메뉴 건너뛰기




Volumn 4, Issue DECEMBER2015, 2015, Pages

Methylation of RNA polymerase II non-consensus Lysine residues marks early transcription in mammalian cells

Author keywords

[No Author keywords available]

Indexed keywords

RNA POLYMERASE II; LYSINE; SERINE;

EID: 84964357500     PISSN: None     EISSN: 2050084X     Source Type: Journal    
DOI: 10.7554/eLife.11215     Document Type: Article
Times cited : (32)

References (51)
  • 2
    • 84928987900 scopus 로고    scopus 로고
    • HTSeq-a python framework to work with high-throughput sequencing data
    • Anders S, Pyl PT, Huber W. 2015. HTSeq-a python framework to work with high-throughput sequencing data. Bioinformatics 31:166-169. doi: 10.1093/bioinformatics/btu638
    • (2015) Bioinformatics , vol.31 , pp. 166-169
    • Anders, S.1    Pyl, P.T.2    Huber, W.3
  • 3
    • 79952534189 scopus 로고    scopus 로고
    • Regulation of chromatin by histone modifications
    • Bannister AJ, Kouzarides T. 2011. Regulation of chromatin by histone modifications. Cell Research 21:381-395. doi: 10.1038/cr.2011.22
    • (2011) Cell Research , vol.21 , pp. 381-395
    • Bannister, A.J.1    Kouzarides, T.2
  • 4
    • 84894318075 scopus 로고    scopus 로고
    • Coupling mRNA processing with transcription in time and space. Nature Reviews
    • Bentley DL. 2014. Coupling mRNA processing with transcription in time and space. Nature Reviews. Genetics 15:163-175. doi: 10.1038/nrg3662
    • (2014) Genetics , vol.15 , pp. 163-175
    • Bentley, D.L.1
  • 5
    • 84925285779 scopus 로고    scopus 로고
    • Non-histone protein methylation as a regulator of cellular signalling and function. Nature Reviews
    • Biggar KK, Li SS. 2015. Non-histone protein methylation as a regulator of cellular signalling and function. Nature Reviews. Molecular Cell Biology 16:5-17. doi: 10.1038/nrm3915
    • (2015) Molecular Cell Biology , vol.16 , pp. 5-17
    • Biggar, K.K.1    Li, S.S.2
  • 6
    • 0037106657 scopus 로고    scopus 로고
    • Normal timing of oligodendrocyte development from genetically engineered, lineage-selectable mouse ES cells
    • Billon N, Jolicoeur C, Ying QL, Smith A, Raff M. 2002. Normal timing of oligodendrocyte development from genetically engineered, lineage-selectable mouse ES cells. Journal of Cell Science 115:3657-3665. doi: 10.1242/jcs.00049
    • (2002) Journal of Cell Science , vol.115 , pp. 3657-3665
    • Billon, N.1    Jolicoeur, C.2    Ying, Q.L.3    Smith, A.4    Raff, M.5
  • 7
    • 84872112391 scopus 로고    scopus 로고
    • Cell type-specific chromatin immunoprecipitation from multicellular complex samples using BiTS-ChIP
    • Bonn S, Zinzen RP, Perez-Gonzalez A, Riddell A, Gavin AC, Furlong EE. 2012. Cell type-specific chromatin immunoprecipitation from multicellular complex samples using BiTS-ChIP. Nature Protocols 7:978-994. doi: 10.1038/nprot.2012.049
    • (2012) Nature Protocols , vol.7 , pp. 978-994
    • Bonn, S.1    Zinzen, R.P.2    Perez-Gonzalez, A.3    Riddell, A.4    Gavin, A.C.5    Furlong, E.E.6
  • 8
    • 70449106028 scopus 로고    scopus 로고
    • Modifications of RNA polymerase II are pivotal in regulating gene expression states
    • Brookes E, Pombo A. 2009. Modifications of RNA polymerase II are pivotal in regulating gene expression states. EMBO Reports 10:1213-1219. doi: 10.1038/embor.2009.221
    • (2009) EMBO Reports , vol.10 , pp. 1213-1219
    • Brookes, E.1    Pombo, A.2
  • 11
    • 70449641057 scopus 로고    scopus 로고
    • Progression through the RNA polymerase II CTD cycle
    • Buratowski S. 2009. Progression through the RNA polymerase II CTD cycle. Molecular Cell 36:541-546. doi: 10.1016/j.molcel.2009.10.019
    • (2009) Molecular Cell , vol.36 , pp. 541-546
    • Buratowski, S.1
  • 12
    • 0035943710 scopus 로고    scopus 로고
    • Flavopiridol inactivates p-TEFb and blocks most RNA polymerase II transcription in vivo
    • Chao SH, Price DH. 2001. Flavopiridol inactivates p-TEFb and blocks most RNA polymerase II transcription in vivo. The Journal of Biological Chemistry 276:31793-31799. doi: 10.1074/jbc.M102306200
    • (2001) The Journal of Biological Chemistry , vol.276 , pp. 31793-31799
    • Chao, S.H.1    Price, D.H.2
  • 13
    • 23844445184 scopus 로고    scopus 로고
    • Role of the mammalian RNA polymerase II C-terminal domain (CTD) nonconsensus repeats in CTD stability and cell proliferation
    • Chapman RD, Conrad M, Eick D. 2005. Role of the mammalian RNA polymerase II C-terminal domain (CTD) nonconsensus repeats in CTD stability and cell proliferation. Molecular and Cellular Biology 25:7665-7674. doi: 10.1128/MCB.25.17.7665-7674.2005
    • (2005) Molecular and Cellular Biology , vol.25 , pp. 7665-7674
    • Chapman, R.D.1    Conrad, M.2    Eick, D.3
  • 16
    • 84889051321 scopus 로고    scopus 로고
    • RNA polymerase II C-terminal domain: Tethering transcription to transcript and template
    • Corden JL. 2013. RNA polymerase II C-terminal domain: tethering transcription to transcript and template. Chemical Reviews 113:8423-8455. doi: 10.1021/cr400158h
    • (2013) Chemical Reviews , vol.113 , pp. 8423-8455
    • Corden, J.L.1
  • 19
    • 84862493306 scopus 로고    scopus 로고
    • Updating the RNA polymerase CTD code: Adding gene-specific layers
    • Egloff S, Dienstbier M, Murphy S. 2012. Updating the RNA polymerase CTD code: adding gene-specific layers. Trends in Genetics 28:333-341. doi: 10.1016/j.tig.2012.03.007
    • (2012) Trends in Genetics , vol.28 , pp. 333-341
    • Egloff, S.1    Dienstbier, M.2    Murphy, S.3
  • 20
    • 84888991588 scopus 로고    scopus 로고
    • The RNA polymerase II carboxy-terminal domain (CTD) code
    • Eick D, Geyer M. 2013. The RNA polymerase II carboxy-terminal domain (CTD) code. Chemical Reviews 113: 8456-8490. doi: 10.1021/cr400071f
    • (2013) Chemical Reviews , vol.113 , pp. 8456-8490
    • Eick, D.1    Geyer, M.2
  • 21
    • 79960442655 scopus 로고    scopus 로고
    • Structural insights to how mammalian capping enzyme reads the CTD code
    • Ghosh A, Shuman S, Lima CD. 2011. Structural insights to how mammalian capping enzyme reads the CTD code. Molecular Cell 43:299-310. doi: 10.1016/j.molcel.2011.06.001
    • (2011) Molecular Cell , vol.43 , pp. 299-310
    • Ghosh, A.1    Shuman, S.2    Lima, C.D.3
  • 22
    • 84873676209 scopus 로고    scopus 로고
    • CTD serine-2 plays a critical role in splicing and termination factor recruitment to RNA polymerase II in vivo
    • Gu B, Eick D, Bensaude O. 2013. CTD serine-2 plays a critical role in splicing and termination factor recruitment to RNA polymerase II in vivo. Nucleic Acids Research 41:1591-1603. doi: 10.1093/nar/gks1327
    • (2013) Nucleic Acids Research , vol.41 , pp. 1591-1603
    • Gu, B.1    Eick, D.2    Bensaude, O.3
  • 23
    • 84923112908 scopus 로고    scopus 로고
    • Critical roles of non-histone protein lysine methylation in human tumorigenesis
    • Hamamoto R, Saloura V, Nakamura Y. 2015. Critical roles of non-histone protein lysine methylation in human tumorigenesis. Nature Reviews Cancer 15:110-124. doi: 10.1038/nrc3884
    • (2015) Nature Reviews Cancer , vol.15 , pp. 110-124
    • Hamamoto, R.1    Saloura, V.2    Nakamura, Y.3
  • 25
    • 84867160564 scopus 로고    scopus 로고
    • The RNA polymerase II CTD coordinates transcription and RNA processing
    • Hsin J-P, Manley JL. 2012. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes & Development 26:2119-2137. doi: 10.1101/gad.200303.112
    • (2012) Genes & Development , vol.26 , pp. 2119-2137
    • Hsin, J.-P.1    Manley, J.L.2
  • 26
    • 84899796207 scopus 로고    scopus 로고
    • Genome-wide dynamics of pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons
    • Jonkers I, Kwak H, Lis JT. 2014. Genome-wide dynamics of pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons. eLife 3:e02407. doi: 10.7554/eLife.02407
    • (2014) Elife , vol.3 , pp. 2407
    • Jonkers, I.1    Kwak, H.2    Lis, J.T.3
  • 27
    • 47149108349 scopus 로고    scopus 로고
    • Histone deacetylase inhibition accelerates the early events of stem cell differentiation: Transcriptomic and epigenetic analysis
    • Karantzal E, Schulz H, Hummel O, Hubner N, Hatzopoulos AK, Kretsovali A. 2008. Histone deacetylase inhibition accelerates the early events of stem cell differentiation: transcriptomic and epigenetic analysis. Genome Biology 9:R65. doi: 10.1186/gb-2008-9-4-r65
    • (2008) Genome Biology , vol.9 , pp. 65
    • Karantzal, E.1    Schulz, H.2    Hummel, O.3    Hubner, N.4    Hatzopoulos, A.K.5    Kretsovali, A.6
  • 28
    • 44449177123 scopus 로고    scopus 로고
    • The organization of histone H3 modifications as revealed by a panel of specific monoclonal antibodies
    • Kimura H, Hayashi-Takanaka Y, Goto Y, Takizawa N, Nozaki N. 2008. The organization of histone H3 modifications as revealed by a panel of specific monoclonal antibodies. Cell Structure and Function 33:61-73. doi: 10.1247/csf.07035
    • (2008) Cell Structure and Function , vol.33 , pp. 61-73
    • Kimura, H.1    Hayashi-Takanaka, Y.2    Goto, Y.3    Takizawa, N.4    Nozaki, N.5
  • 29
    • 67349198160 scopus 로고    scopus 로고
    • An unusual recent expansion of the C-terminal domain of RNA polymerase II in primate malaria parasites features a motif otherwise found only in mammalian polymerases
    • Kishore SP, Perkins SL, Templeton TJ, Deitsch KW. 2009. An unusual recent expansion of the C-terminal domain of RNA polymerase II in primate malaria parasites features a motif otherwise found only in mammalian polymerases. Journal of Molecular Evolution 68:706-714. doi: 10.1007/s00239-009-9245-2
    • (2009) Journal of Molecular Evolution , vol.68 , pp. 706-714
    • Kishore, S.P.1    Perkins, S.L.2    Templeton, T.J.3    Deitsch, K.W.4
  • 31
    • 84859210032 scopus 로고    scopus 로고
    • Fast gapped-read alignment with bowtie 2
    • Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with bowtie 2. Nature Methods 9:357-359. doi: 10.1038/nmeth.1923
    • (2012) Nature Methods , vol.9 , pp. 357-359
    • Langmead, B.1    Salzberg, S.L.2
  • 33
    • 77958150026 scopus 로고    scopus 로고
    • Genetic organization, length conservation, and evolution of RNA polymerase II carboxyl-terminal domain
    • Liu P, Kenney JM, Stiller JW, Greenleaf AL. 2010. Genetic organization, length conservation, and evolution of RNA polymerase II carboxyl-terminal domain. Molecular Biology and Evolution 27:2628-2641. doi: 10.1093/molbev/msq151
    • (2010) Molecular Biology and Evolution , vol.27 , pp. 2628-2641
    • Liu, P.1    Kenney, J.M.2    Stiller, J.W.3    Greenleaf, A.L.4
  • 38
    • 0034028901 scopus 로고    scopus 로고
    • Quantitative expression of oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells
    • Niwa H, Smith AG, Jun-ichi M. 2000. Quantitative expression of oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genetics 24:372-376. doi: 10.1038/74199
    • (2000) Nature Genetics , vol.24 , pp. 372-376
    • Niwa, H.1    Smith, A.G.2    Jun-Ichi, M.3
  • 39
    • 84912085999 scopus 로고    scopus 로고
    • Characteristic bimodal profiles of RNA polymerase II at thousands of active mammalian promoters
    • Quinodoz M, Gobet C, Naef F, Gustafson KB. 2014. Characteristic bimodal profiles of RNA polymerase II at thousands of active mammalian promoters. Genome Biology 15:R85. doi: 10.1186/gb-2014-15-6-r85
    • (2014) Genome Biology , vol.15
    • Quinodoz, M.1    Gobet, C.2    Naef, F.3    Gustafson, K.B.4
  • 45
    • 84894118496 scopus 로고    scopus 로고
    • Erk1/2 activity promotes chromatin features and RNAPII phosphorylation at developmental promoters in mouse ESCs
    • Tee W-W, Shen SS, Oksuz O, Narendra V, Reinberg D. 2014. Erk1/2 activity promotes chromatin features and RNAPII phosphorylation at developmental promoters in mouse ESCs. Cell 156:678-690. doi: 10.1016/j.cell.2014.01.009
    • (2014) Cell , vol.156 , pp. 678-690
    • Tee, W.-W.1    Shen, S.S.2    Oksuz, O.3    Narendra, V.4    Reinberg, D.5
  • 47
    • 84876185295 scopus 로고    scopus 로고
    • A DNA damage response system associated with the phosphoCTD of elongating RNA polymerase II
    • Winsor TS, Bartkowiak B, Bennett CB, Greenleaf AL, Lustig AJ. 2013. A DNA damage response system associated with the phosphoCTD of elongating RNA polymerase II. PLoS ONE 8:e60909. doi: 10.1371/journal.pone.0060909
    • (2013) Plos ONE , vol.8
    • Winsor, T.S.1    Bartkowiak, B.2    Bennett, C.B.3    Greenleaf, A.L.4    Lustig, A.J.5
  • 48
    • 84913587492 scopus 로고    scopus 로고
    • Hitting the ‘mark’: Interpreting lysine methylation in the context of active transcription
    • Wozniak GG, Strahl BD. 2014. Hitting the ‘mark’: interpreting lysine methylation in the context of active transcription. Biochimica Et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1839:1353-1361. doi: 10.1016/j.bbagrm.2014.03.002
    • (2014) Biochimica Et Biophysica Acta (BBA) - Gene Regulatory Mechanisms , vol.1839 , pp. 1353-1361
    • Wozniak, G.G.1    Strahl, B.D.2
  • 49
    • 33646725833 scopus 로고    scopus 로고
    • Splicing speckles are not reservoirs of RNA polymerase II, but contain an inactive form, phosphorylated on Serine2 residues of the C-terminal domain
    • Xie SQ, Martin S, Guillot PV, Bentley DL, Pombo A. 2006. Splicing speckles are not reservoirs of RNA polymerase II, but contain an inactive form, phosphorylated on Serine2 residues of the C-terminal domain. Molecular Biology of the Cell 17:1723-1733. doi: 10.1091/mbc.E05-08-0726
    • (2006) Molecular Biology of the Cell , vol.17 , pp. 1723-1733
    • Xie, S.Q.1    Martin, S.2    Guillot, P.V.3    Bentley, D.L.4    Pombo, A.5
  • 50
    • 84864587283 scopus 로고    scopus 로고
    • Genome-wide localization of protein-DNA binding and histone modification by a bayesian change-point method with ChIP-seq data
    • Xing H, Mo Y, Liao W, Zhang MQ, Ioshikhes I. 2012. Genome-wide localization of protein-DNA binding and histone modification by a bayesian change-point method with ChIP-seq data. PLoS Computational Biology 8: e1002613. doi: 10.1371/journal.pcbi.1002613
    • (2012) Plos Computational Biology , vol.8
    • Xing, H.1    Mo, Y.2    Liao, W.3    Zhang, M.Q.4    Ioshikhes, I.5
  • 51
    • 84899086064 scopus 로고    scopus 로고
    • Evolutionary diversity and taxon-specific modifications of the RNA polymerase II c-terminal domain
    • Yang C, Stiller JW. 2014. Evolutionary diversity and taxon-specific modifications of the RNA polymerase II c-terminal domain. Proceedings of the National Academy of Sciences 111:5920-5925. doi: 10.1073/pnas.1323616111
    • (2014) Proceedings of the National Academy of Sciences , vol.111 , pp. 5920-5925
    • Yang, C.1    Stiller, J.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.