-
1
-
-
0027480960
-
A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group
-
Huntington’s Disease Collaborative Research Group. 1993. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 72:971–983. doi: 10.1016/0092-8674(93)90585-E
-
(1993)
Cell
, vol.72
, pp. 971-983
-
-
-
2
-
-
0028260436
-
Structure and expression of the Huntington’s disease gene: Evidence against simple inactivation due to an expanded CAG repeat
-
Ambrose CM, Duyao MP, Barnes G, Bates GP, Lin CS, Srinidhi J, Baxendale S, Hummerich H, Lehrach H, Altherr M, et al. 1994. Structure and expression of the Huntington’s disease gene: Evidence against simple inactivation due to an expanded CAG repeat. Somatic Cell and Molecular Genetics 20:27–38. doi: 10.1007/BF02257483
-
(1994)
Somatic Cell and Molecular Genetics
, vol.20
, pp. 27-38
-
-
Ambrose, C.M.1
Duyao, M.P.2
Barnes, G.3
Bates, G.P.4
Lin, C.S.5
Srinidhi, J.6
Baxendale, S.7
Hummerich, H.8
Lehrach, H.9
Altherr, M.10
-
3
-
-
0029392854
-
HEAT repeats in the Huntington’s disease protein
-
Andrade MA, Bork P. 1995. HEAT repeats in the Huntington’s disease protein. Nature Genetics 11:115–116. doi: 10.1038/ng1095-115
-
(1995)
Nature Genetics
, vol.11
, pp. 115-116
-
-
Andrade, M.A.1
Bork, P.2
-
4
-
-
34447130222
-
Phosphorylation of huntingtin by cyclin-dependent kinase 5 is induced by DNA damage and regulates wild-type and mutant huntingtin toxicity in neurons
-
Anne SL, Saudou F, Humbert S. 2007. Phosphorylation of huntingtin by cyclin-dependent kinase 5 is induced by DNA damage and regulates wild-type and mutant huntingtin toxicity in neurons. Journal of Neuroscience 27: 7318–7328. doi: 10.1523/JNEUROSCI.1831-07.2007
-
(2007)
Journal of Neuroscience
, vol.27
, pp. 7318-7328
-
-
Anne, S.L.1
Saudou, F.2
Humbert, S.3
-
5
-
-
0030935035
-
The likelihood of being affected with Huntington disease by a particular age, for a specific CAG size
-
Brinkman RR, Mezei MM, Theilmann J, Almqvist E, Hayden MR. 1997. The likelihood of being affected with Huntington disease by a particular age, for a specific CAG size. American Journal of Human Genetics 60:1202–1210.
-
(1997)
American Journal of Human Genetics
, vol.60
, pp. 1202-1210
-
-
Brinkman, R.R.1
Mezei, M.M.2
Theilmann, J.3
Almqvist, E.4
Hayden, M.R.5
-
8
-
-
0033587167
-
Structure of importin-beta bound to the IBB domain of importin-alpha
-
Cingolani G, Petosa C, Weis K, Müller CW. 1999. Structure of importin-beta bound to the IBB domain of importin-alpha. Nature 399:221–229. doi: 10.1038/20367
-
(1999)
Nature
, vol.399
, pp. 221-229
-
-
Cingolani, G.1
Petosa, C.2
Weis, K.3
Müller, C.W.4
-
9
-
-
84940640081
-
Huntingtin proteolysis releases non-polyQ fragments that cause toxicity through dynamin 1 dysregulation
-
El-Daher M-T, Hangen E, Bruyere J, Poizat G, Al-Ramahi I, Pardo R, Bourg N, Souquere S, Mayet C, Pierron G, et al. 2015. Huntingtin proteolysis releases non-polyQ fragments that cause toxicity through dynamin 1 dysregulation. The EMBO Journal 34:2255–2271. doi: 10.15252/embj.201490808
-
(2015)
The EMBO Journal
, vol.34
, pp. 2255-2271
-
-
El-Daher, M.-T.1
Hangen, E.2
Bruyere, J.3
Poizat, G.4
Al-Ramahi, I.5
Pardo, R.6
Bourg, N.7
Souquere, S.8
Mayet, C.9
Pierron, G.10
-
10
-
-
0031662269
-
Huntingtin interacts with a family of WW domain proteins
-
Faber PW, Barnes GT, Srinidhi J, Chen J, Gusella JF, MacDonald ME. 1998. Huntingtin interacts with a family of WW domain proteins. Human Molecular Genetics 7:1463–1474. doi: 10.1093/hmg/7.9.1463
-
(1998)
Human Molecular Genetics
, vol.7
, pp. 1463-1474
-
-
Faber, P.W.1
Barnes, G.T.2
Srinidhi, J.3
Chen, J.4
Gusella, J.F.5
Macdonald, M.E.6
-
11
-
-
84914678999
-
Polyglutamine-and temperature-dependent conformational rigidity in mutant huntingtin revealed by immunoassays and circular dichroism spectroscopy
-
Fodale V, Kegulian NC, Verani M, Cariulo C, Azzollini L, Petricca L, Daldin M, Boggio R, Padova A, Kuhn R, et al. 2014. Polyglutamine-and temperature-dependent conformational rigidity in mutant huntingtin revealed by immunoassays and circular dichroism spectroscopy. PLoS ONE 9:e112262. doi: 10.1371/journal.pone.0112262
-
(2014)
Plos ONE
, vol.9
-
-
Fodale, V.1
Kegulian, N.C.2
Verani, M.3
Cariulo, C.4
Azzollini, L.5
Petricca, L.6
Daldin, M.7
Boggio, R.8
Padova, A.9
Kuhn, R.10
-
12
-
-
84892797558
-
Architecture of the large subunit of the mammalian mitochondrial ribosome
-
Greber BJ, Boehringer D, Leitner A, Bieri P, Voigts-Hoffmann F, Erzberger JP, Leibundgut M, Aebersold R, Ban N. 2014. Architecture of the large subunit of the mammalian mitochondrial ribosome. Nature 505:515–519. doi: 10.1038/nature12890
-
(2014)
Nature
, vol.505
, pp. 515-519
-
-
Greber, B.J.1
Boehringer, D.2
Leitner, A.3
Bieri, P.4
Voigts-Hoffmann, F.5
Erzberger, J.P.6
Leibundgut, M.7
Aebersold, R.8
Ban, N.9
-
13
-
-
77249156811
-
PR65, the HEAT-repeat scaffold of phosphatase PP2A, is an elastic connector that links force and catalysis
-
Grinthal A, Adamovic I, Weiner B, Karplus M, Kleckner N. 2010. PR65, the HEAT-repeat scaffold of phosphatase PP2A, is an elastic connector that links force and catalysis. Proceedings of the National Academy of Sciences of the United States of America 107:2467–2472. doi: 10.1073/pnas.0914073107
-
(2010)
Proceedings of the National Academy of Sciences of the United States of America
, vol.107
, pp. 2467-2472
-
-
Grinthal, A.1
Adamovic, I.2
Weiner, B.3
Karplus, M.4
Kleckner, N.5
-
14
-
-
0033534405
-
The Structure of the Protein Phosphatase 2A PR65/A Subunit Reveals the Conformation of Its 15 Tandemly Repeated HEAT Motifs
-
Groves MR, Hanlon N, Turowski P, Hemmings BA, Barford D. 1999. The Structure of the Protein Phosphatase 2A PR65/A Subunit Reveals the Conformation of Its 15 Tandemly Repeated HEAT Motifs. Cell 96:99–110. doi: 10.1016/S0092-8674(00)80963-0
-
(1999)
Cell
, vol.96
, pp. 99-110
-
-
Groves, M.R.1
Hanlon, N.2
Turowski, P.3
Hemmings, B.A.4
Barford, D.5
-
15
-
-
72149107077
-
Serines 13 and 16 Are Critical Determinants of Full-Length Human Mutant Huntingtin Induced Disease Pathogenesis in HD Mice
-
Gu X, Greiner ER, Mishra R, Kodali R, Osmand A, Finkbeiner S, Steffan JS, Thompson LM, Wetzel R, Yang XW. 2009. Serines 13 and 16 Are Critical Determinants of Full-Length Human Mutant Huntingtin Induced Disease Pathogenesis in HD Mice. Neuron 64:828–840. doi: 10.1016/j.neuron.2009.11.020
-
(2009)
Neuron
, vol.64
, pp. 828-840
-
-
Gu, X.1
Greiner, E.R.2
Mishra, R.3
Kodali, R.4
Osmand, A.5
Finkbeiner, S.6
Steffan, J.S.7
Thompson, L.M.8
Wetzel, R.9
Yang, X.W.10
-
16
-
-
0034329159
-
Molecular genetics: Unmasking polyglutamine triggers in neurodegenerative disease
-
Gusella JF, MacDonald ME. 2000. Molecular genetics: unmasking polyglutamine triggers in neurodegenerative disease. Nature Reviews Neuroscience 1:109–115. doi: 10.1038/35039051
-
(2000)
Nature Reviews Neuroscience
, vol.1
, pp. 109-115
-
-
Gusella, J.F.1
Macdonald, M.E.2
-
17
-
-
84857047339
-
PhosphoSitePlus: A comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse
-
Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B, Latham V, Sullivan M. 2012. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Research 40:D261–D270. doi: 10.1093/nar/gkr1122
-
(2012)
Nucleic Acids Research
, vol.40
, pp. D261-D270
-
-
Hornbeck, P.V.1
Kornhauser, J.M.2
Tkachev, S.3
Zhang, B.4
Skrzypek, E.5
Murray, B.6
Latham, V.7
Sullivan, M.8
-
18
-
-
84925728810
-
Scalable production in human cells and biochemical characterization of full-length normal and mutant huntingtin
-
Huang B, Lucas T, Kueppers C, Dong X, Krause M, Bepperling A, Buchner J, Voshol H, Weiss A, Gerrits B, et al. 2015. Scalable production in human cells and biochemical characterization of full-length normal and mutant huntingtin. PLOS ONE 10:e0121055. doi: 10.1371/journal.pone.0121055
-
(2015)
PLOS ONE
, vol.10
-
-
Huang, B.1
Lucas, T.2
Kueppers, C.3
Dong, X.4
Krause, M.5
Bepperling, A.6
Buchner, J.7
Voshol, H.8
Weiss, A.9
Gerrits, B.10
-
19
-
-
37749007365
-
GraFix: Sample preparation for single-particle electron cryomicroscopy
-
Kastner B, Fischer N, Golas MM, Sander B, Dube P, Boehringer D, Hartmuth K, Deckert J, Hauer F, Wolf E, et al. 2008. GraFix: sample preparation for single-particle electron cryomicroscopy. Nature Methods 5:53–55. doi: 10.1038/nmeth1139
-
(2008)
Nature Methods
, vol.5
, pp. 53-55
-
-
Kastner, B.1
Fischer, N.2
Golas, M.M.3
Sander, B.4
Dube, P.5
Boehringer, D.6
Hartmuth, K.7
Deckert, J.8
Hauer, F.9
Wolf, E.10
-
20
-
-
84857966803
-
Expanding the Chemical Cross-Linking Toolbox by the Use of Multiple Proteases and Enrichment by Size Exclusion Chromatography
-
M111.014126
-
Leitner A, Reischl R, Walzthoeni T, Herzog F, Bohn S, Forster F, Aebersold R. 2012. Expanding the Chemical Cross-Linking Toolbox by the Use of Multiple Proteases and Enrichment by Size Exclusion Chromatography. Molecular & Cellular Proteomics 11:M111.014126. doi: 10.1074/mcp.M111.014126
-
(2012)
Molecular & Cellular Proteomics
, vol.11
-
-
Leitner, A.1
Reischl, R.2
Walzthoeni, T.3
Herzog, F.4
Bohn, S.5
Forster, F.6
Aebersold, R.7
-
21
-
-
84891714984
-
Lysine-specific chemical cross-linking of protein complexes and identification of cross-linking sites using LC-MS/MS and the xQuest/xProphet software pipeline
-
Leitner A, Walzthoeni T, Aebersold R. 2014. Lysine-specific chemical cross-linking of protein complexes and identification of cross-linking sites using LC-MS/MS and the xQuest/xProphet software pipeline. Nature Protocols 9:120–137. doi: 10.1038/nprot.2013.168
-
(2014)
Nature Protocols
, vol.9
, pp. 120-137
-
-
Leitner, A.1
Walzthoeni, T.2
Aebersold, R.3
-
22
-
-
33744921670
-
Expression and characterization of full-length human huntingtin, an elongated HEAT repeat protein
-
Li W, Serpell LC, Carter WJ, Rubinsztein DC, Huntington JA. 2006. Expression and characterization of full-length human huntingtin, an elongated HEAT repeat protein. Journal of Biological Chemistry 281:15916–15922. doi: 10.1074/jbc.M511007200
-
(2006)
Journal of Biological Chemistry
, vol.281
, pp. 15916-15922
-
-
Li, W.1
Serpell, L.C.2
Carter, W.J.3
Rubinsztein, D.C.4
Huntington, J.A.5
-
23
-
-
0041620131
-
NORSp: Predictions of long regions without regular secondary structure
-
Liu J, Rost B. 2003. NORSp: predictions of long regions without regular secondary structure. Nucleic Acids Research 31:3833–3835. doi: 10.1093/nar/gkg515
-
(2003)
Nucleic Acids Research
, vol.31
, pp. 3833-3835
-
-
Liu, J.1
Rost, B.2
-
24
-
-
0035937523
-
Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity
-
Nucifora FC, Sasaki M, Peters MF, Huang H, Cooper JK, Yamada M, Takahashi H, Tsuji S, Troncoso J, Dawson VL, et al. 2001. Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 291:2423–2428. doi: 10.1126/science.1056784
-
(2001)
Science
, vol.291
, pp. 2423-2428
-
-
Nucifora, F.C.1
Sasaki, M.2
Peters, M.F.3
Huang, H.4
Cooper, J.K.5
Yamada, M.6
Takahashi, H.7
Tsuji, S.8
Troncoso, J.9
Dawson, V.L.10
-
25
-
-
32644434386
-
Huntingtin–HAP40 complex is a novel Rab5 effector that regulates early endosome motility and is up-regulated in Huntington’s disease
-
Pal A, Severin F, Lommer B, Shevchenko A, Zerial M. 2006. Huntingtin–HAP40 complex is a novel Rab5 effector that regulates early endosome motility and is up-regulated in Huntington’s disease. The Journal of Cell Biology 172:605–618. doi: 10.1083/jcb.200509091
-
(2006)
The Journal of Cell Biology
, vol.172
, pp. 605-618
-
-
Pal, A.1
Severin, F.2
Lommer, B.3
Shevchenko, A.4
Zerial, M.5
-
26
-
-
0033434080
-
Probability-based protein identification by searching sequence databases using mass spectrometry data
-
Perkins DN, Pappin DJC, Creasy DM, Cottrell JS. 1999. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567. doi: 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2
-
(1999)
Electrophoresis
, vol.20
, pp. 3551-3567
-
-
Perkins, D.N.1
Pappin, D.2
Creasy, D.M.3
Cottrell, J.S.4
-
27
-
-
0037462453
-
The ATRs, ATMs, and TORs Are Giant HEAT Repeat Proteins
-
Perry J, Kleckner N. 2003. The ATRs, ATMs, and TORs Are Giant HEAT Repeat Proteins. Cell 112:151–155. doi: 10.1016/S0092-8674(03)00033-3
-
(2003)
Cell
, vol.112
, pp. 151-155
-
-
Perry, J.1
Kleckner, N.2
-
28
-
-
0029295607
-
Normal and expanded Huntington’s disease gene alleles produce distinguishable proteins due to translation across the CAG repeat
-
Persichetti F, Ambrose CM, Ge P, McNeil SM, Srinidhi J, Anderson MA, Jenkins B, Barnes GT, Duyao MP, Kanaley L. 1995. Normal and expanded Huntington’s disease gene alleles produce distinguishable proteins due to translation across the CAG repeat. Molecular Medicine 1:374–383.
-
(1995)
Molecular Medicine
, vol.1
, pp. 374-383
-
-
Persichetti, F.1
Ambrose, C.M.2
Ge, P.3
McNeil, S.M.4
Srinidhi, J.5
Anderson, M.A.6
Jenkins, B.7
Barnes, G.T.8
Duyao, M.P.9
Kanaley, L.10
-
29
-
-
0030175161
-
Differential expression of normal and mutant Huntington’s disease gene alleles
-
Persichetti F, Carlee L, Faber PW, McNeil SM, Ambrose CM, Srinidhi J, Anderson M, Barnes GT, Gusella JF, MacDonald ME. 1996. Differential expression of normal and mutant Huntington’s disease gene alleles. Neurobiology of Disease 3:183–190. doi: 10.1006/nbdi.1996.0018
-
(1996)
Neurobiology of Disease
, vol.3
, pp. 183-190
-
-
Persichetti, F.1
Carlee, L.2
Faber, P.W.3
McNeil, S.M.4
Ambrose, C.M.5
Srinidhi, J.6
Anderson, M.7
Barnes, G.T.8
Gusella, J.F.9
Macdonald, M.E.10
-
30
-
-
0032728305
-
Mutant huntingtin forms in vivo complexes with distinct context-dependent conformations of the polyglutamine segment
-
Persichetti F, Trettel F, Huang CC, Fraefel C, Timmers HTM, Gusella JF, MacDonald ME. 1999. Mutant huntingtin forms in vivo complexes with distinct context-dependent conformations of the polyglutamine segment. Neurobiology of Disease 6:364–375. doi: 10.1006/nbdi.1999.0260
-
(1999)
Neurobiology of Disease
, vol.6
, pp. 364-375
-
-
Persichetti, F.1
Trettel, F.2
Huang, C.C.3
Fraefel, C.4
Timmers, H.5
Gusella, J.F.6
Macdonald, M.E.7
-
31
-
-
4444221565
-
UCSF Chimera?A visualization system for exploratory research and analysis
-
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. 2004. UCSF Chimera?a visualization system for exploratory research and analysis. Journal of Computational Chemistry 25:1605–1612. doi: 10.1002/jcc.20084
-
(2004)
Journal of Computational Chemistry
, vol.25
, pp. 1605-1612
-
-
Pettersen, E.F.1
Goddard, T.D.2
Huang, C.C.3
Couch, G.S.4
Greenblatt, D.M.5
Meng, E.C.6
Ferrin, T.E.7
-
32
-
-
0028158628
-
PHD-an automatic mail server for protein secondary structure prediction
-
Rost B, Sander C, Schneider R. 1994. PHD-an automatic mail server for protein secondary structure prediction. Bioinformatics 10:53–60. doi: 10.1093/bioinformatics/10.1.53
-
(1994)
Bioinformatics
, vol.10
, pp. 53-60
-
-
Rost, B.1
Sander, C.2
Schneider, R.3
-
33
-
-
33747633422
-
Huntingtin phosphorylation sites mapped by mass spectrometry. Modulation of cleavage and toxicity
-
Schilling B, Gafni J, Torcassi C, Cong X, Row RH, LaFevre-Bernt MA, Cusack MP, Ratovitski T, Hirschhorn R, Ross CA, et al. 2006. Huntingtin phosphorylation sites mapped by mass spectrometry. Modulation of cleavage and toxicity. Journal of Biological Chemistry 281:23686–23697. doi: 10.1074/jbc.M513507200
-
(2006)
Journal of Biological Chemistry
, vol.281
, pp. 23686-23697
-
-
Schilling, B.1
Gafni, J.2
Torcassi, C.3
Cong, X.4
Row, R.H.5
Lafevre-Bernt, M.A.6
Cusack, M.P.7
Ratovitski, T.8
Hirschhorn, R.9
Ross, C.A.10
-
34
-
-
77949774027
-
Huntingtin facilitates polycomb repressive complex 2
-
Seong IS, Woda JM, Song J-J, Lloret A, Abeyrathne PD, Woo CJ, Gregory G, Lee J-M, Wheeler VC, Walz T, et al. 2010. Huntingtin facilitates polycomb repressive complex 2. Human Molecular Genetics 19:573–583. doi: 10.1093/hmg/ddp524
-
(2010)
Human Molecular Genetics
, vol.19
, pp. 573-583
-
-
Seong, I.S.1
Woda, J.M.2
Song, J.-J.3
Lloret, A.4
Abeyrathne, P.D.5
Woo, C.J.6
Gregory, G.7
Lee, J.-M.8
Wheeler, V.C.9
Walz, T.10
-
35
-
-
0027261537
-
Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington’s disease
-
Snell RG, MacMillan JC, Cheadle JP, Fenton I, Lazarou LP, Davies P, MacDonald ME, Gusella JF, Harper PS, Shaw DJ. 1993. Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington’s disease. Nature Genetics 4:393–397. doi: 10.1038/ng0893-393
-
(1993)
Nature Genetics
, vol.4
, pp. 393-397
-
-
Snell, R.G.1
Macmillan, J.C.2
Cheadle, J.P.3
Fenton, I.4
Lazarou, L.P.5
Davies, P.6
Macdonald, M.E.7
Gusella, J.F.8
Harper, P.S.9
Shaw, D.J.10
-
36
-
-
0141742228
-
The predominantly HEAT-like motif structure of huntingtin and its association and coincident nuclear entry with dorsal, an NF-kB/Rel/dorsal family transcription factor
-
Takano H, Gusella JF. 2002. The predominantly HEAT-like motif structure of huntingtin and its association and coincident nuclear entry with dorsal, an NF-kB/Rel/dorsal family transcription factor. BMC Neuroscience 3:15. doi: 10.1186/1471-2202-3-15
-
(2002)
BMC Neuroscience
, vol.3
, pp. 15
-
-
Takano, H.1
Gusella, J.F.2
-
37
-
-
64049119303
-
Polyglutamine disruption of the huntingtin exon 1 N terminus triggers a complex aggregation mechanism
-
Thakur AK, Jayaraman M, Mishra R, Thakur M, Chellgren VM, L Byeon I-J, Anjum DH, Kodali R, Creamer TP, Conway JF, et al. 2009. Polyglutamine disruption of the huntingtin exon 1 N terminus triggers a complex aggregation mechanism. Nature Structural & Molecular Biology 16:380–389. doi: 10.1038/nsmb.1570
-
(2009)
Nature Structural & Molecular Biology
, vol.16
, pp. 380-389
-
-
Thakur, A.K.1
Jayaraman, M.2
Mishra, R.3
Thakur, M.4
Chellgren, V.M.5
L Byeon, I.-J.6
Anjum, D.H.7
Kodali, R.8
Creamer, T.P.9
Conway, J.F.10
-
38
-
-
0034703869
-
Dominant phenotypes produced by the HD mutation in STHdhQ111 striatal cells
-
Trettel F, Rigamonti D, Hilditch-Maguire P, Wheeler VC, Sharp AH, Persichetti F, Cattaneo E, MacDonald ME. 2000. Dominant phenotypes produced by the HD mutation in STHdhQ111 striatal cells. Human Molecular Genetics 9:2799–2809. doi: 10.1093/hmg/9.19.2799
-
(2000)
Human Molecular Genetics
, vol.9
, pp. 2799-2809
-
-
Trettel, F.1
Rigamonti, D.2
Hilditch-Maguire, P.3
Wheeler, V.C.4
Sharp, A.H.5
Persichetti, F.6
Cattaneo, E.7
Macdonald, M.E.8
-
39
-
-
84866118432
-
False discovery rate estimation for cross-linked peptides identified by mass spectrometry
-
Walzthoeni T, Claassen M, Leitner A, Herzog F, Bohn S, Förster F, Beck M, Aebersold R. 2012. False discovery rate estimation for cross-linked peptides identified by mass spectrometry. Nature Methods 9:901–903. doi: 10.1038/nmeth.2103
-
(2012)
Nature Methods
, vol.9
, pp. 901-903
-
-
Walzthoeni, T.1
Claassen, M.2
Leitner, A.3
Herzog, F.4
Bohn, S.5
Förster, F.6
Beck, M.7
Aebersold, R.8
-
40
-
-
20444448900
-
Huntingtin phosphorylation on serine 421 is significantly reduced in the striatum and by polyglutamine expansion in vivo
-
Warby SC, Chan EY, Metzler M, Gan L, Singaraja RR, Crocker SF, Robertson HA, Hayden MR. 2005. Huntingtin phosphorylation on serine 421 is significantly reduced in the striatum and by polyglutamine expansion in vivo. Human Molecular Genetics 14:1569–1577. doi: 10.1093/hmg/ddi165
-
(2005)
Human Molecular Genetics
, vol.14
, pp. 1569-1577
-
-
Warby, S.C.1
Chan, E.Y.2
Metzler, M.3
Gan, L.4
Singaraja, R.R.5
Crocker, S.F.6
Robertson, H.A.7
Hayden, M.R.8
|