메뉴 건너뛰기




Volumn 55, Issue 1, 2015, Pages 63-71

Target-specific native/decoy pose classifier improves the accuracy of ligand ranking in the CSAR 2013 benchmark

Author keywords

[No Author keywords available]

Indexed keywords

DECISION TREES; PROTEINS;

EID: 84921629247     PISSN: 15499596     EISSN: 1549960X     Source Type: Journal    
DOI: 10.1021/ci500519w     Document Type: Article
Times cited : (15)

References (29)
  • 1
    • 11144323163 scopus 로고    scopus 로고
    • Virtual Screening of Chemical Libraries
    • Shoichet, B. K. Virtual Screening of Chemical Libraries Nature 2004, 432, 862-865
    • (2004) Nature , vol.432 , pp. 862-865
    • Shoichet, B.K.1
  • 4
    • 41449114598 scopus 로고    scopus 로고
    • Community Benchmarks for Virtual Screening
    • Irwin, J. J. Community Benchmarks for Virtual Screening J. Comput.-Aided. Mol. Des. 2008, 22, 193-199
    • (2008) J. Comput.-Aided. Mol. Des. , vol.22 , pp. 193-199
    • Irwin, J.J.1
  • 6
    • 84883209345 scopus 로고    scopus 로고
    • CSAR Benchmark Exercise 2011-2012: Evaluation of Results from Docking and Relative Ranking of Blinded Congeneric Series
    • Damm-Ganamet, K. L.; Smith, R. D.; Dunbar, J. B.; Stuckey, J. A.; Carlson, H. A. CSAR Benchmark Exercise 2011-2012: Evaluation of Results from Docking and Relative Ranking of Blinded Congeneric Series J. Chem. Inf. Model. 2013, 53, 1853-1870
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1853-1870
    • Damm-Ganamet, K.L.1    Smith, R.D.2    Dunbar, J.B.3    Stuckey, J.A.4    Carlson, H.A.5
  • 8
    • 84916636800 scopus 로고    scopus 로고
    • Structural Protein-Ligand Interaction Fingerprints (SPLIF) for Structure-Based Virtual Screening: Method and Benchmark Study
    • Da, C.; Kireev, D. Structural Protein-Ligand Interaction Fingerprints (SPLIF) for Structure-Based Virtual Screening: Method and Benchmark Study J. Chem. Inf. Model. 2014, 54, 2555-2561
    • (2014) J. Chem. Inf. Model. , vol.54 , pp. 2555-2561
    • Da, C.1    Kireev, D.2
  • 9
    • 33846933784 scopus 로고    scopus 로고
    • Optimizing Fragment and Scaffold Docking by Use of Molecular Interaction Fingerprints
    • Marcou, G.; Rognan, D. Optimizing Fragment and Scaffold Docking by Use of Molecular Interaction Fingerprints J. Chem. Inf. Model. 2007, 47, 195-207
    • (2007) J. Chem. Inf. Model. , vol.47 , pp. 195-207
    • Marcou, G.1    Rognan, D.2
  • 10
    • 84858023862 scopus 로고    scopus 로고
    • Cheminformatics Meets Molecular Mechanics: A Combined Application of Knowledge-Based Pose Scoring and Physical Force Field-Based Hit Scoring Functions Improves the Accuracy of Structure-Based Virtual Screening
    • Hsieh, J.-H.; Yin, S.; Wang, X. S.; Liu, S.; Dokholyan, N. V.; Tropsha, A. Cheminformatics Meets Molecular Mechanics: A Combined Application of Knowledge-Based Pose Scoring and Physical Force Field-Based Hit Scoring Functions Improves the Accuracy of Structure-Based Virtual Screening J. Chem. Inf. Model. 2012, 52, 16-28
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 16-28
    • Hsieh, J.-H.1    Yin, S.2    Wang, X.S.3    Liu, S.4    Dokholyan, N.V.5    Tropsha, A.6
  • 11
    • 80053337594 scopus 로고    scopus 로고
    • Combined Application of Cheminformatics- and Physical Force Field-Based Scoring Functions Improves Binding Affinity Prediction for CSAR Data Sets
    • Hsieh, J.-H.; Yin, S.; Liu, S.; Sedykh, A.; Dokholyan, N. V.; Tropsha, A. Combined Application of Cheminformatics- and Physical Force Field-Based Scoring Functions Improves Binding Affinity Prediction for CSAR Data Sets J. Chem. Inf. Model. 2011, 51, 2027-2035
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2027-2035
    • Hsieh, J.-H.1    Yin, S.2    Liu, S.3    Sedykh, A.4    Dokholyan, N.V.5    Tropsha, A.6
  • 12
    • 84883217252 scopus 로고    scopus 로고
    • Predicting Binding Affinity of CSAR Ligands Using Both Structure-Based and Ligand-Based Approaches
    • Fourches, D.; Muratov, E.; Ding, F.; Dokholyan, N. V.; Tropsha, A. Predicting Binding Affinity of CSAR Ligands Using Both Structure-Based and Ligand-Based Approaches J. Chem. Inf. Model. 2013, 53, 1915-1922
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1915-1922
    • Fourches, D.1    Muratov, E.2    Ding, F.3    Dokholyan, N.V.4    Tropsha, A.5
  • 13
    • 84876531629 scopus 로고    scopus 로고
    • Predicting Ligand Binding Modes from Neural Networks Trained on Protein-Ligand Interaction Fingerprints
    • Chupakhin, V.; Marcou, G.; Baskin, I.; Varnek, A.; Rognan, D. Predicting Ligand Binding Modes from Neural Networks Trained on Protein-Ligand Interaction Fingerprints J. Chem. Inf. Model. 2013, 53, 763-772
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 763-772
    • Chupakhin, V.1    Marcou, G.2    Baskin, I.3    Varnek, A.4    Rognan, D.5
  • 14
    • 84897010735 scopus 로고    scopus 로고
    • Does a More Precise Chemical Description of Protein-Ligand Complexes Lead to More Accurate Prediction of Binding Affinity?
    • Ballester, P. J.; Schreyer, A.; Blundell, T. L. Does a More Precise Chemical Description of Protein-Ligand Complexes Lead to More Accurate Prediction of Binding Affinity? J. Chem. Inf. Model. 2014, 54, 944-955
    • (2014) J. Chem. Inf. Model. , vol.54 , pp. 944-955
    • Ballester, P.J.1    Schreyer, A.2    Blundell, T.L.3
  • 15
    • 77952825581 scopus 로고    scopus 로고
    • A Machine Learning Approach to Predicting Protein-Ligand Binding Affinity with Applications to Molecular Docking
    • Ballester, P. J.; Mitchell, J. B. O. A Machine Learning Approach to Predicting Protein-Ligand Binding Affinity with Applications to Molecular Docking Bioinformatics 2010, 26, 1169-1175
    • (2010) Bioinformatics , vol.26 , pp. 1169-1175
    • Ballester, P.J.1    Mitchell, J.B.O.2
  • 16
    • 84883250593 scopus 로고    scopus 로고
    • SFCscore(RF): A Random Forest-Based Scoring Function for Improved Affinity Prediction of Protein-Ligand Complexes
    • Zilian, D.; Sotriffer, C. A. SFCscore(RF): A Random Forest-Based Scoring Function for Improved Affinity Prediction of Protein-Ligand Complexes J. Chem. Inf. Model. 2013, 53, 1923-1933
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1923-1933
    • Zilian, D.1    Sotriffer, C.A.2
  • 18
    • 77954288774 scopus 로고    scopus 로고
    • Dali Server: Conservation Mapping in 3D
    • Holm, L.; Rosenstrom, P. Dali Server: Conservation Mapping in 3D Nucleic Acids Res. 2010, 38, W545-W549
    • (2010) Nucleic Acids Res. , vol.38 , pp. 545-W549
    • Holm, L.1    Rosenstrom, P.2
  • 22
    • 62949169896 scopus 로고    scopus 로고
    • Conceptual Density Functional Theory and Some Recent Developments
    • Liu, S.-B. Conceptual Density Functional Theory and Some Recent Developments Phys. Chim. Sin. 2009, 25, 590-600
    • (2009) Phys. Chim. Sin. , vol.25 , pp. 590-600
    • Liu, S.-B.1
  • 24
    • 36949022890 scopus 로고    scopus 로고
    • Predictive QSAR Modeling Workflow, Model Applicability Domains, and Virtual Screening
    • Tropsha, A.; Golbraikh, A. Predictive QSAR Modeling Workflow, Model Applicability Domains, and Virtual Screening Curr. Pharm. Des. 2007, 13, 3494-3504
    • (2007) Curr. Pharm. Des. , vol.13 , pp. 3494-3504
    • Tropsha, A.1    Golbraikh, A.2
  • 25
    • 78049349961 scopus 로고    scopus 로고
    • Trust, but Verify: On the Importance of Chemical Structure Curation in Cheminformatics and QSAR Modeling Research
    • Fourches, D.; Muratov, E.; Tropsha, A. Trust, but Verify: On the Importance of Chemical Structure Curation in Cheminformatics and QSAR Modeling Research J. Chem. Inf. Model. 2010, 50, 1189-1204
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 1189-1204
    • Fourches, D.1    Muratov, E.2    Tropsha, A.3
  • 26
    • 77956964002 scopus 로고    scopus 로고
    • Best Practices for QSAR Model Development, Validation, and Exploitation
    • Tropsha, A. Best Practices for QSAR Model Development, Validation, and Exploitation Mol. Inf. 2010, 29, 476-488
    • (2010) Mol. Inf. , vol.29 , pp. 476-488
    • Tropsha, A.1
  • 29
    • 52049118327 scopus 로고    scopus 로고
    • MedusaScore: An Accurate Force Field-Based Scoring Function for Virtual Drug Screening
    • Yin, S.; Biedermannova, L.; Vondrasek, J.; Dokholyan, N. V. MedusaScore: An Accurate Force Field-Based Scoring Function for Virtual Drug Screening J. Chem. Inf Model 2008, 48, 1656-1662
    • (2008) J. Chem. Inf Model , vol.48 , pp. 1656-1662
    • Yin, S.1    Biedermannova, L.2    Vondrasek, J.3    Dokholyan, N.V.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.