for hydrated ligand docking J. Med. Chem. 55 2012 623 638 10.1021/jm2005145
    • (2012) J. Med. Chem. , vol.55 , pp. 623-638
    • Forli, S.1    Olson, A.J.2
  • 12
    • 84921629247 scopus 로고    scopus 로고
    • Target-specific native/decoy pose classifier improves the accuracy of ligand ranking in the CSAR benchmark
    • D. Fourches, R. Politi, and A. Tropsha Target-specific native/decoy pose classifier improves the accuracy of ligand ranking in the CSAR benchmark J. Chem. Inf. Model. 55 2015 63 71 10.1021/ci500519w
    • (2015) J. Chem. Inf. Model. , vol.55 , pp. 63-71
    • Fourches, D.1    Politi, R.2    Tropsha, A.3
  • 14
    • 33750124980 scopus 로고    scopus 로고
    • Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes
    • R. Friesner, R. Murphy, M. Repasky, L. Frye, J. Greenwood, T. Halgren, P. Sanschagrin, and D. Mainz Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes J. Med. Chem. 49 2006 6177 6196 10.1021/jm051256o
    • (2006) J. Med. Chem. , vol.49 , pp. 6177-6196
    • Friesner, R.1    Murphy, R.2    Repasky, M.3    Frye, L.4    Greenwood, J.5    Halgren, T.6    Sanschagrin, P.7    Mainz, D.8
  • 15
    • 84908242076 scopus 로고    scopus 로고
    • Beware of machine learning-based scoring functions - On the danger of developing black boxes
    • J. Gabel, Jé Desaphy, and D. Rognan Beware of machine learning-based scoring functions - on the danger of developing black boxes J. Chem. Inf. Model. 54 2014 2807 2815 10.1021/ci500406k
    • (2014) J. Chem. Inf. Model. , vol.54 , pp. 2807-2815
    • Gabel, J.1    Desaphy, J.2    Rognan, D.3
  • 16
    • 1642310340 scopus 로고    scopus 로고
    • Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening
    • T.A. Halgren, R.B. Murphy, R.A. Friesner, H.S. Beard, L.L. Frye, W.T. Pollard, and J.L. Banks Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening J. Med. Chem. 47 2004 1750 1759 10.1021/jm030644s
    • (2004) J. Med. Chem. , vol.47 , pp. 1750-1759
    • Halgren, T.A.1    Murphy, R.B.2    Friesner, R.A.3    Beard, H.S.4    Frye, L.L.5    Pollard, W.T.6    Banks, J.L.7
  • 17
    • 84864948908 scopus 로고    scopus 로고
    • QuickVina: Accelerating AutoDock Vina using gradient-based heuristics for global optimization
    • S.D. Handoko, X. Ouyang, C.T.T. Su, C.K. Kwoh, and Y.S. Ong QuickVina: accelerating AutoDock Vina using gradient-based heuristics for global optimization IEEE/ACM Trans. Comput. Biol. Bioinf. 9 2012 1266 1272 10.1109/TCBB.2012.82
    • (2012) IEEE/ACM Trans. Comput. Biol. Bioinf. , vol.9 , pp. 1266-1272
    • Handoko, S.D.1    Ouyang, X.2    Su, C.T.T.3    Kwoh, C.K.4    Ong, Y.S.5
  • 21
    • 79952178127 scopus 로고    scopus 로고
    • A machine learning-based method to improve docking scoring functions and its application to drug repurposing
    • S.L. Kinnings, N. Liu, P.J. Tonge, R.M. Jackson, L. Xie, and P.E. Bourne A machine learning-based method to improve docking scoring functions and its application to drug repurposing J. Chem. Inf. Model. 51 2011 408 419 10.1021/ci100369f
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 408-419
    • Kinnings, S.L.1    Liu, N.2    Tonge, P.J.3    Jackson, R.M.4    Xie, L.5    Bourne, P.E.6
  • 22
    • 79952178127 scopus 로고    scopus 로고
    • A machine learning-based method to improve docking scoring functions and its application to drug repurposing
    • S.L. Kinnings, N. Liu, P.J. Tonge, R.M. Jackson, L. Xie, and P.E. Bourne A machine learning-based method to improve docking scoring functions and its application to drug repurposing J. Chem. Inf. Model. 51 2011 408 419 10.1021/ci100369f
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 408-419
    • Kinnings, S.L.1    Liu, N.2    Tonge, P.J.3    Jackson, R.M.4    Xie, L.5    Bourne, P.E.6
  • 23
    • 84883247468 scopus 로고    scopus 로고
    • Lessons learned in empirical scoring with smina from the CSAR benchmarking exercise
    • D.R. Koes, M.P. Baumgartner, and C.J. Camacho Lessons learned in empirical scoring with smina from the CSAR benchmarking exercise J. Chem. Inf. Model. 53 2013 1893 1904 10.1021/ci300604z
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1893-1904
    • Koes, D.R.1    Baumgartner, M.P.2    Camacho, C.J.3
  • 26
    • 80053313926 scopus 로고    scopus 로고
    • Support vector regression scoring of receptor-ligand complexes for rank-ordering and virtual screening of chemical libraries
    • L. Li, B. Wang, and S.O. Meroueh Support vector regression scoring of receptor-ligand complexes for rank-ordering and virtual screening of chemical libraries J. Chem. Inf. Model. 51 2011 2132 2138 10.1021/ci200078f
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2132-2138
    • Li, L.1    Wang, B.2    Meroueh, S.O.3
  • 27
    • 84903302003 scopus 로고    scopus 로고
    • Comparative assessment of scoring functions on an updated benchmark: 1. Compilation of the test set
    • Y. Li, Z. Liu, J. Li, L. Han, J. Liu, Z. Zhao, and R. Wang Comparative assessment of scoring functions on an updated benchmark: 1. Compilation of the test set J. Chem. Inf. Model. 54 2014 1700 1716 10.1021/ci500080q
    • (2014) J. Chem. Inf. Model. , vol.54 , pp. 1700-1716
    • Li, Y.1    Liu, Z.2    Li, J.3    Han, L.4    Liu, J.5    Zhao, Z.6    Wang, R.7
  • 28
    • 84903287174 scopus 로고    scopus 로고
    • Comparative assessment of scoring functions on an updated benchmark: 2. Evaluation methods and general results
    • Y. Li, L. Han, Z. Liu, and R. Wang Comparative assessment of scoring functions on an updated benchmark: 2. Evaluation methods and general results J. Chem. Inf. Model. 54 2014 1717 1736 10.1021/ci500081m
    • (2014) J. Chem. Inf. Model. , vol.54 , pp. 1717-1736
    • Li, Y.1    Han, L.2    Liu, Z.3    Wang, R.4
  • 29
    • 84923588607 scopus 로고    scopus 로고
    • Improving AutoDock Vina using random forest: The growing accuracy of binding affinity prediction by the effective exploitation of larger data sets
    • H. Li, K.-S. Leung, M.-H. Wong, and P.J. Ballester Improving AutoDock Vina using random forest: the growing accuracy of binding affinity prediction by the effective exploitation of larger data sets Mol. Info. 34 2015 115 126 10.1002/minf.201400132
    • (2015) Mol. Info. , vol.34 , pp. 115-126
    • Li, H.1    Leung, K.-S.2    Wong, M.-H.3    Ballester, P.J.4
  • 30
    • 84870065043 scopus 로고    scopus 로고
    • FIPSDock: A new molecular docking technique driven by fully informed swarm optimization algorithm
    • Y. Liu, L. Zhao, W. Li, D. Zhao, M. Song, and Y. Yang FIPSDock: a new molecular docking technique driven by fully informed swarm optimization algorithm J. Comput. Chem. 34 2012 67 75 10.1002/jcc.23108
    • (2012) J. Comput. Chem. , vol.34 , pp. 67-75
    • Liu, Y.1    Zhao, L.2    Li, W.3    Zhao, D.4    Song, M.5    Yang, Y.6
  • 31
    • 79959224583 scopus 로고    scopus 로고
    • Molecular docking: A powerful approach for structure-based drug discovery
    • X.-Y. Meng, H.-X. Zhang, M. Mezei, and M. Cui Molecular docking: a powerful approach for structure-based drug discovery Curr. Comput. Aided Drug Des. 7 2011 146 157 10.2174/157340911795677602
    • (2011) Curr. Comput. Aided Drug Des. , vol.7 , pp. 146-157
    • Meng, X.-Y.1    Zhang, H.-X.2    Mezei, M.3    Cui, M.4
  • 35
    • 84931009069 scopus 로고    scopus 로고
    • Effects of initial settings on computational protein-ligand docking accuracies for several docking programs
    • A. Oda, N. Yamaotsu, S. Hirono, Y. Watanabe, S. Fukuyoshi, and O. Takahashi Effects of initial settings on computational protein-ligand docking accuracies for several docking programs Mol. Simul. 41 2014 1027 1034 10.1080/08927022.2014.917300
    • (2014) Mol. Simul. , vol.41 , pp. 1027-1034
    • Oda, A.1    Yamaotsu, N.2    Hirono, S.3    Watanabe, Y.4    Fukuyoshi, S.5    Takahashi, O.6
  • 36
    • 79251524915 scopus 로고    scopus 로고
    • Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database
    • D. Plewczynski, M. Łaźniewski, R. Augustyniak, and K. Ginalski Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database J. Comput. Chem. 32 2011 742 755 10.1002/jcc.21643
    • (2011) J. Comput. Chem. , vol.32 , pp. 742-755
    • Plewczynski, D.1    Łaźniewski, M.2    Augustyniak, R.3    Ginalski, K.4
  • 38
    • 84863915863 scopus 로고    scopus 로고
    • Cross-docking study on InhA inhibitors: A combination of Autodock Vina and PM6-DH2 simulations to retrieve bio-active conformations
    • J.-L. Stigliani, V. Bernardes-Génisson, J. Bernadou, and G. Pratviel Cross-docking study on InhA inhibitors: a combination of Autodock Vina and PM6-DH2 simulations to retrieve bio-active conformations Org. Biomol. Chem. 10 2012 6341 6349 10.1039/c2ob25602a
    • (2012) Org. Biomol. Chem. , vol.10 , pp. 6341-6349
    • Stigliani, J.-L.1    Bernardes-Génisson, V.2    Bernadou, J.3    Pratviel, G.4
  • 39
    • 76149120388 scopus 로고    scopus 로고
    • AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
    • O. Trott, and A.J. Olson AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading J. Comput. Chem. 31 2010 455 461 10.1002/jcc.21334
    • (2010) J. Comput. Chem. , vol.31 , pp. 455-461
    • Trott, O.1    Olson, A.J.2
  • 40
    • 34548479280 scopus 로고    scopus 로고
    • A particle swarm pattern search method for bound constrained global optimization
    • A.I.F. Vaz, and L.N. Vicente A particle swarm pattern search method for bound constrained global optimization J. Glob. Optim. 39 2007 197 219 10.1007/s10898-007-9133-5
    • (2007) J. Glob. Optim. , vol.39 , pp. 197-219
    • Vaz, A.I.F.1    Vicente, L.N.2
  • 43
    • 10044294023 scopus 로고    scopus 로고
    • An Extensive test of 14∼scoring functions using the PDBbind refined set of 800 protein-ligand complexes
    • R. Wang, Y. Lu, X. Fang, and S. Wang An Extensive test of 14∼scoring functions using the PDBbind refined set of 800 protein-ligand complexes J. Chem. Inf. Model. 44 2004 2114 2125 10.1021/ci049733j
    • (2004) J. Chem. Inf. Model. , vol.44 , pp. 2114-2125
    • Wang, R.1    Lu, Y.2    Fang, X.3    Wang, S.4
  • 44
    • 2542530042 scopus 로고    scopus 로고
    • The PDBbind database: Collection of binding affinities for protein-ligand complexes with known three-dimensional structures
    • R. Wang, X. Fang, Y. Lu, and S. Wang The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures J. Med. Chem. 47 2004 2977 2980 10.1021/jm030580l
    • (2004) J. Med. Chem. , vol.47 , pp. 2977-2980
    • Wang, R.1    Fang, X.2    Lu, Y.3    Wang, S.4
  • 45
    • 20444422149 scopus 로고    scopus 로고
    • The PDBbind database: Methodologies and updates
    • R. Wang, X. Fang, Y. Lu, C.-Y. Yang, and S. Wang The PDBbind database: methodologies and updates J. Med. Chem. 48 2005 4111 4119 10.1021/jm048957q
    • (2005) J. Med. Chem. , vol.48 , pp. 4111-4119
    • Wang, R.1    Fang, X.2    Lu, Y.3    Yang, C.-Y.4    Wang, S.5
  • 46
    • 84880698928 scopus 로고    scopus 로고
    • Optimization of molecular docking scores with support vector rank regression
    • W. Wang, W. He, X. Zhou, and X. Chen Optimization of molecular docking scores with support vector rank regression Proteins 81 2013 1386 1398 10.1002/prot.24282
    • (2013) Proteins , vol.81 , pp. 1386-1398
    • Wang, W.1    He, W.2    Zhou, X.3    Chen, X.4
  • 48
    • 84922512225 scopus 로고    scopus 로고
    • Comparing sixteen scoring functions for predicting biological activities of ligands for protein targets
    • W. Xu, A.J. Lucke, and D.P. Fairlie Comparing sixteen scoring functions for predicting biological activities of ligands for protein targets J. Mol. Graphics Model. 57 2015 76 88 10.1016/j.jmgm.2015.01.009
    • (2015) J. Mol. Graphics Model. , vol.57 , pp. 76-88
    • Xu, W.1    Lucke, A.J.2    Fairlie, D.P.3
  • 49
    • 33846524439 scopus 로고    scopus 로고
    • Motifs for molecular recognition exploiting hydrophobic enclosure in protein-ligand binding
    • T. Young, R. Abel, B. Kim, B.J. Berne, and R.A. Friesner Motifs for molecular recognition exploiting hydrophobic enclosure in protein-ligand binding Proc. Natl. Acad. Sci. U. S. A. 104 2007 808 813 10.1073/pnas.0610202104
    • (2007) Proc. Natl. Acad. Sci. U. S. A. , vol.104 , pp. 808-813
    • Young, T.1    Abel, R.2    Kim, B.3    Berne, B.J.4    Friesner, R.A.5
  • 50
    • 84875366733 scopus 로고    scopus 로고
    • Message passing interface and multithreading hybrid for parallel molecular docking of large databases on petascale high performance computing machines
    • X. Zhang, S.E. Wong, and F.C. Lightstone Message passing interface and multithreading hybrid for parallel molecular docking of large databases on petascale high performance computing machines J. Comput. Chem. 34 2013 915 927 10.1002/jcc.23214
    • (2013) J. Comput. Chem. , vol.34 , pp. 915-927
    • Zhang, X.1    Wong, S.E.2    Lightstone, F.C.3
  • 51
    • 84883250593 scopus 로고    scopus 로고
    • SFCscore RF: A random forest-based scoring function for improved affinity prediction of protein-ligand complexes
    • D. Zilian, and C.A. Sotriffer SFCscore RF: a random forest-based scoring function for improved affinity prediction of protein-ligand complexes J. Chem. Inf. Model. 53 2013 1923 1933 10.1021/ci400120b
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1923-1933
    • Zilian, D.1    Sotriffer, C.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.